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The complexity of bistatic echo pulse sequences surpasses that of monostatic echo pulse sequences. Based
on the scattering acoustic field of elastic spheres and spherical shells, a method is employed to calculate the
time-domain echoes of solid spheres and spherical shells with transceiver separation under the condition of plane
wave incidence. This is achieved by constructing the incident signal and performing a multiplication operation
in the frequency domain with the target scattering acoustic field. Employing the contour integral method, we
derive phase velocity and group velocity dispersion curves for circumferential waves propagating around these
structures. Furthermore, under the assumption of plane wave incidence, we analyze the propagation paths of
Rayleigh echoes for solid spheres and anti-symmetric Lamb waves for spherical shells. Estimation formulas for
the arrival times of separated transmit-receive echoes are provided for both solid spheres and spherical shells.
Our findings indicate that bistatic waves can be classified into clockwise and counterclockwise circulation
patterns around the surfaces of these structures. Through a comparison with the time-angle spectrum of
echoes, we demonstrate the accuracy of the proposed estimation formulas for echo arrival times. This study
offers valuable insights for the identification of underwater targets.
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1. Introduction

In the context of underwater detection and target
identification, when acoustic waves impinge upon the
surface of a target, they not only generate geomet-
ric reflection waves but also transmit through the tar-
get. Within the elastic body, various re-radiated elas-
tic echoes are induced. These echoes carry character-
istic information of the target, aiding active sonar sys-
tems in the detection and identification of targets (Xia
et al., 2016; Too et al., 2014). A considerable amount
of research has been conducted globally on the recog-
nition and formation mechanisms of elastic wave com-

ponents in submerged elastic shell targets, particularly
in the domains of ultrasonics, underwater engineering
for damage detection (crack detection), and the identi-
fication of submerged and seafloor targets (Bednarz,
2017; Apostoloudia et al., 2007; Kargl et al., 2012;
Qiao et al., 2016). However, there has been limited
research on separated transmit-receive configurations.
With the current trend in sonar detection moving to-
wards multi-platform sonar joint detection, the inves-
tigation of target identification through the separated
transmit-receive configuration, leveraging the scatter-
ing characteristics of elastic waves, holds significant im-
portance.

https://acoustics.ippt.pan.pl/index.php/aa/index
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Research on the acoustic scattering of spheres and
spherical shells in free fields has been widely con-
ducted both theoretically and experimentally world-
wide (Gaunaurd, Werby, 1987; 1991; Ayres et al.,
1987; Marston, Sun, 1992). Gaunaurd and Über-
all (1983; 1985) analyzed the circumferential waves of
rigid spheres using singular expansion methods (SEM)
and Watson transform techniques, and delved deeper
into the scattering processes of solid spheres based on
resonance scattering theory. Überall et al. (1982) es-
tablished a direct connection between surface waves
and complex frequency poles. Fan et al. (2012) ap-
plied the Sommerfeld–Watson Transformation (SWT)
method to the problem of elastic spherical shells filled
with water, employing contour integration to solve
dispersion equations in the frequency and wavenum-
ber domains, indicating the generation of a significant
amount of fluid-added waves due to internal fluid load-
ing. Ding et al. (2023) proposed an acoustic encoding
principle and method based on high-frequency time-
domain echoes of stratified elastic spherical shells in
water, studying the influence of shell thickness, ma-
terial properties of each layer, and arrangement order
on the characteristics of time-domain echoes. Diercks
and Hickling (1967) demonstrated through experi-
ments with vacuum spheres that the target echo is re-
lated to the receiving point. Anderson (2012) utilized
SPWV time-frequency analysis methods and ray the-
ory analysis to show that in the presence of comprehen-
sive effects caused by changes in circumferential wave
paths and circumferential wave damping coefficients
due to transmit-receive separation, time and frequency
shifts occur in the echoes of free-field elastic spherical
shells. Thompson (2023) investigated the application
of time-frequency methods in detecting and identifying
target echoes underwater.

Fawcett (2015) proposed a method for solving the
elastic scattering of near-spherical targets, studying
the influence of shell thickness on polar angle transfor-
mation and showing changes in the mid-frequency en-
hancement region of near-spherical targets compared
to shells with a constant radius. Gunderson et al.
(2017) obtained forecast formulas for Rayleigh wave
interference trajectories of solid spheres and solid cylin-
ders by analyzing the path difference of circumferential
waves along their surfaces, both clockwise and coun-
terclockwise, which fit well with the angular frequency
spectrum interference fringes of the targets. Yu et al.
(2014) proposed a subsonic antisymmetric Lamb wave
separation method, which can identify subsonic anti-
symmetric Lamb waves even when the incident short
pulse frequency is far from the maximum enhancement
frequency. Su et al. (2017) proposed a signal process-
ing method under low-frequency broadband long-pulse
excitation, allowing the observation and analysis of
weak elastic wave energy in strong specular reflection
waves. Li and Wu (2019) filtered and modulated tar-

get echoes, separating target elastic scattering compo-
nents. The above studies did not analyze the mecha-
nisms of bistatic echo paths, echo moments, and the in-
formation carried by echoes of solid spheres and shells.

This paper firstly establishes a theoretical analyti-
cal computational model for solid spheres and spherical
shells. By multiplying the spectrum of the constructed
sinusoidal pulse signal with the computed acoustic
transfer functions of the solid sphere and the spher-
ical shell, the multi-bounce echo spectra of the solid
sphere and the spherical shell are obtained. Then,
an inverse Fourier transform obtains the time-domain
echo pulse sequence. The results reveal that both the
bistatic echoes of solid spheres and spherical shells ex-
hibit an X pattern, formed by waves circumnavigat-
ing the target in both clockwise and counterclockwise
directions. By contrasting the reverse echoes of solid
spheres and spherical shells, it is observed that spher-
ical shell reverse echoes exhibit distinct wave packets,
which can serve as a reference for the identification of
solid spheres and spherical shells. Finally, formulas es-
timating the arrival times of Rayleigh waves in solid
spheres and anti-symmetric waves in spherical shells
are provided.

2. Theoretical research

2.1. The theoretical solution of elastic spheres

Harmonic plane sound waves with unit amplitude
scatter from the elastic sphere as shown in Fig. 1. As-
suming the incident direction is aligned with the z-axis,
the backward scattering wave corresponds to θ = π.
Both the incident and scattered waves are indepen-
dent of the azimuthal angle ϕ and symmetric about
the z-axis.
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Fig. 1. Plane waves scattering from an elastic sphere.

The expression for the scattered acoustic field of
the medium is given by (Tang et al., 2018):

ps =
∞
∑

n=0
in(2n + 1)bnh

(1)
n (kr)Pn(cos θ), (1)

where θ is the receiving angle, r is the receiving dis-
tance, and bn = −Bn/Dn, withDn = 0 being the charac-
teristic equation of a solid sphere. The terms h(1)n (kr),
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Pn(cos θ), and specific elements in the matrix are de-
tailed in (Williams, Marston, 1985).

2.2. The theoretical solution of elastic spherical shells

Scattering of plane waves from a spatially fixed spher-
ical shell is considered, with spherical coordinates r
centered at the origin O, where the outer radius of the
shell is a, the inner radius is b, the thickness is h = a − b,
and the interior of the shell is a vacuum (Fig. 2). As-
sume a unit amplitude harmonic plane wave incident
along the z-direction onto the spherical shell.
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ϕ θ

r(r, θ, ϕ)

Fig. 2. Schematic diagram of elastic spherical shell scatter-
ing.

The boundary conditions of the spherical shell are:
⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

Trr = −p,

ur =
1

ρ0w2

∂p

∂r
, r = a,

Trθ = 0,

(2)

⎧
⎪⎪
⎨
⎪⎪
⎩

Trr = 0,

Trθ = 0,
r = b, (3)

where Trr and Trθ represent stress, and ur represents
displacement.

To solve for the scattering coefficient Bn from
the boundary conditions, we use the expression bn =

−Bn/Dn, where Dn = 0 is the characteristic equation
of the spherical shell, and the matrix elements Bn and
Dn can be found in (Gaunaurd, Werby, 1991). The
scattered acoustic pressure in the surrounding water
medium of the spherical shell can still be expressed
using Eq. (1).
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Fig. 4. Comparison of theoretical solution and finite element computational results (ka is dimensionless frequency):
a) sphere; b) spherical shell.

3. Algorithm verification

To ascertain the precision of the computational
modeling of the scattering acoustic fields associated
with elastic spheres and spherical shells, we con-
ducted separate calculations for the scattering acous-
tic fields of a copper sphere with a radius of 0.5 m
and a vacuum copper shell with equivalent dimen-
sions and a thickness-to-diameter ratio of 0.05 (Fig. 3).
The material properties are detailed in Table 1. The
outcomes generated by the algorithm proposed in this
study were juxtaposed with those derived from finite
element software tailored for two-dimensional axisym-
metric computations. The comparative findings are de-
picted in Fig. 4. It is evident from the results that the
two computational approaches exhibit a high degree of
agreement, thus affirming the accuracy of the proposed
methodology.
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Fig. 3. Finite element software two-dimensional axisym-
metric acoustic scattering model: a) sphere; b) spherical

shell.

Table 1. Material parameters.

Material Density
[kg/m3]

Longitudinal
wave speed (cl)

[m/s]

Transverse
wave speed (ct)

[m/s]
Water 1000 1500 –
Copper 8900 4759 2325
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4. Dispersion curve

4.1. Solid sphere dispersion curve

The object of study in this section is a copper
sphere with a radius of 0.06 m. Utilizing both contour
integration and Gaussian integration methods (Long
et al., 1994), we computationally determine the phase
velocity and group velocity dispersion curves for the
elastic copper sphere with a radius of 0.06 m. The ma-
terial parameters used for these calculations are out-
lined in Table 1. The resulting dispersion curves are
visually represented in the subsequent figure (Fig. 5).
It is evident that the principal types of circumfer-
ential waves in the elastic sphere include whisper-
ing gallery (W-G) waves, Rayleigh waves, and Franz
waves. A higher imaginary component of the root sig-
nifies a more pronounced radiation capability; how-
ever, it also corresponds to increased attenuation dur-
ing propagation (Tang et al., 2018). Notably, the
imaginary component of Franz waves surpasses that
of Rayleigh waves, indicating that Franz waves expe-
rience heightened attenuation compared to Rayleigh
waves (Fig. 6). Consequently, the observation of Franz
waves in backward scattering scenarios poses consider-
able difficulty.
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Fig. 5. Phase velocities.

0 20 40 60 80 100
-8

-6

-4

-2

0

Franz-2

Rayleigh

W-G

Franz-1

Re (ka)

Im
 (k
a)

Fig. 6. Distribution plot of the real and imaginary parts.
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Fig. 7. Group velocities: a) Rayleigh; b) Franz-1.

4.2. Spherical shell dispersion curve

Similar to solving the dispersion curve of a solid
sphere, all that is required is to modify the character-
istic equation of the sphere to that of a spherical shell.
The dispersion curve of the phase velocity for a vac-
uum copper spherical shell with a radius of 0.06 m and
a thickness-to-radius ratio of 0.05 is depicted in Fig. 8.
It can be observed that the a0+ and a0− waves undergo
a bifurcation near the resonance frequency.

From Fig. 9, it is evident that the imaginary com-
ponent of the a0− wave is nearly negligible at low fre-
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Fig. 8. Phase velocity dispersion curves.
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Fig. 9. Distribution plot of the real and imaginary parts.

quencies, suggesting a low radiation efficiency for this
wave type within this frequency range. Consequently,
the detection of the a0− wave at low frequencies proves
challenging. Moreover, a discernible trend is observed
wherein the radiation efficiency of the a0− wave in-
creases from low to high frequencies, while conversely,
the radiation efficiency of the a0+ wave decreases from
high to low frequencies, with a notable inflection point
near the resonance frequency. Notably, the imaginary
component of the s0 wave remains consistently mini-
mal near the resonance frequency, indicating relatively
weak radiation characteristics for this wave type. The
calculated group velocity curve of the a0− wave is
shown in Fig. 10.
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Fig. 10. Group velocities of the a0− wave.

5. Time-domain analysis

The time domain echo calculation of the target
mainly includes: constructing the sinusoidal signal as
the incident wave, and using the fast Fourier trans-
form to get the incident wave spectrum. The scattering
sound pressure of the target is obtained as the transfer
function by theoretical solution. The frequency spec-
trum of the incident signal and the transfer function
are multiplied in the frequency domain, and the echo

pulse sequence of the target is obtained by inverse
Fourier transform.

5.1. Sphere

A single-cycle 120 kHz (ka ≈ 30) sine wave is used
as the incident signal. At this point, the phase velocity
is approximately 2325 m/s, and the group velocity is
approximately 2194 m/s. According to the law of re-
fraction:

sin (θc) = c/cph, (4)

where c is the speed of sound in water, which is
1500 m/s. The critical angle θc is approximately 40○.
This means that the incident wave enters the surface
at the critical angle of 40○ and radiates outward at the
critical angle.

5.1.1. Monostatic configuration

For the backward wave, taking clockwise as an ex-
ample, the path of the circumferential wave is shown
in Fig. 11. The incident wave couples into the spherical
surface at point A, decouples and propagates outward
at point B. Afterward, a portion of the circumferential
wave continues to circulate around the spherical sur-
face for one revolution before decoupling from point B,
and so on.

O

A

θc

θc

B

0

Fig. 11. Propagation path (clockwise).

In order to achieve a more succinct echo curve,
a matched filtering technique is applied, utilizing the
constructed incident signal as the reference signal.
The resulting time-domain echo is matched filtered,
yielding the echo curve as shown in Fig. 12. Using the
mirror reflection echo at the top 0 as the time refer-
ence point, the propagation time between R1 and R2
is determined to be the time it takes for the wave to
complete one full circulation around the spherical sur-
face. This enables the calculation of the Rayleigh wave
group velocity, which is approximately 2194 m/s. This
value aligns with the Rayleigh wave velocity calculated
in the previous section.
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Fig. 12. Impulse responses.

5.1.2. Bistatic configuration

The time-domain echo of a separated transmit-
receive elastic sphere is computed, with the foremost
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Fig. 13. a) Schematic for the acoustic scattering problem under consideration;
b) the bistatic impulse response of the sphere.
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Fig. 14. Propagation path (CW): a) π − θ < 2θc; b) π − θ > 2θc.
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Fig. 15. Propagation path (CCW): a) path 1; b) path 2.

bright line representing the specular echo. The position
of this bright line changes with variations in the receiv-
ing angle. Upon further observation, it is noted that
the time-domain echo pattern of the elastic sphere with
a separated transmit-receive configuration exhibits an
X-mode, which is attributed to the influence of the cir-
cumferential components of Rayleigh waves. Rayleigh
waves propagate along the surface of the solid sphere
in both clockwise (CW) and counterclockwise (CCW)
directions. The sphere possesses a strictly symmetric
structure, and the waves circumnavigate the sphere’s
surface, eventually superimposing in the opposite di-
rection of the shell (θ = 180○). Consequently, bright
spots are observed at the 180○ angle in Fig. 13b.

According to the propagation paths of the waves,
they can be divided into clockwise circumferential
propagation around the sphere and counterclockwise
circumferential propagation around the sphere, as
shown in Figs. 14 and 15.
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The formula for estimating the arrival time of the
echo is given as follows, where θ = π corresponds to
the moment of arrival of the reverse echo:

tCCW =

2a(1 − cos(θc))

c
+

a(π + θ − 2θc)

cgR

+ (n − 1)
2πa

cgR
, (5)

tCW =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

2a(1 − cos(θc))

c
+

a(π − θ − 2θc)

cgR

+ (n − 1)
2πa

cgR
, π − θ > 2θc,

2a(1 − cos(θc))

c
+

a(3π − θ − 2θc)

cgR

+ (n − 1)
2πa

cgR
, else.

(6)

The sphere is a strictly symmetrical structure, so
the characteristics of echoes between angles 0○∼180○

and angles 180○∼360○ are consistent. This article uses
the range of 0○∼180○ as an example. Based on the for-
mula mentioned earlier to determine the echo arrival
time, it can be observed that the curves correspond
well with the echo fringes. The relationship between
the mirrored echo angle and the echo arrival time fol-
lows a sine function, causing the echo fringes to be
curved. The first echo of Rayleigh waves has a slope
of cgR/a, which is positively correlated with the veloc-
ity of Rayleigh waves, making the fringe a straight
line. At angles below approximately 100○, clockwise
echoes reach the receiving point earlier than geomet-
ric echoes. Besides the Rayleigh wave echoes (labeled
as 1 in Fig. 16), other echoes are observed, possi-
bly corresponding to a combination of W-G waves
and other transmitted waves (Williams, Marston,
1985). It can also be observed that as the angle ap-

Time [ms]

θ 
[°]

Fig. 16. Bistatic impulse response of the sphere.

proaches the forward direction, a segment of echoes
is observed (labeled as 2 in Fig. 16). It is challeng-
ing to observe this segment of echoes near the reverse
angle. By calculating the arrival time of echoes using
the subsonic Franz-1 wave velocity (Fig. 7b), it is ob-
served that this segment of echoes corresponds well
with the echo fringes. Therefore, these echoes may be
associated with subsonic waves.

5.2. Spherical shell

Calculating the form function of a vacuum copper
spherical shell with a radius of 0.06 m and a thickness-
to-diameter ratio of 0.05, it can be observed that the
elastic shell exhibits a noticeable mid-frequency en-
hancement (ka ≈ 18∼42).

When using a single-cycle 120 kHz (ka ≈ 30) sine
signal as the incident signal, and referring to the dis-
persion curve calculated in Fig. 17, it can be ob-
served that around the resonance frequency, the bend-
ing wave on the surface of the spherical shell in water
corresponds to the a0− wave. This indicates indicat-
ing that the incident acoustic wave enters tangentially
(θc ≈ π/2) along the surface of the spherical shell and
leaks into the water at an angle of θc.
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Fig. 17. Form function of a vacuum copper spherical shell.

5.2.1. Monostatic configuration

The incident wave enters tangentially onto the sur-
face of the spherical shell, and the paths of clockwise
and counterclockwise propagation of the circumferen-
tial waves are illustrated in Fig. 18. The incident wave
couples into the sphere at points A(A′

), decouples and
propagates outward at points B(B′

). Some of the cir-
cumferential waves continue to propagate along the
surface of the shell for one complete revolution before
decoupling and radiating outward from points B(B′

).
This process repeats, resulting in a sequence of echo
pulses.

Due to the narrow pulse during signal emission,
the propagation velocity needs to be determined using
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Fig. 18. Propagation path (θc ≈ π/2): a) CCW; b) CW.

the group velocity (Tang et al., 2018). Calculations
yield an approximate group velocity of about 1900 m/s
for the a0− wave. Using the estimated arrival time
Eq. (9) based on the time when the echo arrives,
with the echo reflected from the retroreflector as the
time reference point, the calculated times are plot-
ted against the time-domain echo curve. Three plotted
curves from left to right (Fig. 19) represent the first,
second, and third antisymmetric echoes. It can be
observed that the calculated echo arrival times cor-
respond well with the time-domain curves.
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5.2.2. Bistatic configuration

The time-domain echoes of the elastic spheri-
cal shell in the separate transmit-receive configura-
tion were calculated. Upon observation, similarities
were found with the characteristics of the bistatic
echoes from the copper sphere. At the forefront, there
is a bright line corresponding to the mirror image
echo, and the position of this line changes with varia-
tions in the receiving angle. The time-domain echo pat-
tern in the separate transmit-receive configuration for
the elastic spherical shell resembles an X-mode, influ-
enced by the circumferential components of the a0−
wave (Anderson, 2012). The a0− wave propagates
clockwise and counterclockwise along the surface of the
spherical shell. Due to the strict symmetry of the shell

structure, the paths of waves propagating clockwise
and counterclockwise along the surface are identical.
Consequently, they intersect in the opposite direction
of the shell (θ = 180○), resulting in a bright spot at
180○ in the graph, which is the culmination of the su-
perposition of circumferential waves (Fig. 20).

Time [ms]

θ 
[°]

Fig. 20. Bistatic impulse response of the spherical shell.

According to the preceding section, the incident
wave enters tangentially onto the surface of the spheri-
cal shell. When propagating counterclockwise, the inci-
dent acoustic wave couples from pointA to pointB and
decouples to radiate outward. The angle corresponding
to the circumferential wave path on the shell surface
is θ1. When propagating clockwise, the incident acous-
tic wave couples from point A′ to point B′ and decou-
ples to radiate outward. The angle corresponding to
the circumferential wave path on the shell surface is θ2.

Observe the above diagram (Fig. 21) to obtain the
angles corresponding to counterclockwise and clock-
wise circumferential waves:

θ1 = θ, (7)

θ2 = 2π − θ. (8)

Calculate the arrival times of counterclockwise and
clockwise circumferential waves along the surface of
the spherical shell based on the propagation paths:

tCCW =

2a

c
+ a

θ1
cga0−
+ (n − 1)

2πa

cga0−
, (9)

tCW =

2a

c
+ a

θ2
cga0−
+ (n − 1)

2πa

cga0−
. (10)

The time difference between the arrivals of counter-
clockwise and clockwise circumferential waves is given
by Eq. (11). It can be observed that when the back-
ward echo occurs θ = π, the time difference between
clockwise and counterclockwise waves is 0:

∆t = tCW − tCWW = a
θ2 − θ1
cga0−

= a
2(π − θ)

cga0−
. (11)
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Fig. 21. Propagation path: a) CCW; b) CW.

When the circumferential wave reaches point B or
B′, a portion decouples and radiates outward, while
another portion continues to circumnavigate the spher-
ical shell before decoupling and radiating outward. The
remaining part continues to circumnavigate along
the surface of the spherical shell. Therefore, the time
difference between adjacent echoes of clockwise or
counterclockwise echoes is the time it takes for the cir-
cumferential wave to complete one full rotation along
the surface of the spherical shell:

∆t0 =
2πa

cga0−
. (12)

According to the formula for estimating the echo
timing, the bistatic echoes are calculated and plotted
on the time-angle spectrum. Since the spherical shell
is a strictly symmetric structure, this paper takes the
example of 0○∼180○. It can be observed that the calcu-
lated echo timings correspond well with the time-angle
spectrum (Fig. 22).
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Fig. 22. Bistatic impulse response of the spherical shell.

6. Conclusions and discussion

This research computed the time-domain echoes of
solid spheres and spherical shells under plane wave in-
cidence by employing a method that constructs the

incident signal and performs multiplication operations
in the frequency domain with the target scattering
acoustic field. Based on the scattering acoustic field of
elastic spheres and spherical shells, the following main
conclusions are drawn:
1) Under the same planar wave incident signal,

echoes from solid spheres are more complex com-
pared to those from spherical shells. At specific
frequencies, solid spheres predominantly exhibit
Rayleigh and W-G waves, while spherical shells
mainly manifest a0− waves, with a noticeable mid-
frequency enhancement phenomenon. In the time-
domain echoes, this is evident as distinct wave
packets, offering valuable insights for distinguish-
ing between solid spheres and spherical shells un-
derwater.

2) The study reveals that, for elastic spheres within
the near-forward angle range, elastic waves arrive
faster than specular echoes. This phenomenon is
attributed to the azimuthal function of the cir-
cumferential wave arrival time on the spherical
surface, which is dependent on the circumferen-
tial wave velocity and path.

3) By examining the relationship between echo ar-
rival time and reception angle, it is observed that
a small segment of the echo can be observed near
the forward angle, whereas this segment of the
echo is not observed near the backward angle.
Computational analysis reveals that this segment
of the echo corresponds to subsonic waves.

4) The echo arrival times of separated transmit-
receive configurations for elastic spheres and
spherical shells can be predicted. Estimation for-
mulas for the bistatic echo arrival times of the
two targets are provided, showing good agreement
between the predicted echo arrival times and the
time-domain echo curves.
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