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Abstract
In this paper, an efficient method for the denoising of electrocardiogram (ECG) signals is presented. As it is
well-known, the efficient translation-invariant (TI) denoising technique, first introduced by Coifman and
Donoho, uses K pre-processing shift-rotation operations, K denoising operations similar to the standard
Donoho’s thresholding algorithm, K post-processing inverse shift-rotation operations, and finally, the K new
less noisy copies generated by the preceding steps are averaged to produce a final denoised signal. Thus
and conversely to the previously mentioned TI algorithm, the suggested technique consists of the design of
a low computational translation-invariant-like strategy that eliminates the K pre-processing shift-rotation
and the K post-processing inverse shift-rotation operations and only keeps the K wavelet-based denoising
operations where for each one we use a different mother wave among a set of K mother waves ψ1, ψ2, . . . , ψK .
Consequently, each mother wave generates a new less noisy copy from the original noisy signal. Finally, the
produced less noisy multiple copies are averaged to reach the final denoised signal. Through this strategy, we
can avoid the use of multiple hardware sensors to generate multiple noisy copies to be averaged to restore
the clean version of the signal. Consequently, the proposed approach can considerably reduce the cost of
the acquisition system. Additionally, the several results produced from extensive simulations show that the
proposed algorithm outperforms many translation-invariant-like methods and can be considered as one of the
top-ranking recent algorithms to tackle the denoising problem.
Keywords: ECG signals, set of wavelets, translation-invariant, Donoho’s denoising, noisy copies generation
from a single record, white Gaussian noise.

1. Introduction

Nowadays, healthcare systems that diagnose and detect human pathologies play a significant
role in our modern daily individual lives. Such systems must be efficient and accurate to process and
analyse several bio-signals (ECG, EEG, EMG, PCG, etc.) in a manner that avoids false analysis and
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wrong judgment. Among the problems that can be encountered in the design of health monitoring
tools there is the noise or disturbance acting in the data acquisition phase and/or in distant
transmissions. Consequently, the ECG signal, which is the electrical activity of the human heart,
can be noised by many sources (power line interference, contact noise, patient-electrode motion
artifacts, EMG noise, baseline drift, etc.) [1]. To correctly decide about the cardiac health status,
the noise must be, as much as possible, efficiently reduced. In this context, several contributions
have been accomplished. One of the noise types commonly treated is the additive white Gaussian
noise (AWGN). Essentially, we can categorize previous works relating to the subject as follows:

– Techniques derived from image processing, such as morphological filters. Such methods
use erosion, dilation, opening, and closing [2–4].

– Strategies based on ICA and/or PCA, as cited in [5–7].
– Filtering algorithms such as the methods using an adaptive filtering system [8–12].
– Methods using the recent transform known as Empirical Mode Decomposition (EMD) [13–15].
– Reported schemes based on the wavelet transform, such as those mentioned in [16, 17].
– Combination-based methodology merging such as Wiener/Kalman filters [18], wavelet/
Savitzky–Golay filter [19], wavelet/Wiener filters [20], wavelet/fuzzy reasoning [21].

However, we would like attract the reader’s attention to the algorithms based on the special
wavelet-thresholding case, which can be considered as variants of the standard state-of-the-
art (Donoho’s) algorithm [22, 23]. In [24], the authors presented a method based on nonlinear
thresholding of wavelets and optimized wavelet packet coefficients using hard and soft thresholding,
investigating four well-known strategies (Sure, Heuristic Sure, Fixthres, andMinimax). As reported,
the application of wavelet denoising methodologies to white noise showed performance superior
to that of wavelet packets. Also, in [25], a scheme based on second-generation (Lifting scheme)
wavelets with level-dependent thresholds determination was suggested. The authors reported that
the obtained results depend on the wavelet type filters, the applied thresholding method, and the
decomposition depth. The method has superior performance when faced with the median filter
and is faster than traditional wavelet decomposition. Another wavelet-based methodology is given
in [26]. It proffers, mainly, a wavelet-based scheme to denoise corrupted ECG records by applying
conventional wavelet soft-thresholding (shrinkage) using a level of decomposition 8 (selected
empirically) and the Daubechies wavelet Db4 (of 4 vanishing moments). Along the same lines, the
contribution shown in [27] consists of recovering a clean ECG signal from its noisy version using
a subband-dependent threshold. The so-called S-median thresholds calculated by this technique
can be considered as a variant of the well-known Donoho’s universal threshold. Moreover, in [28],
the presented contribution is based on the genetic algorithm’s optimization of several parameters
that allow the successful cleaning of a noisy ECG. These parameters are, as mentioned, the mother
wave, the decomposition level, the type and the rule of the threshold, and finally the rescaling
approach. Another denoising strategy, developed by Y. Yang et al. [29], consists of reducing white
Gaussian noise and particularly suppressing the pseudo-Gibbs phenomena with universal threshold
by the random interpolation average (RIA) technique. In the latter, independent denoised signals
were obtained by applying interpolation and denoising each time. The pseudo-Gibbs phenomenon
was suppressed by calculating the mean of all the independent denoised signals. In [30], the signal
denoising method was based on translation-invariant, discrete wavelet transform (DWT) and
goodness-of-fit (GOF) tests. This approach performs on several scales; it consists of determining
which DWT coefficients represent noise and removing them by using GOF statistical examinations.
Additionally, Naveed et al. [31] adopted a strategy that is based on the combination of statistical
neighbourhood dependencies of DWT coefficients and the GOF test. This allows classifying
coefficients as signal or as Gaussian noise. Also, in [32], Talbi made a strategy applied to ECG
signals based on the one-dimensional double-density complex DWT noise reduction technique in
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the stationary bionic wavelet transform (SBWT) domain. Furthermore, Zhang et al. [33] presented
a method for denoising of ECG signals contaminated with white noise. This method is achieved
through combining wavelet energy with a smoothing filter. Moreover, Liu et al [34] proposed an
ECG denoising approach based on the basis pursuit technique (BP) and alternating direction
method of multipliers (ADMM) optimization. In this recent work, the combination of low-pass
filtering and compressed sensing recovery achieved a high signal-to-noise ratio.

Based on the problem statement and reported literature survey, we present in this work an
improved version of the standard state-of-the-art translation-invariant method [35] showing its supe-
rior performance compared to some powerful recent contributions. The main idea of the proposed
scheme is the use of a set ofmotherwaves in the standardDonoho’s algorithm and it is noted that each
mother wave gives a resulting less noisy ECG record. Consequently, it will be shown by the results
that averaging the resulting less noisy ECG signals will significantly improve the recovery process.

The paper is organized as follows: Section 2 which presents the standard algorithm of
Donoho [22, 23]. In Section 3, the translation-invariant technique is resumed. In Section 4, the
proposed improved methodology is described in detail. Results followed by thorough discussions
are given in Sections 5 and 6 respectively. Finally, main results and concluding remarks with
possible future work are summarized in Section 7.

2. Donoho’s standard wavelet-thresholding-based algorithm and other reference denoising
methods

The conventional statement of the problem of denoising a noisy signal contaminated with
additive white Gaussian noise (AWGN) is usually given by:

Ns(i) = Fs(i) + n(i)/i = 0, 1, ..., L − 1, (1)

where: Ns is the noisy signal of length L, Fs is the unknown free-noise deterministic signal of
length L, to be recovered (estimated), n are the L samples of an i.i.d. (independent and identically
distributed) white Gaussian noise that follows the probability density function N(0, σ2) [22].
N(0, σ2)is the normal distribution of zero mean and standard deviation σ.

The Donoho’s method [22] for denoising can be summarized as follows:
– Application of the discrete wavelet transform (DWT) on the noisy signal was introduced by
Mallat in [36].

– Thresholding of wavelet coefficients.
– Recovery of the estimated unknown signal by applying the inverse DWT.
The two well-known thresholding strategies that were proposed by Donoho et al. [22] are

presented by the following:
– Soft thresholding strategy:

WCTH(i) =


WC(i) − TH WC(i) ≥ TH.
0 |WC(i)| < TH.

WC(i) + TH WC(i) ≤ −TH.
(2)

WC is the wavelet coefficients vector of the noisy signal Ns. WCTH is the thresholded wavelet
coefficient vector resulting from the thresholding process using the threshold TH.

– Hard thresholding strategy:

WCTH(i) =
{

WC(i) |WC(i)| ≥ TH.
0 |WC(i)| < TH. (3)
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Several methods for the choice of the threshold(s) have been suggested in the specialized
literature. The well-known standard universal threshold [22] is described by:

TH = σ
√

2 log(L) (4)

Also, we can mention other methods based on the minimax estimation principle [23].
For practical use in the real world, σ is actually unknown and should be appropriately estimated.

A valid estimation is shown in the following equation [22, 23]:

σ =
MAD(CD1)

0.6745
, (5)

where MAD is the abbreviation of Median Absolute Deviation and CD1 are the fine-scale details
wavelet coefficients.

In the reported methods, we can see two thresholding rules: the first one is the global or fixed
threshold rule and the second one is the level-dependent threshold strategy.

3. Overview of the translation-invariant denoising principle

Translation-invariant “TI” denoising is a technique used to address the issue of translation
dependency in traditional wavelet-based denoising methods that incorporate the down-sampling
(decimation) and the up-sampling operators. In the traditional wavelet transform, the basic
functions are not invariant to translations, which can result in artifacts near discontinuities.
Translation-invariant denoising methods can better preserve the details and edges of the signal
while effectively reducing noise. On the other hand, these methods can be computationally more
demanding compared to traditional wavelet-based methods.

Visual artifacts, such as Gibbs phenomena near discontinuities, can indeed be a result of the
lack of translation invariance in the wavelet basis. One method to address this and reduce such
artifacts is called “cycle spinning”, a term coined by Coifman et al. [35]. The idea behind cycle
spinning is to “average out” the translation dependence by iteratively applying translations to
the signal and computing the average of the transformed signals. By performing this iterative
translation and the averaging process, cycle spinning aims to mitigate the translation dependency
and reduce visual artifacts in the denoised signal.

The TI technique (Fig. 1) involves applying a range of shift-rotation operations to a signal and
then averaging the results to produce a reconstruction with reduced noise phenomena. Averaging
the results from different shift-rotation operations allows a more robust and accurate reconstruction.

Fig. 1. Principle of the translation-invariant technique.
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In Fig. 1, the denoised signal x̂(n), involving the use of the conventional translation-invariant
strategy, is obtained by using four steps. In Step 1, a range of all circulant right shifts is applied to
the noised signal x(n). Donoho’s denoising with a fixed one-wavelet mother ψ is used in Step 2.
Next, a range of all circulant right shifts is applied. Finally, an average of the obtained results is
calculated to reconstruct x̂(n).

4. Proposed low computational method description

The proposed method is essentially based on the work of Coifman et al. [35] “translation-
invariant” which is well-known as the universal threshold with cycle spinning, in which we use the
hard universal thresholding previously mentioned. The main step used in the suggested method is
inspired by the well-known noise cancellation problem in the case of multi-sensor data fusion.
The rightful question that one can ask is: How can we obtain multiple copies from a single noisy
data signal? Equivalently, in other words, how can we reproduce a multi-sensor environment from
a real single sensor? The answer is the generation from the original single signal record of different
noisy signals by using the standard Donoho’s noise reducer algorithm, and finally, in order to
improve noise cancellation, the data-fusion principle is used.

4.1. Multiple copies generation of noisy signals from a single noisy signal

As it is well established, the universal or minimax thresholding algorithm aims to reduce the
additive noise. It means that in real cases, the noise is not completely eliminated, but its effect is
reduced. The key step of our suggested variant of the translation-invariant standard algorithm is
the use of K several mother waves to generate K new noisy signals under the assumption that each
newly generated noisy record contains a deterministic unknown noise-free signal and a realization
of new additive i.i.d. noise produced by the same new process. Note that in the TI algorithm just
one mother wave with two ranges of shift rotations is used. With our proposed algorithm a low
computational strategy is applied without any shift or rotation.

Let ψ1, ψ2, . . . ψK be K mother waves. We apply, for each one, the universal or minimax thresh-
olding algorithm to obtain the new resulting noisy signal according to the schematic shown in Fig. 2.

Fig. 2. Multiple-copies Noisy signal generation from an original single-sensored noisy signal.

Each k th less noisy signal LNsk/k = 1, 2, ...,K , is modelled following (6):

LNsk = Fs + Nnk, (6)

where: LNsk is the k th less noisy generated signal, of length L, by the use of the mother wave
ψk in the universal or minimax thresholding algorithm, Fs is, as mentioned to describe (1),
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the unknown free-noise deterministic signal, of length L, to be recovered (estimated), Nnk is the
k th new realization of a vector noise signal (process Nn) of length L. The new random process Nn
is assumed to be i.i.d. zero mean process. It means that each ith sample of the noise process is
zero mean (E(Nn(i)) = µNn(i) → 0).

Compared to translation-invariant, our proposed technique eliminates all the spinning cycles
and uses multiwavelet thresholding.

4.2. Improvement of noise cancellation through the data fusion principle

The recovered estimated signal using the averaging technique (sample by sample) approaches
the most possible free-noise deterministic unknown signal with respect of the following equation:

E(LNs(i)) = E(Fs(i) + E(Nn(i))/i = 0, 1, ..., L − 1. (7)

The ith resulting estimated sample, let it be denoted as F̂s(i), is then described by simplifying (7):

F̂s (i) = Fs (i) + µNn (i) , (8)

where: µNn(i) → 0 (approaches 0 which is the most possible when using K mother waves rather
than the single best mother wave) leading to the result:

F̂s(i) � Fs(i). (9)

Note that the expectation operator E(.) can be calculated by:

E(.) =
1
K

∑K

k=1
(.) (10)

This well-known technique usually used in the data-fusion discipline [37] can be illustrated in
Fig. 3.

Fig. 3. Noise reduction using the average operator to fuse (sample by sample) the K less noisy signals
(LNs1, LNs2, ..., LNsK ).

5. Results

The proposed technique was evaluated using the quantitative criteria. The parameters used are
SNR_in (input signal to noise ratio) in dB, SNR_out (output signal to noise ratio) in dB and MSE
(Mean Square Error). They are given respectively by (11), (12) and (13).

SNR in = 10 log10

(
σ2

ori

σ2
noise

)
, (11)
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SNR out = 10 log10

(
σ2

ori

σ2
ori−denoised

)
, (12)

where: σ2
ori represents the variance of the original signal, σ

2
noise is the noise variance, σ

2
ori−denoised

denotes the variance of the difference between the clean signal (original) and the denoised one.

MSE =
1
L

N−1∑
n=1
(x (n) − x̂ (n))2 (13)

where x(n) and x̂ (n) are the samples n of the clean and the denoised signals (of lengths L),
respectively.

5.1. Results relative to synthetic signals

In the first step of our simulations, our approach is evaluated by using four well-known test
signals named ‘Blocks’, ‘Bumps’, ‘Heavy Sine’ and ‘Doppler’. We have chosen several lengths
ranging between 128 and 8192 samples. The considered corrupting noise is the additive white
Gaussian noise with a zero mean and a variance that depends on the SNR_in. The shapes of noised
signals, for SNR_in equal to 10 dB and with a length of 8192 samples, are shown in Fig. 4.

(a) Blocks signal (b) Bumps signal

(c) Heavy Sine signal (d) Doppler signal

Fig. 4. Shapes of noised signals for signals length = 8192 samples and SNR_in = 10 dB.
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For the denoising process, a set of 21 wavelet mothers {Db1,. . . , Db8, Coif1,. . . , Coif5,
Sym1,. . . , Sym8} is used. The employed parameters are the hard universal threshold and wavelet
decomposition Level 7.

For the aim of the visual inspection, the waveforms of the denoised signals recovered from the
contaminated ones in Fig. 4 are shown in Fig. 5. Therefore, excellent visual quality is noticed for
all signals.

(a) Blocks signal (b) Bumps signal

(c) Heavy Sine signal (d) Doppler signal

Fig. 5. Shapes of noised signals for signals length = 8192 samples and SNR_in = 10 dB.

5.2. Results relative to ECG signals

Our approach was also applied and evaluated for real ECG signals. These records were obtained
from the MIT-BIH Arrhythmia Database [38]. This latter includes a set of 48 types of two-channel
ECG recordings, examined by the BIH Arrhythmia Laboratory. The duration of each data is about
30 minutes. All ECG signals were made over a 10 mV range at 360 samples per second with an
11-bit resolution. All types of ECG signals from the Arrhythmia Database were used in our tests.

Note that in this study an additive white Gaussian noise is added to all test signals. Also,
for both Donoho’s standard algorithm and the proposed one, the parameters used are the hard
minimax threshold and wavelet decomposition Level 4.

Our suggested denoising technique involves 4 sets of wavelets, 3 sets that are: Set 1 {Db1,...,
Db8}, Set 2 {Coif1,..., Coif8}, Set 3 {Sym1,..., Sym8} and Set 4 {Db1,.., Db8, Coif1,..., Coif5,
Sym1,. . . , Sym8} constituted from all wavelets belonging to the 3 previously mentioned sets.
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In Fig. 6, each LNsk for k = 1, ..., 21 (21 wavelet mothers) are generated by using wavelet
denoising involving wavelet mothers of Set 4. It means that LNs1 is obtained by employing Db1
wavelet mother, LNs2 is produced by implying Db2, ... and finally, LNs21 is achieved by using
Sym8. The estimated sample F̂s(i) is the ith expectation sample E(LNs(i))/i = 0, 1, ..., L − 1.

Fig. 6. Illustrative ECG denoising by the suggested strategy implying Set 4.

As it is well known, when a small sample of a signal is used, for example, to confirm a developed
denoising strategy, one can repeat the experience many times and take recognizable statistical
measures such as the mean and standard deviation because of the variability of the obtained results.
However, when the sample (signal) is of a large size, the variability will be significantly reduced to
tend to the theoretically probabilistic case. Additionally, as it can be seen that for both methods, the
standard deviation is of reduced values ranging from 0.25 dB for a small size of 10s to 0.01 dB for
the entire size of the signal (See the illustrative Fig. 7). Also, the standard deviation will be much
smaller as the size of the signal is longer. The given remark holds for both TI and the proposed
method. Accordingly, our case used signals are of a considerable length of 650000 samples, which
gives each executed experience practically the same result.
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(1) Results obtained with the proposed method (2) Results obtained with translation-invariant

Fig. 7. SNR_out fluctuations according to the length of the signal 100.dat for SNR_in = 10 dB.
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6. Discussion

6.1. Discussion related to synthetic signals

Table 1 summarizes the achieved comparison results provided when facing our technique
against translation-invariant (TI) [35] and RIA (random interpolation average) algorithms [29].
Consequently, one can report that SNR_out depends on the length of the test signal. Accordingly,
in this table, the used lengths for each test signal are 128, 256, 512, 1024, 2048, 4096, and 8192
samples.

Note that the mean value of the SNR_out of the RIA technique is better than that obtained
with TI and our approach for Blocks and Bumps. Thus, the mean values in these cases are
equal to 18.57 dB for RIA and 19.39 dB for Blocks and Bumps respectively, in opposition to
17.86 dB and 19.29 dB yielded by our technique. On the other hand, when using our approach,
the obtained average values of SNR_out are 23.40 dB and 20.34 dB for Heavy Sine and Doppler
signals respectively, against 23.10 dB and 19.06 dB for TI and 22.57 dB and 19.71 dB for the RIA
algorithm. The global mean value for all synthetic signals calculated by our approach is 20.22 dB,
versus 19.02 dB and 20.06 dB for TI and RIA, respectively. Therefore, this result shows that our
approach outperforms the TI and RIA techniques.

Table 1. SNR_out of TI, RIA and our approach for SNR_in of 10 dB for different signal lengths.

Signal length
Blocks Bumps

TI [35] RIA [29] Our approach TI [35] RIA [29] Our approach

128 10.97 12.84 12.42 9.35 12.09 13.16

256 11.98 14.72 13.75 10.85 13.15 13.93

512 14.10 16.22 15.52 14.95 17.86 16.36

1024 16.30 18.57 17.95 17.67 19.36 19.43

2048 17.79 20.46 19.97 20.26 22.71 21.93

4096 20.60 22.66 21.87 23.77 24.57 24.12

8192 23.21 24.53 23.60 25.73 26.05 26.12

Mean value of SNR_out 16.42 18.57 17.86 17.51 19.39 19.29

Signal length
Heavy Sine Doppler

TI [35] RIA [29] Our approach TI [35] RIA [29] Our approach

128 16.86 14.89 18.21 10.54 10.71 12.23

256 20.15 18.78 18.42 13.71 14.61 16.03

512 21.22 21.30 22.00 16.85 19.08 18.50

1024 24.19 24.60 24.02 20.36 21.11 20.78

2048 25.40 25.63 25.82 22.95 23.04 23.16

4096 26.82 26.25 26.61 23.46 23.67 24.82

8192 27.10 26.57 28.75 25.58 25.76 26.86

Mean value of SNR_out 23.10 22.57 23.40 19.06 19.71 20.34
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Comparative results were also obtained by using two recently published techniques i.e.
a translation-invariant version named TI-DWT-GOF [30] and DTCWT-GOF-NF [31]. Accordingly,
the results are given in Table 2. One should also note that the adopted length of each synthetic signal
used here is 8192 with SNR_in = 10 dB. Hence, for the only case of Bumps signal, TI-DWT-GOF
has exceeded our approach only by SNR_out around 1 dB. However, our approach significantly
outperforms the cited techniques for Doppler, Heavy Sine, and Blocks signals. Additionally, it can
be observed that the average SNR_out has been improved by about 3 dB better compared to the
other techniques.

Table 2. SNR_out (dB) of denoised signals for input signals length = 8192 and SNR_in = 10 dB.

Techniques Blocks Bumps Heavy Sine Doppler Average
TI-DWT-GOF [30] 19.46 27.27 25.46 22.92 23.77

DTCWT-GOF-NF [31] 20.25 24.93 25.02 23.45 23.41
Proposed Approach 23.60 26.12 28.75 26.86 26.33

6.2. Discussion related to ECG signals

Fig. 8a illustrates the shape of a clean 117 ECG signal and Fig. 8b shows its noisy version.
However, Fig. 8c represents the restored one by using the Donoho’s single wavelet minimax
thresholding strategy involving the mother bior 2.6. However, Fig. 8d exemplifies the shape of the
denoised signal by using our approach.

The SNR_in used in this experiment is fixed to 10 dB. Accordingly, the obtained SNR_out is
17.06 dB for Donoho’s technique against an SNR_out of 19.17 dB reached by our strategy when
using the set of eight wavelets (Sym1...Sym8). It is clear, as well, by visual inspection, that the
restoration process of our approach is better than the conventional Donoho’s.

For a fixed SNR_in of 10 dB, comparative results are reported in Table 3. The comparison is
achieved by facing the Donoho’s standard denoising approach and translation-invariant algorithm
to our suggested denoising technique.

Table 3. Corresponding SNR_out (dB) for 48 MIT-BIH Arrhythmia records using SNR_in = 10 dB, minimax hard
threshold and wavelet decomposition Level 4.

Record
Donoho’s

method [22] TI [35] Proposed approach for a set of
wavelets

Single bior 2.6 Single bior 2.6 Set 1 Set 2 Set 3 Set 4
100 16.47 18.61 18.49 17.44 18.36 18.55
101 17.22 19.34 19.10 18.20 19.13 19.25
102 16.08 18.27 17.89 17.05 17.99 18.09
103 17.01 19.48 19.58 18.64 19.60 19.75
104 15.71 18.06 17.49 16.59 17.58 17.68
105 16.94 19.06 18.82 18.39 18.84 18.96
106 18.96 19.11 18.91 18.37 19.04 19.13
107 17.54 19.67 18.96 18.78 19.25 19.25

Continued on next page
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Table 3 – Continued from previous page

Record
Donoho’s

method [22] TI [35] Proposed approach for a set of
wavelets

Single bior 2.6 Single bior 2.6 Set 1 Set 2 Set 3 Set 4
108 19.25 18.29 17.90 17.67 17.96 17.99
109 17.73 19.93 19.74 19.73 19.84 19.99
111 16.73 18.86 18.41 18.18 18.57 18.66
112 16.56 18.76 18.44 17.93 18.58 18.66
113 17.21 19.63 19.55 18.61 19.59 19.71
114 15.80 17.69 17.51 16.79 17.52 17.60
115 17.17 19.61 19.78 18.76 19.79 19.97
116 17.28 19.67 19.73 18.99 19.83 19.98
117 17.06 19.11 19.14 18.68 19.17 19.27
118 15.82 17.92 17.41 16.94 17.64 17.66
119 17.36 19.64 19.81 19.11 19.78 19.94
121 18.16 20.07 20.12 20.06 20.24 20.29
122 16.68 18.97 18.84 18.48 19.08 19.16
123 17.05 19.15 19.37 18.68 19.38 19.52
124 17.87 19.96 19.82 19.95 20.22 20.24
200 16.42 18.43 18.00 17.60 18.11 18.20
201 17.35 19.49 19.43 18.79 19.37 19.55
202 17.70 19.71 19.56 19.11 19.63 19.78
203 16.54 18.61 18.19 18.07 18.33 18.40
205 15.76 18.49 18.50 17.63 18.57 18.72
207 17.70 19.56 19.35 19.14 19.39 19.47
208 16.98 19.25 18.87 18.44 19.04 19.13
209 15.42 17.75 17.47 16.69 17.54 17.68
210 17.05 19.06 18.81 18.41 18.92 19.03
212 15.25 17.51 17.28 16.43 17.24 17.38
213 16.59 19.04 18.77 18.13 18.83 19.00
214 17.73 19.76 19.70 19.23 19.70 19.88
215 15.29 17.59 17.16 16.58 17.28 17.39
217 17.74 19.79 19.37 19.21 19.61 19.67
219 17.72 19.98 20.09 19.38 20.10 20.26
220 16.86 19.18 19.18 18.15 19.28 19.43
221 17.04 19.28 19.29 18.58 19.28 19.45
222 15.67 17.75 17.51 16.78 17.63 17.71
223 17.54 19.89 19.68 19.14 19.87 19.98
228 16.75 18.51 18.10 17.92 18.24 18.27
230 16.75 19.30 19.31 18.49 19.27 19.46
231 16.94 19.23 19.41 18.43 19.32 19.51
232 15.58 17.49 17.61 16.93 17.37 17.58
233 17.16 19.47 19.24 19.01 19.40 19.54
234 16.83 19.19 19.29 18.68 19.41 19.56

Average
SNR_out 16.70 19.00 18.83 18.27 18.91 19.02
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Fig. 8. Noise cancellation of 117 ECG signal, (a) Original signal, (b) Noised signal with SNR_in = 10 dB, (c)
Denoising signal using Donoho’s algorithm [22] (SNR_out = 17.06 dB), (d) Denoising signal using our approach

(SNR_out = 19.17 dB).

Accordingly, Table 3 shows that the average SNR_out of all ECG signals is 16.70 dB when
using the conventional Donoho’s algorithm against average SNR_out of 18.83 dB, 18.27 dB and
18.91 dB when using the proposed technique involving {Db1, ..., Db8}, {Coif1, ..., Coif5} and
{Sym1, ..., Sym8} respectively. It is noticeable that the set of wavelets {Sym1, .., Sym8} offers the
best result and reports a significant improvement of 2.21 dB compared to the Donoho’s standard
algorithm involving single wavelet bior 2.6. When using Set 4, our approach improves the average
SNR_in by 9.02 dB (SNR_out is equal to 19.02 dB).

272



Metrol. Meas. Syst.,Vol. 31 (2024), No. 2, pp. 259–278
DOI: 10.24425/mms.2024.148548

The mean value of SNR_out using the TI approach is equal to 19.00 dB, compared to 19.02 dB
when applying our algorithm using Set 4. Both methods give practically the same results when the
taken length is considerably large.

Additionally, it is worth noting that for shorter lengths of signals, for example when using all
the 48 records with a length = 10 s and with SNR_in = 10 dB, we remarked that our strategy
reached an average SNR_out of 17.57 dB against 16.39 dB related to the TI algorithm.

In terms of complexity, to face the computational efficiency of our approach against one of
the TI and RIA algorithms, we can draw up Table 4. The number of operations for K soft-copies
generation needed by our technique is K wavelet denoising operations and an average value
calculation operation. Conversely, TI needs 2K shift rotations in addition to the operations that our
approach requests. For the RIA technique, we need K wavelet denoising operations, 2K operations
of interpolations and an operation for calculating the mean value. We can state that our approach
is the lowest in terms of computational complexity for practically same quality.

Table 4. Number of operations of K soft copies generation.

Operations Wavelet
denoising

Right shift
rotation

Left shift
rotation Interpolation Inverse

interpolation
Mean value
operation

Proposed
method K − − − − 1

TI [35] K K K − − 1

RIA [29] K − − K K 1

We have also assessed and contrasted our method with a recent technique proposed by M. Talbi
in 2020 [32] that is regarded as one of the best methods for denoising ECG signals corrupted by
white Gaussian noise. The algorithm involves the use of the stationary bionic wavelet transform
(SBWT) range to apply one-dimensional double-density complex DWT denoising. Simulation
results (of seven noised signals 100.dat to 106.dat) in Table 5 are provided from the calculations
of SNR_out values and their corresponding MSE for SNR_in range from –5 dB and 15 dB. Each
SNR_out represents the average value of seven values of SNR_out related to the cited signals and
each MSE is also the mean value of seven MSE computed by using equation (13). The outcomes
prove that for all values used of SNR_in, our method performs better than Talbi’s algorithm.

Table 5. Results comparison between our approach and Talbi’s algorithm.

SNR_in (dB) -5 0 5 10 15

SNR_out (dB) of our approach 5.65 10.15 14.72 18.77 22.24

SNR_out (dB) of Talbi [32] 5.25 9.71 14.08 18.09 21.66

MSE of our approach 3.97e-04 1.42e-04 4.96e-05 1.94e-05 8.74e-06

MSE of Talbi [32] 0.0071 0.0026 9.4286e-04 3.7143e-04 1.5714e-04

In Table 6, we also showed a comparison of our method using Set 4 with two techniques based
on translation-invariant: Zhang et al. [33] and the most recent published paper of Liu et al. [34].
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Table 6. SNR_out (dB) comparison results of SNR_in = 5 dB.

Records Zhang et al. [33] Liu et al. [34] Proposed Method

100 12.10 – 14.39

103 12.90 – 15.16

105 14.40 11.32 14.29

106 – 10.89 14.61

107 – 16.67 14.29

108 – 9.89 14.46

109 – 13.16 15.03

111 – 8.67 13.31

112 – 15.01 13.97

113 12.70 11.70 15.11

114 – 8.51 13.21

115 13.00 12.90 15.22

116 – 18.65 14.53

117 13.00 16.81 14.90

118 – 18.16 13.14

119 12.80 17.91 14.60

122 13.50 – 14.44

200 12.70 11.70 13.80

201 – 9.02 14.86

202 – 8.75 15.04

203 – 11.92 13.96

205 – 11.08 14.30

207 – 10.63 15.15

208 – 13.15 13.86

209 – 9.76 13.55

210 – 9.13 14.50

212 – 10.12 13.51

215 13.60 – 12.99

230 12.00 – 14.63

231 – 9.56 15.06

232 – 8.65 14.10

233 – 14.21 14.50

234 – 9.55 14.28

Average SNR_out 12.97 12.05 14.32

Knowing that the SNR_in is 5 dB, the average SNR_out obtained by Zhang et al. is equal to
12.97 dB which is greater than obtained one by Liu et al. (12.05 dB). However, our technique
offers better results than these two approaches, with SNR_out equal to 14.32 dB.
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7. Conclusions

In this paper, a new translation-invariant-like strategy based on involving a set of wavelets in the
denoising process is proposed. The strong point of our work is the generation of noisy soft copies
from only one acquired noisy signal, imitating the multisensor acquisition scenario. Additionally,
it is less complicated than the TI [35], strategy which uses an additional cycle spinning operation
for each soft copy generation and the RIA [29] technique which implies additional interpolation
for each soft copy generation. Finally, our method, when compared to the different algorithms
reported in [22,29–35] shows performance superior than the other techniques. Thus, the suggested
approach can be considered as an effective, low-cost solution avoiding the use of multisensors
to improve noise cancellation. Finally, as a future research direction, we will aim at reducing
powerline interference and baseline wander noises by associating a technique dedicated to such
types of noise with our strategy.
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