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1. INTRODUCTION 

Tensegrities are regarded as a unique class of spatial trusses 

where members are connected in a self-equilibrated system 

providing stability and geometrical stiffness to the whole 

system. Their analysis starts with finding the infinitesimal 

mechanisms and self-stress states, which influence their static 

and dynamic responses to external loading.  More basic 

information on tensegrities can be found in [1,2,3]. As practice 

shows, there are many mistakes in regard to considering 

whether the structure is a tensegrity or not – the matter was 

taken care of in [4]. Moreover, statics of these structures is 

unique and sophisticated, for basic information please refer to 

[5].  

Research in tensegrities is currently performed in many fields 

of science, mainly including robotics [6], aerospace [7-9], 

deployable [10, 11], offshore [12] and civil engineering. In the 

last field studies are focused on structures such as - domes [13-

16], footbridges [17,18], solar panels [19], tents [20], facades 

[21], drilling rig [22] to mention just a few. In general, it can be 

concluded that all of these multidisciplinary fields draw from 

tensegrity intrinsic and unique mechanical features.  

Here, we are focusing on static response to a compressed 

tensegrity triplex module, which can be used in the future as a 

civil engineering column or part of support of other structures. 

In regard to column-like tensegrity elements the triplex was 

analysed in a few experimental and some numerical studies 

connected with its static behaviour and stability. Triplex was 

previously analysed under compressive loading in [23-27], 

where an analytical mathematical model based on force 

equations of equilibrium was presented and, in most cases, 

solved numerically. Struts were defined as perfectly straight 

bars with no initial imperfections. This approach can be of use 

in civil engineering structures, where buckling of elements is 

forbidden. The design of such modules was preliminary 

analysed in [28]. In [29-31] tensegrity modules were 

calculated using struts modelled as bars with initial curvature 

imperfection, which causes them to behave as a beam. In such 

case, increasement of loading applied on strut results in 

increasement of the lateral deflection of the middle section, 

which is called a second order effect. These models were 

utilized in the field of biotechnology for describing cell 

behaviour or in aerospace engineering for analysing planetary 

landers. Biology-based analyses can often be conducted as 

quasi static. In planetary landers buckled struts are able to 

store large amounts of elastic energy, which is accumulated 

and released during landing impacts. 

All of these analyses are mainly numerical and not many 

experimental tests were conducted up to date. An exception in 

similar scale is a recent work [32], where some static tests were 

performed. However, it was recognized that the prestress level, 

the local bucking behaviour of struts and rupture characteristic 

of cable elements have a dominant effect on the collapse of the 

whole system. The objective of the experimental tests reported 

here was to evaluate the accuracy of the numerical procedure 

and to analyse the influence of the prestress level on the 

behaviour of the tensegrity column working under a static load. 

The experimental tests have been focused on the static axial 

response, considering six different prestress levels and two 

different types of struts.  
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2. MATERIALS AND METHODS 

2.1. Physical mock-ups of tensegrity modules 

Tensegrity triplex contains six nodes denoted as ni lying in 

two parallel planes. It is build from six base cables with 

lengths denoted as l, three cross cables with lengths denoted 

as s and three struts with lengths denoted as b. The module 

height is denoted as h and base cables create two bases, in 

which a circle of radius r can be described on. If needed, the 

schematics of nodes and elements is presented in Figure 4a for 

better understanding of the system.  

Here, two types of tensegrity triplex physical mock-ups were 

tested – i.e. ones with the slender and stocky struts. Slender 

struts were made of M20 bars (Fig. 1a), while stocky struts 

were made of 42.4 x 2.0 mm circular hollow sections, in 

which M20 bars were welded into their edge parts (Fig. 1b). 

Both struts were made of a S355 steel and had almost the same 

cross-sectional area, although different second moment of 

inertia. Besides this difference, the geometry and cross 

sections of both modules remained the same – see Table 1 for 

details.  

 
TABLE 1. Geometry of the physical triplex mock-ups 

Lengths (m) 

Height h Strut b Cross cable s Base cable l Radius r 

1.186 1.280 1.193 0.431 0.249 

Coordinates X Y Z (m) 

n1 0.249 0 0 n4 -0.216 0.125 1.186 

n2 -0.125 0.216 0 n5 0 -0.249 1.186 

n3 -0.125 -0.216 0 n6 0.216 0.125 1.186 

 

The cross and base cables were created using a 3 mm nominal 

diameter steel line made of 19 wires and thimble on each side 

with a cross sectional area of 5.25 mm2. The cross cables had 

also built-in roman screws to perform the prestressing. The 

nodes were laser cut out of a 20 mm thick stainless-steel sheet 

and further countersigned for M8 bolts, which held the cables. 

A connection of the bars and nodes was created by a 

regulation of two steel nuts, while the connection of cables 

and nodes was created using M8 screws. 

2.2. Methodology and the equipment 

The testing program was organized in two parts: 1) tests on 

slender and stocky struts, as well as, 2) tests on physical mock-

ups of slender and stocky triplex modules.  

Before describing the tests, a comment on some material 

properties needs to be made. Previously to the described here 

tests, a uniaxial tension tests of cross and base cables were 

performed in order to determine experimentally the equivalent 

Youngs’ moduli. This was important, since the cables are 

composites build from steel lines and force transducers, as 

well as in case of cross cables, roman screws  – see Figure 1. 

The equivalent moduli of the cross and base cables were 81 

and 56 GPa, respectively. Moreover, the Young’s module was 

also determined for the M20 bars in tension tests. Theory of 

elasticity does not distinguish the values of Young’s module 

in tension and compression, therefore it was acceptable from 

the theoretical point of view. Since the stocky strut is 

composed of a circular hollow section, its moduli was 

assumed the same as M20 bar but recalculated due to the slight 

difference in cross sectional area. The obtained Youngs’ 

moduli were 204.1 and 197.8 GPa for the slender and stocky 

struts, respectively. 

A total of six tests for struts were performed – three for the 

stocky and three for the slender ones. The material and cross 

section properties of struts are presented in Table 2, where m 

is the unit mass, fy is the yield strength, A is the cross section 

area, l0 is the initial length, Ib is the second moment of inertia, 

i is the radius of gyration, λ is the slenderness and d is the 

threaded diameter of M20 bar. 

 
TABLE 2. Material and cross section properties of struts  

Material 
Element m 

(kg/mb) 
fy 

(MPa) 
Slender struts (M20) 1.92 (1) 355 (1) 
Stocky struts (RO42,4x2) 1.99 (2) 355 (1) 

Cross Sectional characteristics 
Element A (1) 

(mm2) 
l0 

(mm) 
Ib  

(mm4) 
i 

(mm) 
 λ 

(-) 
Slender struts 225.2 1370 4036 (3) 4.23 323.9 
Stocky struts  253.8 1370 51 916 14.3   93.7 

(1) Manufacturer. (2) Weighted. (3) 
4 / 64I d=  for 16.933 .d mm=  

 

The testing standpoint is presented in Fig. 2a, where struts 

were connected to supports through the ball joint system. For 

the stocky struts only the compressive force S and vertical 

displacement u was measured, whereas for the slender struts 

also the increasement of lateral deflection of the middle section 

wm was measured (Fig. 2).  The tests were carried out in the 

laboratory of the Department of Mechanics and Building 

Structures of the University of Warmia and Mazury in Olsztyn 

using a universal testing machine with a nominal force of 300 

kN and of class 0.5 [33] with BlueHill software [34]. The 

machine gave information on force S and vertical 

displacement u. The lateral deflection of the middle section 

wm was measured using two displacement sensors. For testing 

the modules, an adaptation of the base and loading plate of the 

machine was designed using Autodesk Inventor [35]. The new 

base makes it possible to test the regularly used bottom handle 

   a)                                      b) 

 

Fig.1. Triplex mock-ups with: a) slender struts and b) stocky struts 

 

 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



3 

of the machine without dismantling and is made of two IPN 

220 I-beams with a length of 0.76 m, four IPN 140 I-beams 

with a length of 0.71 m and a steel sheet with a thickness of 4 

mm (see Fig. 3a, where the steel sheet is removed). The main 

component of the new loading plate is a thrust bearing that 

allows rotation around the loading axis, with a high 

compressive load capacity of 335 kN (Fig. 3b, in the upper 

part is the metal case for the bearing is shown, which is 

painted in white in the bottom part of the figure) Crafted 

specially for the models, the force sensors were attached to all 

nine cables and were designed to work with electro-resistive 

strain gauges as a Wheatstone half bridge, where two active 

arms are placed on the opposite sides of the four-arm bridge. 

The body of the sensor was precisely water cut out of a 6 mm 

thick stainless-steel sheet and further processed to obtain a 

clear surface. The strain gauges were mounted on the two 

inner sides of the body, with special attention to 

manufacturers’ requirements. The force sensors were also 

calibrated for the force using the strain-gauge bridge and a 

testing machine obtaining a force-strain function and for the 

temperature using the strain-gauge bridge and climate 

chamber obtaining a temperature-strain function. The testing 

standpoint is presented in Fig. 4b. 

The tensegrity modules under consideration are characterized 

by the one self-stress state that is introduced initially in the 

members before applying external loads. The levels of the 

self-stress state can be defined as the normal elongation of the 

cross cables, i.e. the strain 0 0( ) ,n np s s s= −  where sn is the 

natural (unstressed) length of the cross cable and s0 is the 

length of the cross cable after prestressing the module. All 

lengths and forces are theoretically the same in each cross 

cable if symmetrical configurations of the self-stress state are 

assumed. After prestressing, the length of the cross cable is 

equal to 0 0(1 ),ns s p= +  while the force is equal to  

0 0 ,s s sN E A p=  where /s s nE A s  is the elastic axial stiffness. 

The lengths and forces in base cables and struts can be 

theoretically calculated based on the self-stress states and the 

lengths of elements. The tests on the tensegrity modules were 

performed at six prestress levels for each of the two types of 

struts. The levels of the self-stress state applied in the 

experimental tests are shown in Table 3 as the normal pre-

strain of the cross cables, together with the values of the 

prestressing forces. Please note that the theoretically 

calculated forces in base cables are different than forces 

measured in the physical mock-ups.  

 
TABLE 3. Self-stress levels (mean values for both modules) 

Self-stress levels 1 2 3 4 5 6 
0 ( )p   700 1675 2732 3778 4940 5945 

cross cables (N)1 298 712 1165 1608 2102 2532 
base cables (N)1 65 177 300 407 1055 630 
base cables (N)2 62 150 245 338 440 532 

struts (N) 2 -320 -768 -1252 -1732 -2268 -2732 
1 Measured, 2 Calculated 

 

The prestressing procedure was as follows. At the beginning 

of each prestress level, the module was dismounted to set the 

forces in the transducers to zero. Afterwards, the module was 

reconnected, and the roman screws were adjusted to activate 

the geometrical stiffness and introduce the proper prestress 

level. Next, the external load was applied using the loading 

plate, which was mounted on a ball joint and enabled to freely 

rotate along the vertical loading axis z. Each prestress level 

contained approximately 25 loading steps with intervals of 

approximately 300 N. The loading plate mass induced the 

 

      a)                                                  b) 

 

Fig.3. Adaptation of: a) base and b) loading plate 

 

             a)                                           b) 

 

Fig.2. Strut tests: a) standpoint view and b) schematics of strut with 
initial imperfection and lateral deflection 

 

 

          a)                             b) 

 

Fig.4. Module test: a) schematics and b) standpoint view. 
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initial loading compressive force P0 equal to 1 kN. The testing 

devices used during the tests were: the testing machine with 

the loading plate, which gave information on the external load 

P and vertical displacement v, the strain gauge bridge, which 

gave information on the forces in the cross cables Ns and the 

base cables Nl, and the grid glued on the loading plate 

rotational part, which gave information on angle of rotation 

between the upper base of the triplex and the lower base of it, 

signified as .  Please note that the vertical displacement in 

the local system of the strut is denoted as u, while the global 

vertical displacement of the module is denoted as v. Similarly, 

the local force compressing a single strut is denoted S, while 

the global force compressing the module is denoted P. 

2.3. The three-parameter model for tensegrity 

In the Fig. 5 a three-parameter model of behaviour for the 

compressed tensegrity triplex is presented. Two kinematic 

parameters are: the  angle between the strut chord and the 

horizontal direction  and the axial displacement of the strut 

chord u, while the static parameter is the prestressing force in 

the strut 0.bN The model assumes, that the strut is axially 

inextensible, which means that the length of the strut remains 

constant and is equal to s. However, it takes into account the 

bending stiffness bEI . In the initial configuration the strut 

chord length is equal to l0, imperfection to z0,m, total length to 

s and its chord is inclined to the horizontal direction at an 

angle α0. No forces are applied to the system and the elastic 

support does not induce any force.  

Next, the prestressing force in the strut 0 ,bN as well as, the 

external force equal to P/3 induces the actual configuration in 

which the angle α0 changes to α, as well as, the chord of the 

strut displaces at value u. The spring support reaction R is 

equal to the product of its stiffness kl and displacement t. The 

stiffness kl is calculated based on the stiffnesses of two base 

cables of the tensegrity triplex, which are tensioned during 

compression and are equal to: 

 

3 / ,l l l lk E A l=    (1) 

 

where El, Al and ll are the Youngs modulus, cross sectional area 

and natural length of base cables, respectively. The 

displacement t is equal to (Fig. 5): 

0 0 0cos( ) ( )cos( ).t l l u = − −   (2) 

The relation between the lateral displacement of the middle 

section wm and the axial displacement of the chord u is: 

 

2 2

0, 0, 00.5 4 2 .m m mw z z u l u= − + − +   (3) 

 

The global vertical displacement v is calculated as (Fig. 5): 

 

0 0 0sin( ) ( )sin( ).v l l u = − −   (4) 

 

Since there are two parameters, only two static equations of 

equilibrium are needed. The proposed equations are (Fig. 5):  

 

 
0 0

0

( )cos( ) 3 ( )sin( ) 0

cos( ) ( / 3)sin( ) 0b

P l u R l u

S R P N

 

 

− − − =

− − − =
 (5) 

 

The relation between the force in the strut S and the lateral 

deflection of the middle section wm is applied as in Eq. (7), 

which is further explained below.  

Nonlinear system of equations (5) has two unknown values α 

and u. The prestressing force Nb
0 is constant and chosen at the 

prestressing phase. External load P is substituted by summing 

the incremental values of ΔP. In order to draw the equilibrium 

paths, the system (5) is solved multiple times for an increasing 

value of P in each iteration. Here, we use Matlab [38] fsolve 

function, which numerically finds the solution.  

The presented model presents only the behaviour of the strut in 

its plane. The module also rotates along the vertical, central axis 

z, which generates additional and main vertical displacements 

due to rigid body movements of struts. This movements are 

connected with the infinitesimal mechanisms and can achieve 

significant values even thou the loading may be relatively small. 

The purpose of the presented three-parameter model is to 

present a discussion in the next subchapter. 

3. RESULTS 

3.1. Experimental results 

First, the results of the struts tests are presented. In the buckling 

tests, the slender struts were be treated as the elastic pin-ended 

columns with the bending stiffness EIb, for which the Eurocode 

buckling curves can be applied [36]. The curve c can was 

chosen for the reduction factor of the strut resistance as a 

function of its generalized slenderness 1/ 4.24  = =   

(where 1 / 76.41yE f = = ). This value of the slenderness 

expects to predict a fully elastic buckling. The generalized 

slenderness of the stocky struts is 1.23 = , which means the 

elastoplastic bucking. The displacements of the slender strut 

were dominated by changes in curvature allowing to consider it 

as the elastic beam to be inextensible with initial imperfections 

z0(x).  To determine the Euler critical load PE  of the slender 

strut basing on the experimental test, the lateral deflection of the 

middle section wm  was measured at various values of the 

external load S.  Utilizing the well-known equation from 

specifications of structural engineering code in the form  
 

Fig. 5. A three-parameter model for tensegrity 
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0 0( ) [1 ( )]Ez x z w z S P= + = − , we can obtain the Southwell 

plot with a straight regression line: 

m 0 , ,E m mw P w S z= −               (6) 

 

which yields the critical load and the initial imperfections z0,m 

in the middle by using the approximation method of least 

squares (Fig. 6). More information on the plot can be found in 

[37]. Three slender struts were tested giving the following 

results: for b1 strut PE=4174 N and z0,m=5.05 mm, for b2 strut 

PE=4027 N and z0,m=3.44 mm and for b3 strut PE=4497 N and 

z0,m=7.98 mm. The presented on Figure 6 blue line is the 

imperfection proposed by the Eurocode for the initial 

imperfection z0,m=l0/200=6.85 mm and the theoretical value of 

Euler load PE=4332 kN. 

Experimental results were also fit into the relation for relative 

coordinates presented in [37]: 

 
2

2
0,mm m

m 0,m 0 0

1 ,
8E

zw wS

P w z l l

  
 = + + 

+    

  (7) 

 

and presented in Figure 7. As can be seen the fit accuracy is 

perfect. This equation is obtained by the approach of an 

equilibrium analysis and is applicable, if inevitable 

imperfections must be considered, regardless of their initial 

shape and type. Note that the theoretical prediction of the 

critical load 2 2 4.33EP EI L kN= =  is greater than the 

experimental value by 8%. Taking into account that the 

expression (7) is based on the linearized small-deflection theory 

and that only three struts were tested, this difference should be 

considered as quite satisfactory. Comparing the data points in 

the lower left and upper right corner of the plot we can see that 

the deviation from the straight regression line in the lower left 

corner is greater than in the right. However, if we discard the 

results from a few initial load steps as prone to greater errors, 

the difference between the theoretical and experimental values 

of the critical load will decrease only by 1%. What is important 

is that we can conclude that Eq. (7) is properly describing the 

behavior of struts and therefore it is well suited to be used with 

the three-parameter model from section 2.3. 

The results presented in a form of force S versus axial 

displacement u chart of the compression tests performed on the 

stocky struts are shown in Fig. 8. Additionally, for comparison 

purposes, the results of the slender struts were also drawn. As 

can be seen, the stiffness of the stocky struts is linear and this 

information is important when considering t he results of the 

compressed modules. 

Next, the results of tests performed on physical mock-ups of 

tensegrity modules are presented. In the upper part of Fig. 9, the 

equilibrium paths for six tests for two types of mock-ups and 

three prestress levels are shown (other results were removed 

due to clarity). As can be seen, the change of the stiffness is 

nonlinear in both cases. The stiffness of the stocky mock-up is 

increasing up to the end of the test, while the stiffness of the 

slender mock-up is increasing up to the value of approximately 

3 kN and vertical displacement of 3 mm, and afterwards a 

change of curvature flexion appears. The stiffness is still 

increasing, yet at a slower rate. The change in chart relates to 

the buckling of slender struts analysed in the beginning of this 

section. The equilibrium paths can be approximated by 2nd and 

3nd polynomials for the stocky and slender mock-ups, 

respectively.  

In the lower part of Fig. 9 the relation between the displacement 

v and the rotation of the upper base θ is shown for the same 

tests. As can be seen the relation is linear for both mock-ups, 

which means that regardless of the strut type, the vertical 

displacement can be easily correlated with the upper base 

rotation by linear function. Both models lose their stiffness in 

axial compression as the prestress level increases. Comparing 

the values of displacement v for both mock-ups at the same 

 

 

Fig.7. Relative equilibrium path - experiment and Eq. 7 

 

Fig.6. The Southwell plot for slender struts 

 

Fig.8. Equilibrium path for both types of struts 
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level of external loading P, the displacement in the slender 

mock-up is approximately 50% higher than in the stocky one. 

We can clearly conclude, that the increasement of prestressing 

is counterproductive (or at least has a negligible effect) in terms 

of stiffness in axial and uniform compression. 

The relationship between forces in cross cables and the vertical 

displacement for both mock-ups is presented in Fig. 10 for all 

prestress levels. Note, that the member forces are the me an 

value calculated from the three cross-cables readouts. In the 

stocky mock-up the stiffness increasement is constant, while in 

the slender mock-up the increasement stops at a certain point 

and afterwards decreases. Moreover, the greater the prestress, 

the point of equilibrium change occurs earlier in the path. For 

example the 6th prestress level curve is decreasing from the 

beginning of the loading. Also, the magnitude of change of 

force values in cross cables for higher prestress levels are 

decreasing. 

Fig. 11 presents changes in base cables in relation to 

displacement. Their behaviour is similar to the behaviour 

presented by the equilibrium paths. For stocky mock-ups, the 

forces are constantly increasing, while for the slender mock-ups 

they are increasing to a certain point, at which the magnitude of 

increasement starts to be significantly smaller. Again, we can 

connect this phenomenon with the slender struts buckling, i.e. 

the slender struts axial stiffness is low and therefore the mock-

ups can more easily displace axially. 

3.2. Numerical verification 

Here, a mathematical model presented in subsection 2.3 is 

compared with the experimental results. Moreover, a 

comparison with a three degree of freedom spatial model based 

on force density method (called here as FDM for convenience) 

from [24] and [26] is shown. The FDM model is build based on 

force equations of equilibrium in the actual configuration, 

however it implements struts as perfectly straight with axial 

stiffness equal to / .EA L Equation (7) on the contrary, as shown 

in subsection 3.1, takes into account strut imperfections and 

second order theory, however it does not include the spatiality 

of the triplex module. The data implemented to the FDM model 

is given in Table 1 and Table 2, as well as supplementary 

information given subsection 2.1 and 2.2. The FDM model was 

calculated on data as follows: 

0 arcsin( / ) arcsin(1186 /1280) 67.9oh b = = = (Table 1), z0,m 

= 6.85 mm (Eurocode recommendations), Nb
0 = (2732-

320)/2=1206 N, 3 /l l l lk E A l= =
33 56 10 5.25 / 431=     

=1181 N/mm (base cable stiffness) and l0=1370 mm (Table 2). 

 

 
Fig. 11. Forces in base cables in relation to displacement 
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Fig. 9. The equilibrium path for six selected tests 
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Fig. 10. Forces in cross cables in relation to displacement 
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The differences between the stocky and slender mock-ups are 

due to the different moments of inertia bI  as presented in Table 

2. The experimental results for the slender and stocky mock-ups 

and all six prestress levels, as well as, two mathematical models 

are presented in Figs 12 and 13, respectively. The forces in base 

cables for the stocky mock-ups for six experimental tests and 

two mathematical models are presented in Fig. 14.  

4. DISCUSSION 

The three-parameter model takes into account precisely the 

reduced stiffness of the compressed struts as taken from Eq. (7) 

and it does not fit the results well – see Fig. 12. It presents an 

over stiffened reaction to the loading. The FDM model fits the 

data quite well only in the beginning of the loading process, 

since it does not take into account the imperfections of the struts 

– again Fig. 12. The triplex module possesses a so-called 

infinitesimal mechanism and this mechanism causes it to 

significantly rotate (angle   in Fig. 4a) and compress 

(displacement v in Fig. 4a) for a very small values of loading 

force P. This phenomenon is a common feature of tensegrity 

structures. Since the three-parameter model does not include 

the possibility for the triplex to rotate along the   angle, thus 

its response is high in comparison to the experimental results. 

However, we know that it describes precisely the behaviour of 

the strut itself – see the Fig. 7. On the contrary, the FDM model 

accounts the rotation and the actual node configuration of the 

triplex and thus takes into account the infinitesimal mechanism 

phenomenon. Therefore, it is well suited to describe the 

experimental results for stocky mock-ups, as shown in Fig. 13. 

Small differences are expected to origin from the theoretical 

and actual material differences due to the high complexity of 

physical mock-ups. The three-parameter model, which does 

not include the rotation of upper base, again does not fit the 

experimental results in Fig. 13. In case of base cable forces 

presented in Fig. 14, the FDM model relatively well describes 

the changes of forces in base cables for the stocky module and 

only initially well for the slender module. On the contrary Eq. 

(7) describes better the forces in base cables in case of the 

slender module. In order to better describe the behaviour of the 

slender module, the FDM model ought to be supplemented with 

Eq. (7) for the description of strut behaviour. Then it is expected 

that it would fit to the experimental data well. 

5. CONCLUSIONS 

In the paper results on compressed experimental tests on two 

physical mock-ups of tensegrity triplex at different pre-stress 

levels and for different struts were presented. The results are 

valuable, since there are not many experimental data found on 

the subject in the literature. The advantage of this test, in regard 

to some other tests, is that it also contains information on the 

prestress levels of the structure and directly measures forces in 

cables of the tensegrity structure. The results enable to verify 

and validate numerical solutions available in the literature.  

Moreover, a simple three-parameter model for description of 

tensegrity behaviour has been presented. The model is 

moderately accurate with the results; however it enables for 

better understanding of the triplex behaviour, especially in 

comparison to the more precise model from other publications. 

It takes into account the nonlinear behaviour of strut, yet it does 

not include the rotation of the triplex module during 

compression. For example, it enables to conclude that, in order 

to build a highly stiff module, it is more beneficial to eliminate 

the infinitesimal mechanisms, rather than strengthen the struts. 

From the point of view of this survey, the mechanical models 

of tensegrity behaviour can be divided into two parts. First 

describe struts as perfectly straight bars, with no imperfections, 

which results in inducing only axial internal forces in them. 

These models can be verified/validation by the stocky module 

experimental results and can be utilized in Civil Engineering 

filed. In the field, due to high stiffness requirements, buckling 

of struts is not allowed and imperfections and second order 

 

 
Fig. 13. The stocky module numerical and experimental results 
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Fig. 12. The slender module numerical and experimental results 
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Fig. 14. The stocky and slender module base cable forces 
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effects can be implemented into resistances of elements [36] - 

this simplified analysis is enough accurate for the task.  

The second part describes struts as bars with initial curvature 

imperfection, which causes them to behave as a beam. 

Furthermore, increasement of loading results in increasement 

of the vertical displacement (a second order effect - see Fig. 2b). 

Such models are utilized in the field of Biotechnology for 

describing cell behaviour or in Aerospace Engineering for 

analysing planetary landers. Biology-based analyses can often 

be conducted as quasi static. In planetary landers buckled struts 

are able to store large amounts of elastic energy, which is 

accumulated during landing ground impacts.  For 

verification/validation of such theoretical models, the slender 

module experiment is suitable.  

Further work includes numerical finite element method 

analyses, as well as implementation of Eq. (7) into the FDM 

model in order to close the gap between the theoretical 

calculations and experimental results. 
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