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Experimental and numerical static tests of tensegrity
triplex modules
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Abstract. The paper presents chosen results of experimental tests performed on physical mock-ups of tensegrity triplex modules, approximately
1.2 m tall and of 0.5 m diameter, made of steel. A uniform and uniaxial static compressive loading is applied to three upper nodes of the modules
at six different self-stress levels. Cable forces are measured using specially crafted force transducers of an electro-resistive strain-gauge type.
Two types of struts with different slenderness are incorporated to analyze the influence of buckling on the behaviour of the modules. A simple
three-parameter mathematical model is presented to explain the behaviour of the modules and discuss the obtained experimental data. The
results show nonlinear behaviour in the equilibrium path, as well as, rapidly decreasing axial stiffness in the post-critical phase. An increase in
prestress has a small influence on the stiffness in the chosen range of compressive loading. The experimental results are valuable for purposes of
verification and validation of numerical studies and fill the lack of experimental data in the literature.

Keywords: experimental test; tensegrity triplex; self-stress level; force transducers; struts buckling.

1. INTRODUCTION
Tensegrities are regarded as a unique class of spatial trusses
where members are connected in a self-equilibrated system pro-
viding stability and geometrical stiffness to the whole system.
Their analysis starts with finding the infinitesimal mechanisms
and self-stress states, which influence their static and dynamic
responses to external loading. More basic information on tenseg-
rities can be found in [1–3]. As practice shows, there are many
mistakes regarding considering whether the structure is a tenseg-
rity or not – the matter was taken care of in [4]. Moreover, the
statics of these structures are unique and sophisticated, for basic
information please refer to [5].

Research in tensegrities is currently performed in many fields
of science, mainly including robotics [6], aerospace [7–9], de-
ployable [10,11], offshore [12], and civil engineering. In the last
field, studies are focused on structures such as – domes [13–16],
footbridges [17, 18], solar panels [19], tents [20], facades [21],
and drilling rigs [22] to mention just a few. In general, it can be
concluded that all of these multidisciplinary fields draw from
tensegrity intrinsic and unique mechanical features.

Here, we are focusing on static response to a compressed
tensegrity triplex module, which can be used in the future as a
civil engineering column or as part of the support of other struc-
tures. Regarding column-like tensegrity elements, the triplex
was analyzed in a few experimental and some numerical studies
connected with its static behaviour and stability. Triplex was pre-
viously analyzed under compressive loading in [23–27], where
an analytical mathematical model based on force equations of
equilibrium was presented and, in most cases, solved numeri-
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cally. Struts were defined as perfectly straight bars with no initial
imperfections. This approach can be of use in civil engineering
structures, where buckling of elements is forbidden. The design
of such modules was preliminarily analyzed in [28]. In [29–31]
tensegrity modules were calculated using struts modelled as
bars with initial curvature imperfection, which causes them to
behave as a beam. In such a case, an increase in loading applied
on strut results in the growth of the lateral deflection of the mid-
dle section, which is called a second order effect. These models
were utilized in the field of biotechnology for describing cell
behaviour or in aerospace engineering for analyzing planetary
landers. Biology-based analyses can often be conducted as quasi
static. In planetary landers buckled struts are able to store large
amounts of elastic energy, which is accumulated and released
during landing impacts.

All of these analyses are mainly numerical and not many ex-
perimental tests were conducted up to date. An exception in
similar scale is a recent work [32], where some static tests were
performed. However, it was recognized that the prestress level,
the local bucking behaviour of struts and rupture characteristic
of cable elements have a dominant effect on the collapse of the
whole system. The objective of the experimental tests reported
here was to evaluate the accuracy of the numerical procedure and
to analyse the influence of the prestress level on the behaviour
of the tensegrity column working under a static load. The exper-
imental tests focused on the static axial response, considering
six different prestress levels and two different types of struts.

2. MATERIALS AND METHODS

2.1. Physical mock-ups of tensegrity modules
The tensegrity triplex contains six nodes denoted as 𝑛𝑖 lying in
two parallel planes. It is built from six base cables with lengths
denoted as 𝑙, three cross cables with lengths denoted as 𝑠, and
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three struts with lengths denoted as 𝑏. The module height is
denoted as ℎ and base cables create two bases, in which a circle
of radius 𝑟 can be described. If needed, the schematics of nodes
and elements are presented in Fig. 4a for a better understanding
of the system.

Here, two types of tensegrity triplex physical mock-ups were
tested – i.e. ones with slender and stocky struts. Slender struts
were made of M20 bars (Fig. 1a), while stocky struts were made
of 42.4× 2.0 mm circular hollow sections, in which M20 bars
were welded into their edge parts (Fig. 1b). Both struts were
made of S355 steel and had almost the same cross-sectional
area, although different second moment of inertia. Besides this
difference, the geometry and cross sections of both modules
remained the same – see Table 1 for details.

(a) (b)

Fig. 1. Triplex mock-ups with (a) slender struts and (b) stocky struts

Table 1
Geometry of the physical triplex mock-ups

Lengths (m)

Height ℎ Strut 𝑏 Cross cable 𝑠 Base cable 𝑙 Radius 𝑟

1.186 1.280 1.193 0.431 0.249

Coordinates X Y Z (m)

𝑛1 0.249 0 0 𝑛4 –0.216 0.125 1.186

𝑛2 –0.125 0.216 0 𝑛5 0 –0.249 1.186

𝑛3 –0.125 –0.216 0 𝑛6 0.216 0.125 1.186

The cross and base cables were created using a 3 mm nominal
diameter steel line made of 19 wires and thimble on each side
with a cross-sectional area of 5.25 mm2. The cross cables had
also built-in Roman screws to perform the prestressing. The
nodes were laser cut out of a 20 mm thick stainless-steel sheet
and further countersigned for M8 bolts, which held the cables.
A connection of the bars and nodes was created by a regulation
of two steel nuts, while the connection of cables and nodes was
created using M8 screws.

2.2. Methodology and the equipment

The testing program was divided into two parts: 1) tests on
slender and stocky struts, as well as 2) tests on physical mock-
ups of slender and stocky triplex modules.

Before describing the tests, a comment on some material prop-
erties needs to be made. Previously to the described here tests,
uniaxial tension tests of cross and base cables were performed to
determine experimentally the equivalent Youngs’ moduli. This
was important since the cables are composites built from steel
lines and force transducers, as well as in the case of cross cables,
Roman screws – see Fig. 1. The equivalent moduli of the cross
and base cables were 81 and 56 GPa, respectively. Moreover,
Young’s module was also determined for the M20 bars in ten-
sion tests. The theory of elasticity does not distinguish the values
of Young’s module in tension and compression; therefore it was
acceptable from the theoretical point of view. Since the stocky
strut is composed of a circular hollow section, its moduli were
assumed the same as the M20 bar but recalculated due to the
slight difference in cross-sectional area. The obtained Youngs’
moduli were 204.1 and 197.8 GPa for the slender and stocky
struts, respectively.

A total of six tests for struts were performed – three for the
stocky and three for the slender ones. The material and cross-
section properties of struts are presented in Table 2, where 𝑚 is
the unit mass, 𝑓𝑦 is the yield strength, 𝐴 is the cross-section area,
𝑙0 is the initial length, 𝐼𝑏 is the second moment of inertia, 𝑖 is
the radius of gyration, 𝜆 is the slenderness and 𝑑 is the threaded
diameter of M20 bar.

Table 2
Material and cross-section properties of struts

Material

Element 𝑚

(kg/mb)
𝑓𝑦

(MPa)

Slender struts (M20) 1.92(1) 355(1)

Stocky struts (RO42,4x2) 1.99(2) 355(1)

Cross-sectional characteristics

Element 𝐴(1)

(mm2)
𝑙0

(mm)
𝐼𝑏

(mm4)
𝑖

(mm)
𝜆

(–)

Slender struts 225.2 1370 4036(3) 4.23 323.9

Stocky struts 253.8 1370 51 916 14.3 93.7
(1) Manufacturer. (2) Weighted. (3) 𝐼 = 𝜋𝑑4/64 for 𝑑 = 16.933 mm.

The testing standpoint is presented in Fig. 2a, where struts
were connected to supports through the ball joint system. For
the stocky struts only the compressive force 𝑆 and vertical dis-
placement 𝑢 were measured, whereas for the slender struts also
the increase in lateral deflection of the middle section 𝑤𝑚 was
measured (Fig. 2). The tests were carried out in the labora-
tory of the Department of Mechanics and Building Structures
of the University of Warmia and Mazury in Olsztyn using a
universal testing machine with a nominal force of 300 kN and
class 0.5 [33] with BlueHill software [34]. The machine gave
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information on force 𝑆 and vertical displacement 𝑢. The lateral
deflection of the middle section 𝑤𝑚 was measured using two
displacement sensors. For testing the modules, an adaptation of
the base and loading plate of the machine was designed using
Autodesk Inventor [35]. The new base makes it possible to test
the regularly used bottom handle of the machine without dis-
mantling and is made of two IPN 220 I-beams with a length of
0.76 m, four IPN 140 I-beams with a length of 0.71 m and a steel
sheet with a thickness of 4 mm (see Fig. 3a, where the steel sheet
is removed). The main component of the new loading plate is a
thrust bearing that allows rotation around the loading axis, with a
high compressive load capacity of 335 kN (Fig. 3b, in the upper
part is the metal case for the bearing is shown, which is painted
in white in the bottom part of the figure). Crafted specially for
the models, the force sensors were attached to all nine cables and
were designed to work with electro-resistive strain gauges as a
Wheatstone half-bridge, where two active arms are placed on
the opposite sides of the four-arm bridge. The body of the sensor
was precisely water-cut out of a 6 mm thick stainless-steel sheet
and further processed to obtain a clear surface. The strain gauges
were mounted on the two inner sides of the body, with special at-
tention to manufacturers’ requirements. The force sensors were
also calibrated for the force using the strain-gauge bridge and
a testing machine obtaining a force-strain function and for the
temperature using the strain-gauge bridge and climate chamber
obtaining a temperature-strain function. The testing standpoint
is presented in Fig. 4b.

(a) (b)

Fig. 2. Strut tests: (a) standpoint view and (b) schematics of strut
with initial imperfection and lateral deflection

The tensegrity modules under consideration are character-
ized by the one self-stress state that is introduced initially in the
members before applying external loads. The levels of the self-
stress state can be defined as the normal elongation of the cross
cables, i.e. the strain 𝑝0 = (𝑠0 − 𝑠𝑛)/𝑠𝑛, where 𝑠𝑛 is the natural
(unstressed) length of the cross cable and 𝑠0 is the length of the
cross cable after prestressing the module. All lengths and forces
are theoretically the same in each cross cable if symmetrical
configurations of the self-stress state are assumed. After pre-

(a) (b)

Fig. 3. Adaptation of (a) base and (b) loading plate

(a) (b)

Fig. 4. Module test: (a) schematics and (b) standpoint view

stressing, the length of the cross cable is equal to 𝑠0 = 𝑠𝑛 (1+ 𝑝0),
while the force is equal to 𝑁𝑠0 = 𝐸𝑠𝐴𝑠𝑝0, where 𝐸𝑠𝐴𝑠/𝑠𝑛 is the
elastic axial stiffness. The lengths and forces in base cables and
struts can be theoretically calculated based on the self-stress
states and the lengths of elements. The tests on the tensegrity
modules were performed at six prestress levels for each of the
two types of struts. The levels of the self-stress state applied
in the experimental tests are shown in Table 3 as the normal
pre-strain of the cross cables, together with the values of the
prestressing forces. Please note that the theoretically calculated
forces in base cables are different than forces measured in the
physical mock-ups.

The prestressing procedure was as follows. At the beginning
of each prestress level, the module was dismounted to set the
forces in the transducers to zero. Afterwards, the module was
reconnected, and the roman screws were adjusted to activate the
geometrical stiffness and introduce the proper prestress level.
Next, the external load was applied using the loading plate,
which was mounted on a ball joint and enabled to freely rotate
along the vertical loading axis 𝑧. Each prestress level contained
approximately 25 loading steps with intervals of approximately
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Table 3
Self-stress levels (mean values for both modules)

Self-stress levels 1 2 3 4 5 6

𝑝0 (𝜇𝜀) 700 1675 2732 3778 4940 5945

cross cables (N)1 298 712 1165 1608 2102 2532

base cables (N)1 65 177 300 407 1055 630

base cables (N)2 62 150 245 338 440 532

struts (N)2 –320 –768 –1252 –1732 –2268 –2732
1 Measured, 2 Calculated

300 N. The loading plate mass induced the initial loading com-
pressive force 𝑃0 equal to 1 kN. The testing devices used during
the tests were: the testing machine with the loading plate, which
gave information on the external load 𝑃 and vertical displace-
ment 𝑣, the strain gauge bridge, which gave information on the
forces in the cross cables 𝑁𝑠 and the base cables 𝑁𝑙 , and the grid
glued on the loading plate rotational part, which gave informa-
tion on angle of rotation between the upper base of the triplex
and the lower base of it, signified as 𝜃. Please note that the ver-
tical displacement in the local system of the strut is denoted as
𝑢, while the global vertical displacement of the module is de-
noted as 𝑣. Similarly, the local force compressing a single strut
is denoted 𝑆, while the global force compressing the module is
denoted 𝑃.

2.3. The three-parameter model for tensegrity

In Fig. 5 a three-parameter model of behaviour for the com-
pressed tensegrity triplex is presented. Two kinematic param-
eters are the angle between the strut chord and the horizontal
direction 𝛼 and the axial displacement of the strut chord 𝑢,
while the static parameter is the prestressing force in the strut
𝑁0
𝑏
. The model assumes, that the strut is axially inextensible,

which means that the length of the strut remains constant and
is equal to 𝑠. However, it considers the bending stiffness 𝐸𝐼𝑏.
In the initial configuration, the strut chord length is equal to 𝑙0,
imperfection to 𝑧0,𝑚, total length to 𝑠 and its chord is inclined
to the horizontal direction at an angle 𝛼0. No forces are applied
to the system and the elastic support does not induce any force.

Next, the prestressing force in the strut 𝑁0
𝑏
, as well as, the

external force equal to 𝑃/3 induces the actual configuration in
which the angle 𝛼0 changes to 𝛼, as well as the chord of the strut
displaces at value 𝑢. The spring support reaction 𝑅 is equal to
the product of its stiffness 𝑘𝑙 and displacement 𝑡. The stiffness
𝑘𝑙 is calculated based on the stiffnesses of two base cables of
the tensegrity triplex, which are tensioned during compression
and are equal to:

𝑘𝑙 =
√

3𝐸𝑙𝐴𝑙/𝑙𝑙 , (1)

where 𝐸𝑙 , 𝐴𝑙 and 𝑙𝑙 are the Youngs modulus, cross-sectional
area, and natural length of base cables, respectively. The dis-
placement 𝑡 is equal to (Fig. 5)

𝑡 = 𝑙0 cos(𝛼0) −
(
𝑙0 −𝑢

)
cos(𝛼). (2)

Fig. 5. A three-parameter model for tensegrity

The relation between the lateral displacement of the middle
section 𝑤𝑚 and the axial displacement of the chord 𝑢 is

𝑤𝑚 = −𝑧0,𝑚 +0.5
√︃

4𝑧2
0,𝑚−𝑢2 +2𝑙0𝑢 . (3)

The global vertical displacement 𝑣 is calculated as (Fig. 5)

𝑣 = 𝑙0 sin(𝛼0) −
(
𝑙0 −𝑢

)
sin(𝛼). (4)

Since there are two parameters, only two static equations of
equilibrium are needed. The proposed equations are (Fig. 5):

𝑃
(
𝑙0 −𝑢

)
cos(𝛼) −3𝑅

(
𝑙0 −𝑢

)
sin(𝛼) = 0,

𝑆−𝑅 cos(𝛼) − (𝑃/3) sin(𝛼) −𝑁0
𝑏 = 0.

(5)

The relation between the force in the strut 𝑆 and the lateral
deflection of the middle section 𝑤𝑚 is applied as in equation
(7), which is further explained below.

A nonlinear system of equations (5) has two unknown values
𝛼 and 𝑢. The prestressing force 𝑁0

𝑏
is constant and chosen at the

prestressing phase. External load 𝑃 is substituted by summing
the incremental values ofΔ𝑃. To draw the equilibrium paths, the
system (5) is solved multiple times for an increasing value of 𝑃
in each iteration. Here, we use the Matlab [38] fsolve function,
which numerically finds the solution.

The presented model demonstrates only the behaviour of the
strut in its plane. The module also rotates along the vertical,
central axis 𝑧, which generates additional and main vertical
displacements due to rigid body movements of struts. These
movements are connected with the infinitesimal mechanisms
and can achieve significant values even thou the loading may be
relatively small. The purpose of the presented three-parameter
model is to present a discussion in the next section.

3. RESULTS

3.1. Experimental results

First, the results of the strut tests are presented. In the buckling
tests, the slender struts were treated as elastic pin-ended columns
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with the bending stiffness EI𝑏, for which the Eurocode buckling
curves can be applied [36]. The curve 𝑐 was chosen for the re-
duction factor of the strut resistance as a function of its general-
ized slenderness 𝜆 = 𝜆/𝜆1 = 4.24 (where 𝜆1 = 𝜋

√︁
𝐸/ 𝑓𝑦 = 76.41).

This value of the slenderness is expected to predict a fully elas-
tic buckling. The generalized slenderness of the stocky struts
is 𝜆 = 1.23, which means the elastoplastic bucking. The dis-
placements of the slender strut were dominated by changes in
curvature facilitating the consideration of the elastic beam to be
inextensible with initial imperfections 𝑧0 (𝑥). To determine the
Euler critical load 𝑃𝐸 of the slender strut based on the experi-
mental test, the lateral deflection of the middle section 𝑤𝑚 was
measured at various values of the external load 𝑆. Utilizing the
well-known equation from specifications of structural engineer-
ing code in the form 𝑧(𝑥) = 𝑧0 +𝑤 = 𝑧0/[1− (𝑆/𝑃𝐸)], we can
obtain the Southwell plot with a straight regression line

𝑤𝑚 = 𝑃𝐸𝑤𝑚/𝑆− 𝑧0,𝑚 , (6)

which yields the critical load and the initial imperfections 𝑧0,𝑚 in
the middle by using the approximation method of least squares
(Fig. 6). More information on the plot can be found in [37]. Three
slender struts were tested giving the following results: for b1
strut 𝑃𝐸 = 4174 N and 𝑧0,𝑚 = 5.05 mm, for b2 strut 𝑃𝐸 = 4027 N
and 𝑧0,𝑚 = 3.44 mm and for b3 strut 𝑃𝐸 = 4497 N and 𝑧0,𝑚 =

7.98 mm. The blue line shown in Fig. 6 is the imperfection
proposed by the Eurocode for the initial imperfection 𝑧0,𝑚 =

𝑙0/200 = 6.85 mm, and the theoretical value of Euler load 𝑃𝐸 =

4332 kN.

Fig. 6. The Southwell plot for slender struts

Experimental results also fit into the relation for relative co-
ordinates presented in [37]:

𝑆

𝑃𝐸

=
𝑤𝑚

𝑤𝑚 + 𝑧0,𝑚

[
1+ 𝜋2

8

(
𝑤𝑚

𝑙0
+
𝑧0,𝑚

𝑙0

)2
]
, (7)

and presented in Fig. 7. As can be seen, the fit accuracy is perfect.
This equation is obtained by the approach of an equilibrium anal-
ysis and is applicable if inevitable imperfections must be consid-
ered, regardless of their initial shape and type. Note that the theo-
retical prediction of the critical load 𝑃𝐸 = 𝐸𝐼𝜋2/𝐿2 = 4.33 kN is
greater than the experimental value by 8%. Considering that the

expression (7) is based on the linearized small-deflection theory
and that only three struts were tested, this difference should be
considered quite satisfactory. Comparing the data points in the
lower left and upper right corner of the plot, we can see that
the deviation from the straight regression line in the lower left
corner is greater than in the right. However, if we discard the
results from a few initial load steps as prone to greater errors,
the difference between the theoretical and experimental values
of the critical load will decrease only by 1%. What is important
is that we can conclude that equation (7) is properly describing
the behaviour of struts and therefore it is well suited to be used
with the three-parameter model from Section 2.3.

Fig. 7. Relative equilibrium path – experiment and equation (7)

The results presented in the form of force 𝑆 versus axial
displacement 𝑢 chart of the compression tests performed on the
stocky struts are shown in Fig. 8. Additionally, for comparison
purposes, the results of the slender struts were also drawn. As
can be seen, the stiffness of the stocky struts is linear, and this
information is important when considering the results of the
compressed modules.

Fig. 8. Equilibrium path for both types of struts

Next, the results of tests performed on physical mock-ups of
tensegrity modules are presented. In the upper part of Fig. 9,
the equilibrium paths for six tests for two types of mock-ups and
three prestress levels are shown (other results were removed due
to clarity). As can be seen, the change of the stiffness is nonlinear
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in both cases. The stiffness of the stocky mock-up increases up
to the end of the test, while the stiffness of the slender mock-up
increases up to the value of approximately 3 kN and vertical
displacement of 3 mm, and afterwards a change of curvature
flexion appears. The stiffness is still increasing yet at a slower
rate. The change in the chart relates to the buckling of slender
struts analyzed at the beginning of this section. The equilibrium
paths can be approximated by 2nd and 3rd polynomials for the
stocky and slender mock-ups, respectively.

Fig. 9. The equilibrium path for six selected tests

In the lower part of Fig. 9 the relation between the displace-
ment 𝑣 and the rotation of the upper base 𝜃 is shown for the
same tests. As can be seen, the relation is linear for both mock-
ups, which means that regardless of the strut type, the vertical
displacement can be easily correlated with the upper base ro-
tation by a linear function. Both models lose their stiffness in
axial compression as the prestress level increases. Comparing
the values of displacement 𝑣 for both mock-ups at the same level
of external loading 𝑃, the displacement in the slender mock-up
is approximately 50% higher than in the stocky one. We can
clearly conclude that the increase in prestressing is counterpro-
ductive (or at least has a negligible effect) in terms of stiffness
in axial and uniform compression.

The relationship between forces in cross cables and the verti-
cal displacement for both mock-ups is presented in Fig. 10 for all
prestress levels. Note, that the member forces are the mean value
calculated from the three cross-cable readouts. In the stocky
mock-up, the stiffness increase is constant, while in the slender
mock-up, the increase stops at a certain point and afterwards

decreases. Moreover, the greater the prestress, the point of equi-
librium change occurs earlier in the path. For example, the 6th

prestress level curve is decreasing from the beginning of the
loading. Also, the magnitude of change of force values in cross
cables for higher prestress levels decreases.

Fig. 10. Forces in cross cables in relation to displacement

Figure 11 presents changes in base cables in relation to dis-
placement. Their behaviour is similar to the behaviour presented
by the equilibrium paths. For stocky mock-ups, the forces are
constantly increasing, while for slender mock-ups, they increase
to a certain point, at which the magnitude of the increase starts

Fig. 11. Forces in base cables in relation to displacement
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to be significantly smaller. Again, we can connect this phe-
nomenon with the slender struts buckling, i.e. the slender struts
axial stiffness is low and therefore the mock-ups can more easily
displace axially.

3.2. Numerical verification

Here, a mathematical model presented in Subsection 2.3 is com-
pared with the experimental results. Moreover, a comparison
with a three-degree-of-freedom spatial model based on the force
density method (called here as FDM for convenience) from [24]
and [26] is shown. The FDM model is built based on force equa-
tions of equilibrium in the actual configuration; however, it im-
plements struts as perfectly straight with axial stiffness equal to
𝐸𝐴/𝐿. Equation (7) on the contrary, as shown in Subsection 3.1,
considers strut imperfections and second-order theory. However,
it does not include the spatiality of the triplex module. The data
implemented in the FDM model is given in Table 1 and Table 2,
as well as supplementary information given in Subsections 2.1
and 2.2. The FDM model was calculated on data as follows:
𝛼0 = arcsin(ℎ/𝑏) = arcsin(1186/1280) = 67.9◦ (Table 1), 𝑧0,𝑚 =

6.85 mm (Eurocode recommendations), 𝑁0
𝑏
= (2732−320)/2 =

1206 N, 𝑘𝑙 =
√

3𝐸𝑙𝐴𝑙/𝑙𝑙 =
√

3 ·56 ·103 ·5.25/431 = 1181 N/mm
(base cable stiffness) and 𝑙0 = 1370 mm (Table 2). The differ-
ences between the stocky and slender mock-ups are due to the
different moments of inertia 𝐼𝑏 as presented in Table 2. The
experimental results for the slender and stocky mock-ups and
all six prestress levels, as well as two mathematical models are
presented in Figs. 12 and 13, respectively. The forces in base
cables for the stocky mock-ups for six experimental tests and
two mathematical models are presented in Fig. 14.

Fig. 12. The slender module numerical and experimental results

Fig. 13. The stocky module numerical and experimental results

Fig. 14. The stocky and slender module base cable forces

4. DISCUSSION

The three-parameter model precisely takes into account the re-
duced stiffness of struts, as written in equation (7), however it
does not fit the results well – see Fig. 12. It presents an over-
stiffened reaction to the loading. The FDM model fits the data
quite well only at the beginning of the loading process, since it
does not take into account the imperfections of the struts – see
again Fig. 12. The triplex module possesses a so-called infinites-
imal mechanism, which causes it to significantly rotate (angle 𝜃
in Fig. 4a) and compress (displacement 𝑣 in Fig. 4a) for small
values of loading force 𝑃. This phenomenon is common for
tensegrities. Since the three-parameter model does not include
the possibility for the triplex to rotate along the 𝜃 angle, thus
its response is high in comparison to the experimental results.
However, we know that it describes precisely the behaviour of
the strut itself – see Fig. 7. On the contrary, the FDM model
accounts for the rotation and the actual node configuration of the
triplex and thus takes into account the infinitesimal mechanism
phenomenon. Therefore, it is well suited to describe the experi-
mental results for stocky mock-ups, as shown in Fig. 13. Small
differences are expected to originate from the theoretical and ac-
tual material differences due to the high complexity of physical
mock-ups. The three-parameter model, which does not include
the rotation of the upper base, again does not fit the experimental
results in Fig. 13. In the case of base cable forces presented in
Fig. 14, the FDM model relatively well describes the changes
of forces in base cables for the stocky module and only initially
well for the slender module. On the contrary equation (7) de-
scribes better the forces in base cables in the case of the slender
module. To better describe the behaviour of the slender module,
the FDM model ought to be supplemented with equation (7) for
the description of strut behaviour. Then it is expected to fit the
experimental data well.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151674, 2024 7



A. Rutkiewicz and L. Małyszko

5. CONCLUSIONS
In the paper results of compressed experimental tests on two
physical mock-ups of tensegrity triplex at different pre-stress
levels and for different struts were presented. The results are
valuable since there is not much experimental data found on the
subject in the literature. The advantage of this test, regarding
some other tests, is that it also contains information on the
prestress levels of the structure and directly measures forces
in cables of the tensegrity structure. The results facilitate the
verification and validate numerical solutions available in the
literature.

Moreover, a simple three-parameter model for the description
of tensegrity behaviour was presented. The model is moderately
accurate with the results; however, it enables for better under-
standing of the triplex behaviour, especially in comparison to
the more precise model from other publications. It takes into
account the nonlinear behaviour of the strut, yet it does not in-
clude the rotation of the triplex module during compression. For
example, it enables to conclude that, in order to build a highly
stiff module, it is more beneficial to eliminate the infinitesimal
mechanisms, rather than strengthen the struts.

From the point of view of this survey, the mechanical models
of tensegrity behaviour can be divided into two parts. First
describe struts as perfectly straight bars, with no imperfections,
which results in inducing only axial internal forces in them.
These models can be verified/validated by the stocky module
experimental results and can be utilized in the Civil Engineering
field. In the field, due to high stiffness requirements, buckling of
struts is not allowed and imperfections and second-order effects
can be implemented into resistances of elements [36] – this
simplified analysis is accurate enough for the task.

The second part describes struts as bars with initial curvature
imperfection, which causes them to behave as a beam. Further-
more, an increase in loading results in the growth of the vertical
displacement (a second-order effect – see Fig. 2b). Such mod-
els are utilized in the field of Biotechnology for describing cell
behaviour or in Aerospace Engineering for analyzing plane-
tary landers. Biology-based analyses can often be conducted as
quasi-static. In planetary landers buckled struts can store large
amounts of elastic energy, which is accumulated during landing
ground impacts. For the verification/validation of such theoret-
ical models, the slender module experiment is suitable.

Further work includes numerical finite element method anal-
yses, as well as the implementation of equation (7) into the FDM
model to close the gap between the theoretical calculations and
experimental results.
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