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Abstract
The occurrence of asymmetric probability distributions is quite common. Phenomena such as salary, number
of failures, sound level values, etc. have skewed distributions. In such cases, estimating the mean using the
interval method can be inaccurate as it ignores the distribution’s asymmetry. Another method of constructing
confidence intervals, which does not require symmetry of distributions, is the method based on Chebyshev’s
theorem. However, the intervals thus obtained are symmetrical. The approach proposed in this article uses the
concept of Chebyshev’s theorem and semivariances to construct new confidence and uncertainty intervals.
The article examines the properties of semivariance-based confidence intervals for long-term noise indicators
from acoustic monitoring of the city of Gdansk and compares them with classical confidence intervals. The
new uncertainty assessment tool proposed in this article in the form of a semivariance-based uncertainty
interval can therefore be the basis for new uncertainty assessment methodology and more effective uncertainty.
Keywords: metrology, asymmetry confidence intervals, uncertainty evaluation, semivariance, 3σ rule
generalization.

1. Introduction

Measurement uncertainty assessment is one of the basic issues inmetrology. In themeasurement
process, there are many measurement uncertainty components that constitute the uncertainty
budget [1]. All uncertainties present in the uncertainty budget are aggregated based on the
measurement function. The most common method of compounding measurement uncertainty
is the uncertainty propagation method [1–4]. Two types of measurement uncertainty can be
distinguished: type A uncertainty, which is related to measurement repeatability, and type B
uncertainty, which is most often associated with the specification of measurement equipment or its
accuracy. Type A uncertainty is expressed in terms of standard deviation or multiples thereof. This
value is most often determined by a confidence interval. Confidence intervals, however, can be
calculated using, for example, the classic Spława-Neyman definition or using Chebyshev’s theorem.
The first type of construction imposes a specific required percentage of coverage by the confidence
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interval of the true value. The second approach determines the minimum coverage value for a given
distribution. The main disadvantage of classic confidence intervals is their symmetry. These
intervals are constructed based on the assumption of normality of the characteristic distribution for
which the confidence interval is determined. When a feature does not have a normal distribution,
the Central Limit Theorem is used as well as the asymptotic behaviour of the mean value. However,
in the case of measurements where the confidence interval is determined for small measurement
samples, the distribution of e.g. the mean value cannot be assumed to be normal. In this case, the
determination of the classic confidence interval is not correct, which manifests itself primarily
by not meeting the assumption of coverage by the confidence interval of the unknown parameter.
Methods based on Chebyshev’s theorem, which does not require an assumption regarding the
normality of feature distribution, should then be used. Based on Chebyshev’s inequality, the
confidence interval created does not have an assumed percentage coverage level, only a minimum
coverage level. However, the forms of confidence intervals constructed on the basis of this theorem
either have the form of a symmetric confidence interval (1) or refer to forms that do not include
sample variation characteristics (e.g. variance). (1–8, 11).

This article focuses on the Chebyshev inequality approach and proposes its generalization
using semivariance. The confidence intervals proposed in the paper, created using semivariance,
on the one hand consider the asymmetry of characteristic distribution by including left and
right semivariance. On the other hand, they are based on Chebyshev’s theorem, which does not
require assumptions about the normal distribution of the characteristic. This is a new approach not
previously used.

Section 3 proposes a form of confidence interval constructed using semivariance. A minimum
coverage level was also determined for sample probability distributions. Section 4 proposes the
construction of an uncertainty interval using semivariance. Based on measurements from traffic
monitoring in the city of Gdansk, a comparison was made between the percentage coverage
obtainedwhen applying the classic uncertainty interval and the uncertainty interval for semivariance
depending on the measurement sample size.

2. Chebyshev’s theorem and its generalizations

Chebyshev’s inequality, well known in mathematics and statistics, is primarily used to estimate
different types of probabilities when the mean and variance are estimated based on a sample.
Let X denote the random variable for which E X = µ and D2X = σ2 < ∞. From the classical
Chebyshev’s inequality, also called the Bienaymé–Chebyshev inequality [5], it follows that for any
k > 0 the following condition is satisfied

P(|X − µ| > kσ) <
1
k2 , (1)

Chebyshev’s inequality results directly from Markov’s inequality [6]

P(|X | > λ) <
E(|X |)
λ

, (2)

sometimes called Chebyshev’s first inequality, after using the substitution X: = (X − µ)2 and
λ: = (kσ)2.

Under the additional assumption σ2 > 0, Chebyshev’s inequality takes the form

P(|X − µ| ≥ kσ) <
1
k2 . (3)
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Only the case k > 1 is useful because for k ≤ 1 the condition,
1
k2 ≥ 1 holds and the estimation

given by the inequality becomes trivial.
Chebyshev’s inequality guarantees that for a random variable with any probability distribution,

only a certain percentage of the values are further away from the mean than a predetermined value.

In particular, no more than
1
k2 values of the distribution can be k or more standard deviations

from the mean. This rule is often referred to as Chebyshev’s theorem, concerning the range of
standard deviations around the mean in statistics. Chebyshev’s inequality can be applied to any
probability distribution where the mean and variance are defined. In this particular case, we know

that P(|X − µ| > 2σ) <
1
4
and P(|X − µ| > 3σ) <

1
9
, which means that at least 75% of the values

of the random variable must be within two standard deviations of the mean and at least 88.89%
within three standard deviations. The practical application of Chebyshev’s inequality is similar to
the well-known rule 68-95-99.7, which, however, applies only to normal distributions.

Many generalizations of Chebyshev’s inequality have been developed. For example, lower
limits are given for the probability of intervals that are not necessarily symmetric around the mean

P(l < X < u) ≥
4[(µ − l)(u − µ) − σ2]

(l − u)2
, (4)

if (µ−l)(h−µ) ≥ σ2 and (µ−l)(h−µ)−k2 ≤ 2σ2, where k = min(µ−l, h−µ) and l < µ < h [7,8],
which for the case of symmetric intervals coincide with Chebyshev’s inequality.

Inequalities have been proved for the case of two random variables that need not be indepen-
dent [8]:

P
(
l1 ≤

X1 − µ1
σ1

≤ u1, l2 ≤
X2 − µ2
σ2

≤ u2

)
≥ 1 −

4 + (u1 + l1)2

(u1 − l1)2
−

4 + (u2 + l2)2

(u2 − l2)2
. (5)

Inequalities are also given for the case of a bivariate distribution when the variables are
correlated [9], and ρ denotes the correlation coefficient between them:

P

( 2⋂
i=1

[
|Xi − µi |

σi
< k

])
≥ 1 −

1 +
√

1 − ρ2

k2 . (6)

More general estimates for the two correlated variables were also obtained by Lal [10]:

P

( 2⋂
i=1

[
|Xi − µi |

σi
≤ ki

])
≥ 1 −

k2
1 + k2

2 +
√
(k2

1 + k2
2)

2 − 4k2
1 k2

2 ρ

2(k1k2)2
. (7)

Isii [11] has shown that if

Z = ((−k1 < X1 < k2) ∩ (−k1 < X2 < k2)) , (8)

λ =
k1(1 + ρ) +

√
(1 − ρ2)(k2

1 + ρ)

2k1 − 1 + ρ
. (9)

where 0 < k1 ≤ k2, is:
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1. if 2k2
1 > 1 − ρ and k2 − k1 ≥ 2λ, then

Z ≤
2λ2

2λ2 + 1 + ρ
; (10)

2. if the above conditions are not satisfied, i.e. 2k2
1 ≤ 1 − ρ or k2 − k1 < 2λ but k1k2 ≥ 1 and

2 (k1k2 − 1)2 ≥ 2
(
1 − ρ2) + (1 − ρ) (k2 − k1)

2, then

Z ≤
(k2 − k1)

2 + 4 +
√

16(1 − ρ2) + 8(1 − ρ)(k2 − k1)

(k1 + k2)2
; (11)

3. if none of the above applies, there is no universal bound other than 1.
Inequalities were also derived for the case of multiple independent variables [12] or correlated

variables with known correlation coefficients between each pair of variables [13–15]. Numerous
modifications of Chebyshev’s inequality using, for example, moments of higher orders or bounded
random variables were given.

The universality of Chebyshev’s inequality allows it to be used for any probability distribution,
although the resulting estimates are not always optimal. In many cases, for certain types of
distributions, these estimates can be improved [16]. Estimates are much better for variables with
a standardized normal distribution, for example [17].

An alternative way to improve estimates is to use semivariance. The upper (σ2
+) and lower

(σ2
−) semivariance are defined as follows:

σ2
+ = E(X − µ)2+ and σ2

− = E(X − µ)2−, (12)

where (X − µ)+ = max{0, (X − µ)}, (X − µ)− = min{0, (X − µ)}. Of course, σ2 = σ2
+ + σ

2
−.

Chebyshev’s inequality using lower semivariance [18]

P(X − µ ≤ −kσ−) ≤
1
k2 (13)

after substitution k: =
kσ
σ−

has the following form

P(X − µ ≤ −kσ) ≤
1
k2
σ2
−

σ2 . (14)

The use of semivariance improves Chebyshev’s inequality in this case
σ2
−

σ2 times.

A similar estimate is also true for the upper semivariance, so by taking σ2
u = max{σ2

−, σ
2
+} we

obtain

P(|X − µ| ≥ kσ) ≤
1
k2
σ2
u

σ2 . (15)

Semivariance has long been used in downside risk estimating in finance [19–22]. Markowitz
argued that “semivariance is a more reliable measure of investment risk” than the mean-variance
theory he developed [23]. Nowadays, semivariance is also successfully applied in agricultural
sciences [18].

For symmetric distributions, the condition σ2
u = σ

2
− = σ

2
+ =

1
2
σ2 gives a known estimate for

a variable with a normal distribution. Due to the inequality of σ2
u ≤ σ

2 the use of semivariance
for asymmetric distributions significantly improves the estimate.
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3. Construction of confidence intervals based on semivariance

For many distributions, especially asymmetric ones, there is a need to modify the classical 3σ
rule. The following theorem, using semivariance, is a proposal for such a modification.

3.1. Theorem (Chebyshev’s inequality for semivariance)

Let X be a continuous variable for which E X = µ and D2X = σ2 < ∞. Then

P (−kσ− ≤ X − µ ≤ kσ+) ≥ 1 −
1
k2

(
1

P (X ≥ µ)
+

1
P (X < µ)

)
. (16)

Normally, for the 3σ interval we take k = 3, but in this case we have σ2 = σ2
+ + σ

2
−. For k = 6

finally we have

P (−6σ− ≤ X − µ ≤ 6σ+) ≥ 1 −
1
62

(
1

P (X ≥ µ)
+

1
P (X < µ)

)
. (17)

In the case of a symmetric distribution, we have P(X ≥ µ) = P(X < µ) =
1
2
. Thus, the

following condition holds

P (−6σ− ≤ X − µ ≤ 6σ+) = P (−3σ ≤ X − µ ≤ 3σ) = 1 −
1
62 · 4 =

8
9
. (18)

Based on the inequality between the arithmetic mean and the harmonic mean

2
1

P(X ≥ µ)
+

1
P(X < µ)

≤
P (X ≥ µ) + P (X < µ)

2
=

1
2

(19)

we have
1

P(X ≥ µ)
+

1
P(X < µ)

≥ 4. (20)

Therefore, for any continuous random variable with parameters E X = µ, D2X = σ2 the
following condition holds

P (−6σ− ≤ X − µ ≤ 6σ+) ≥ P(−3σ ≤ X − µ ≤ 3σ) = 1 −
1
9
≈ 0.89. (21)

3.2. Examples of application of the 6σ rule for selected distributions

a) Let X be a random variable with normal distribution truncated on the interval [a, b], whose
density function is given by the formula

f (x) =
1

F (b) − F(a)
1
√

2πσ
exp

{
−
(x − m)2

2σ2

}
, (22)

where F(x) is the distribution function. Then the following equations are true

σ2
− = σ

2 [F (m) − F (a ) − (m − a) f (a )]
and

σ2
+ = σ

2 [F (b) − F (m) − (b − m) f (b)] .

(23)
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b) Let X be a random variable with exponential distribution with parameter λ > 0, whose
density function is given by the formula

f (x) = λe−λx, x ∈ (0,+∞) . (24)

Then the following equations are true

σ2
− =

1
λ2 −

2
λ2 e−1, σ2

+ =
2
λ2 e−1. (25)

c) Let X be a random variable with gamma distribution with parameters k > 0 and θ > 0,
whose density function is given by the formula

f (x) =
1

Γ(k)θk
xk−1e−x/θ, x ∈ (0,+∞) . (26)

Then the following equations are true

σ2
− = kθ2F (kθ) −

θ2kk

Γ (k)
e−k, (27)

σ2
+ = kθ2 (1 − F (kθ)) +

θ2kk

Γ (k)
e−k . (28)

The following inequalities:
a) for truncated normal distribution

P (X < m) =

m∫
a

1
F (b) − F(a)

1
√

2πσ
exp

{
−
(x − m)2

2σ2

}
=

F(m) − F(a)
F (b) − F(a)

, (29)

P (X ≥ m) =
F(b) − F(m)
F (b) − F(a)

, (30)

b) for exponential distribution

P (X < 1/λ) =
1/λ∫
0

λe−λxdx = −e−λx
��1/λ
0 = 1 − e−1, (31)

P (X ≥ 1/λ) = e−1, (32)

b) for gamma distribution

P (X < kθ) =
γ(k, kθ2)

Γ(k)
, (33)

will be used in the estimation of

P (−6σ− ≤ X − µ ≤ 6σ+) ≥ 1 −
1
62

(
1

P (X ≥ µ)
+

1
P (X < µ)

)
. (34)

We obtain from here
a) for truncated normal distribution

P (−6σ− ≤ X − µ ≤ 6σ+) ≥ 1 −
1
62

(
F (b) − F (a )
F (b) − F (m)

−
F (b) − F (a )
F (m) − F (a )

)
, (35)
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b) for exponential distribution

P (−6σ− ≤ X − µ ≤ 6σ+) ≥ 1 −
1
62

(
e +

e
e − 1

)
≈ 0, 88, (36)

c) for gamma distribution

P (−6σ− ≤ X − µ ≤ 6σ+) ≥ 1 −
1
62

(
Γ (k)

γ
(
k, kθ2) + Γ (k)

1 − γ
(
k, kθ2) ) . (37)

4. Verification of confidence intervals based on semivariance for long-term sound level
indicators

Long-term noise indicators are used to assess road noise: the day indicator LD (38)

LD = 10 log

(
1

365

365∑
i=1

100,1LAeq,Di

)
, (38)

calculated as the logarithmic mean of day A sound levels from all days of the calendar year from 6
a.m. to 6 p.m.; the evening indicator LE (39)

LE = 10 log

(
1

365

365∑
i=1

100,1LAeq,Ei

)
, (39)

which is the logarithmic mean of evening A sound levels calculated from the whole calendar year
from 6 p.m. to 10 p.m., the night indicator LN (40)

LN = 10 log

(
1

365

365∑
i=1

100,1LAeq,Ni

)
, (40)

calculated from the whole calendar year for the night time from 10 p.m. to 6 a.m., and the day-
evening-night indicator calculated from the long-term indicators (41) as a weighted logarithmic
mean of these indicators according to the formula [24]:

LDEN10 log
(
12
24

100,1LD +
4
24

100,1(LE+5) +
8
24

100,1(LN+10)
)
. (41)

In measurement practice, for technical and economic reasons, noise indicators are rarely
calculated from all days of the calendar year. In this approach [25], the number of measurement
days is minimized, leading to noise indicator estimation based on a very small measurement
sample. Consequently, such a process requires, in addition to providing the indicator’s value, also
determining the uncertainty with which that value was determined [1, 26]. This uncertainty is
most often given in the form of a 95% confidence interval. The size and coverage of this interval
is, obviously, influenced by many different factors, such as uncertainty in the measuring device,
uncertainty related to weather conditions, etc., but especially important is the uncertainty related to
the measurement sample selection. It is this uncertainty that contributes the most to the uncertainty
budget for noise indicators.

One of the assumptions that allow classical confidence intervals to be used to determine
uncertainty is to make an assumption about the normality of the average energy of single-day
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indicators eAeq,DENi
= 100,1LAeq,DENi [27, 28]. This assumption is being made due to the additivity

of acoustic energy, as opposed to decibel levels. For normal energy level distribution, one can

assign to an energy mean eDEN = 1/n
n∑
i=1

eAeq,DENi
a Student’s t-distribution and calculate the

uncertainty interval for that mean then transform it by a logarithmic transformation and obtain the
uncertainty interval for the given indicator(

10 log
(
e − t1− γ2 ; n−1

sAeq,DEN
√

n − 1

)
, 10 log

(
e + t1− γ2 ; n−1

sAeq,DEN
√

n − 1

))
, (42)

where sAeq,DEN is the standard deviation of acoustic energy.
For small deviations from the normal distributions of energy distributions, the arithmetic mean

of the energy levels can be assigned a normal distribution under the Central Limit Theorem (CLT)
and the uncertainty propagation method can be applied to this mean [27, 28].

In the paper [28] in which the results of measurements from traffic acoustic monitoring in
the city of Krakow were examined, and in the paper [29] where probability distributions from
monitoring in the city of Gdansk were examined, it was shown that the parameters of noise
indicators distributions (skewness and kurtosis) of noise are far from the normal distribution
characteristics. These deviations may be so large that a large measurement sample would have
to be taken to apply CLT, which is not economically justified when estimating noise indicators,
for example, in large cities. Even larger deviations from normal distributions were observed for
energy levels. This analogously affects the inapplicability of CLT for the energy average and,
consequently, obtaining an uncertainty interval for the noise indicator with appropriate statistical
properties, especially for small measurement samples [30–34]. The deviation of the distribution
of the measurement sample mean energy from the normal distribution results in the lack of
the required 95% confidence interval coverage. This can be seen in the work [31] where for 26
measurement points in Madrid it was shown that for classical confidence intervals, the coverage of
the true value by the confidence interval is much less than the required 95%.

Due to the fact that the method of determining confidence intervals proposed in the article does
not assume knowledge of probability distributions and considers the distribution’s asymmetry, the
proposed construction should better cover the true value of the mean.

To verify the applicability of confidence intervals based on semivariance to determine
uncertainty intervals for noise indicators, the following interval form was proposed (43)(

10 log
(
e − t1− γ2 ; n−1

2sAeq,−
√

n − 1

)
, 10 log

(
e + t1− γ2 ; n−1

2sAeq,+
√

n − 1

))
, (43)

To maintain the proportion, an extension factor was chosen for the interval based on semivari-

ance similar to the classical interval k =
t1− γ2 ; n−1
√

n − 1
. In addition, from the fact that the variance of

the distribution is the sum of the semivariances, which also translates into standard deviations as
follows: s =

√
s2
− + s2

+ in place of the standard deviation in formula (42), the two left and right
deviations are taken, respectively. It is worth noting that the proposed method (43) does not assume
a percentage of true value coverage, unlike the standard interval (42). This interval (43) only
assumes a minimum value of coverage depending on the distribution (Section 3.2). The form of
the interval (43), however, was chosen to assume 2sAeq,+ and 2sAeq,− instead of sAeq, respectively,
due to the fact that the sum of the left and right semivariances is the variance of s2 = s2

− + s2
+ so

the assumed values ensure comparability of interval lengths while introducing asymmetry into the
uncertainty interval.
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The following experiment was then proposed to verify the properties of the interval thus
constructed and to compare it with the classically used interval (42). The data for the experiment
consisted of annual measurements of traffic sound levels in the city of Gdansk from 3 measurement
stations. The average values of the noise indicators LD , LE , LN and LDEN were determined from
the entire calendar year. These values were taken as population average sound level indicators.
From the entire measurement year, 5-, 10-, 20-, 30- and 50-element samples were drawn separately
for each station. This draw was repeated n = 106 times for each sample size. For each drawn sample,
two uncertainty intervals were calculated as defined by equations (42) and (43). The coverage of
the population mean value by each interval was then checked by counting the percentage coverage
for each sample size separately.

4.1. Measurement data
The measurement data comes from continuous monitoring in the city of Gdansk from January

1, 2015 to December 31, 2015. Technical details of the monitoring station and monitoring can be
found in the publication [29]. The measurement dataset chosen for the experiment is the nearly
complete annual measurements of sound levels. The numbers of measurement days are presented
in Table 1. Missing measurements for stations (130) 7 days, (134) 4 days, (141) 1 day were random
and did not affect the quality of the measurements. Therefore, for each measuring station, a nearly
complete set of indicator values was available to determine LD , LE , LN , and LDEN values for the
entire year of 2015.

The coverage of confidence intervals, both classical (42) and based on semivariance (43), was
checked for indicators LD , LE , LN , LDEN for measurement data for the following stations:

(130) 41 Pomorska Street – the station is located on a residential building near a two-lane
single carriageway road.

(134) 26 Sienna Street – the station is located in a primary school building. Near the station is
an intersection of two dual carriageway roads with a streetcar track.

(141) 1 Rybacka Street – the monitoring station is located on a service building near the
intersection (a traffic circle) of two single-lane roads.

Basic statistics have been determined for the measurement data from the above stations and
are included in the Table 1.

The measurement data were selected to ensure that the indicators represented different values
of skewness and kurtosis.

Table 1. Summary statistics for measurements from individual monitoring stations by indicator LD , LE , LN , LDEN.

No. of the
Measuring
Station

Numbers of
Measurement

Days

Indicator
Type

L
(Mean)
[dB]

sL
(Standard
Deviation)

[dB]

Llog
(Logarithmic Mean
of the Sound Level)

[dB]

ρ
(Skewness)

[–]

K
(Kurtosis)

[–]

130 358

LD 69.65 1.53 69.91 0.18 -0.23
LE 68.49 1.13 68.61 0.88 1.60
LN 63.18 1.43 63.34 1.07 1.56
LDEN 71.88 1.17 72.02 0.88 1.18

134 361

LD 66.15 2.82 67.08 -0.12 0.95
LE 64.69 2.23 65.32 0.30 1.48
LN 60.50 2.23 61.23 1.08 3.45
LDEN 68.88 2.09 69.43 0.37 1.53

141 364

LD 66.13 2.86 67.47 1.16 3.10
LE 65.47 2.99 67.25 1.72 5.31
LN 59.87 3.73 62.91 1.76 4.83
LDEN 68.93 3.02 70.83 1.94 6.15

287

https://doi.org/10.24425/mms.2024.149701


B. Przysucha: CONSTRUCTION OF ASYMMETRIC CONFIDENCE/UNCERTAINTY INTERVALS USING SEMIVARIANCE . . .

4.2. Results

5, 10, 20, 30 and 50-element measurement samples were drawn and two intervals were created
based on them, a classical interval for the mean value of energy levels (42) and a confidence interval
based on semivariance (43). Each sample, respectively, for each indicator LD , LE , LN , LDEN was
determined separately so as not to burden the distributions with correlation. The calculations were
conducted in the R-Studio software.

Each sampling was repeated one million times, then it was determined what percentage of the
confidence intervals cover the true value of the index. Table 2 presents the results obtained.

Table 2. Percentage coverage of confidence intervals for Station no. 130.

Measurement
sample size

Classic interval Interval based on semivariance

LD LE LN LDEN LD LE LN LDEN

5 93.3% 89.7% 87.1% 89.3% 96.6% 94.9% 92.2% 94.7%

10 93.5% 90.8% 88.4% 90.0% 97.0% 95.3% 92.4% 94.8%

20 94.6% 92.3% 90.2% 92.2% 97.8% 95.9% 93.2% 95.7%

30 95.1% 93.3% 92.0% 93.4% 98.2% 96.4% 94.3% 96.1%

50 95.9% 94.7% 93.9% 95.0% 98.6% 97.0% 95.2% 96.9%

Table 3. Percentage coverage of confidence intervals for Station no. 134.

Measurement
sample size

Classic interval Interval based on semivariance

LD LE LN LDEN LD LE LN LDEN

5 87.3% 88.7% 72.2% 85.5% 95.8% 94.1% 82.7% 93.4%

10 89.8% 88.4% 76.4% 87.7% 95.3% 93.6% 86.3% 94.5%

20 88.7% 89.0% 79.6% 88.9% 94.7% 93.6% 84.7% 94.3%

30 89.0% 90.% 83.8% 90.7% 94.7% 94.2% 85.8% 94.7%

50 90.8% 92.2% 87.9% 92.9% 95.0% 94.8% 87.3% 95.4%

Table 4. Percentage coverage of confidence intervals for Station no. 141.

Measurement
sample size

Classic interval Interval based on semivariance

LD LE LN LDEN LD LE LN LDEN

5 73.5% 63.4% 50.8% 55.9% 78.1% 66.4% 52.8% 60.2%

10 74.7% 65.6% 52.8% 59.7% 78.2% 71.9% 55.1% 62.7%

20 77.3% 65.3% 60.0% 64.1% 78.8% 72.7% 64.4% 71.1%

30 80.3% 68.4% 63.7% 68.7% 81.6% 74.7% 66.9% 73.2%

50 83.7% 71.9% 70.8% 75.4% 84.5% 75.8% 72.7% 77.9%

The coverage percentage for the classical interval differs from the coverage value for the
semivariance-based confidence interval, as can be observed in Tables 2–4. Each time, an interval
based on semivariance gives more coverage than a classically determined interval. For Station no.
130, 5-element measurement samples already give coverage close to 95%, while for the classic
range, the coverage is a few percent less, depending on the indicator. It can also be observed that
as the skewness and kurtosis values increase, the coverage percentages are much lower than the
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required 95%. However, it is worth noting that for a confidence interval based on semivariance,
this is a few percent more than for a classical interval. In addition, the confidence interval based
on semivariance does not have a defined required coverage of the true value, as is the case with the
classical confidence interval, which should be 95%.

5. Conclusions

The article presents a generalization of Chebyshev’s theorem for semivariance. Inequality
variants are presented for specific distributions: truncated normal, exponential and gamma.
A generalization of the 3-sigma rule using semivariance is also presented.

It also demonstrates how to create confidence intervals based on Chebyshev’s theorem and
shows how it can be used in determining uncertainty from long-term noise indicators used in
environmental noise protection.

Confidence intervals based on semivariance were also compared with classical confidence
intervals based on long-term noise indicators from acoustic monitoring data from the city of
Gdansk. Classical confidence intervals require that the probability distribution of the random
variable of sound level energy is normal or the measurement sample is large enough to use
CLT. Measurement practice shows, however, that such a situation occurs very rarely (e.g. for
industrial noise). It is shown that a confidence interval based on semivariance gives better coverage
values than the classical confidence interval applied to energy means. This is due to the fact that
a confidence interval based on semivariance considers the asymmetry of empirical distributions
from which the measurement sample is drawn, as opposed to classical intervals. Confidence
intervals based on semivariance can therefore be a better alternative for determining measurement
uncertainty than classical confidence intervals and the classical Chebyshev’s theorem not only
for noise indicators but also for other indicators in the natural sciences or engineering, where
measurement functions are nonlinear and indicator probability distributions differ significantly
from normal distributions. The new uncertainty assessment tool proposed in this paper can form
the basis of a new methodology for determining uncertainty when small measurement samples are
available and when the distribution of the characteristic’s mean value is not normal.
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Appendices

Theorem Proof (Chebyshev’s inequality for semivariance)

From Markov’s inequality we obtain

P (X − µ ≥ ε) =
1

P (X ≥ µ)
P ((X − µ)+ ≥ ε) ≤

1
P (X ≥ µ)

E (X − µ)2+
ε2 =

1
P (X ≥ µ)

σ2
+

ε2 ,

P (X − µ ≤ −ε1) = P (−X + µ ≥ ε1) =
1

P (X < µ)
P ((X − µ)− ≥ ε1) ≤

1
P (X < µ)

E (X − µ)2−
ε2

1
=

1
P (X < µ)

σ2
−

ε2
1
.
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By substituting ε := kσ+, and ε1 := kσ−, we obtain

P (X − µ ≥ kσ+) ≤
1

P (X ≥ µ)
σ2
+

(kσ+)2
=

1
k2P (X ≥ µ)

,

P (X − µ ≤ −kσ−) ≤
1

P (X < µ)

σ2
−

(kσ−)2
=

1
k2P (X < µ)

.

As a result, we obtain

P (−kσ− ≤ X − µ ≤ kσ+) ≥ 1 −
1
k2

(
1

P (X ≥ µ)
+

1
P (X < µ)

)
.

Proofs of semivariance formulas for individual distributions:
a) normal truncated

σ2
− =

m∫
a

(x − m)2
1

F (b) − F (a )
1
√

2πσ
exp

{
−
(x − m)2

2σ2

}
dx =

=

��������
f (x) = (x − m) g′ (x) = (x − m) exp

{
−
(x − m)2

2σ2

}
f ′ (x) = 1 g (x) = σ2 exp

{
−
(x − m)2

2σ2

}
�������� =

=
1

F (b) − F (a )
1
√

2πσ

(
−(x − m)σ2 exp

{
−
(x − m)2

2σ2

} )�����m
a

+

+σ2
m∫

a

1
F (b) − F (a )

1
√

2πσ
exp

{
−
(x − m)2

2σ2

}
dx =

= (a − m)σ2 f (a ) + [F (m) − F(a)]σ2.

Calculations for σ2
+ are carried out in the same way.

b) exponential distribution

σ2
− =

1/λ∫
0

(x − 1/λ)2 λe−λxdx =

1/λ∫
0

(
x2 −

2x
λ
+ 1/λ2

)
λe−λxdx =

=

1/λ∫
0

x2λe−λxdx −

1/λ∫
0

2xe−λxdx +

1/λ∫
0

1
λ

e−λxdx =
���� f (x) = x2 g′ (x) = λe−λx

f ′ (x) = 2x g (x) = −e−λx

���� =
= −x2e−λx

�� 1
λ

0 +

1
λ∫

0

2xe−λxdx −

1
λ∫

0

2xe−λxdx +

1
λ∫

0

1
λ

e−λxdx = −
1
λ2e
− 1/λ2e−λx

�� 1
λ

0 =

=
1
λ2 −

2
λ2 e−1.
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c) gamma distribution

σ2
− =

1
Γ (k) θk

kθ∫
0

(x − kθ)2 xk−1e−
x
θ dx =

1
Γ (k) θk

kθ∫
0

(x2 − 2xkθ + k2θ2)x
k−1

e−
x
θ dx =

=
1

Γ (k) θk

kθ∫
0

xk+1e−
x
θ dx −

2k
Γ (k) θk−1

kθ∫
0

xke−
x
θ dx +

k2

Γ (k) θk−2

kθ∫
0

xk−1e−
x
θ dx =

=

���� f (x) = xk+1 g′ (x) = e−
x
θ

f ′ (x) = (k + 1) xk g (x) = −θe−
x
θ

���� =
= −

1
Γ (k) θk+1 xk+1e−

x
θ

����kθ
0
+
(k + 1)
Γ (k) θk−1

kθ∫
0

xke−
x
θ dx −

2k
Γ (k) θk−1

kθ∫
0

xke−
x
θ dx+

+
k2θ2

Γ (k) θk

kθ∫
0

xk−1e−
x
θ dx = −

kk+1

Γ (k)
e−k +

(1 − k)
Γ (k) θk−1

kθ∫
0

xke−
x
θ dx + k2θ2F (kθ) =

=

���� f (x) = xk g′ (x) = e−
x
θ

f ′ (x) = k xk−1 g (x) = −θe−
x
θ

���� =
= k2θ2F (kθ) −

kk+1

Γ (k)
e−k −

(1 − k)
Γ (k) θk−2 xke−

x
θ

����kθ
0
+
(1 − k)
Γ (k) θk−2

kθ∫
0

k xk−1e−
x
θ dx =

= k2θ2F (kθ) −
kk+1

Γ (k)
e−k −

(1 − k)
Γ (k) θ−2 kke−k +

(1 − k) k
θ−2 F (kθ) =

= kθ2 γ(k, kθ2)

Γ(k)
−
θ2kk

Γ (k)
e−k,

where F (kθ) = γ(k,kθ2)
Γ(k) .
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