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To increase the productivity of boom cranes, joint movement of mechanisms is
performed. The simultaneous start-up of mechanisms significantly increases dynamic
loads and intensifies oscillations of structural elements and loads on a flexible suspen-
sion reducing the reliability of crane operation and increasing energy losses. Therefore,
the optimization problem of the joint start-up of the slewing and load hoisting mecha-
nisms of a boom crane is stated and solved in the article. To optimize the joint start-up
of the mechanisms, the boom system is represented by a 5-DOF dynamic model. For
such a dynamic model of a boom crane, a mathematical model is developed in the form
of a system of nonlinear differential equations of the second order. The optimization
problem includes an optimization criterion and constraints on the driving torques and
boundary conditions. An approximate modified metaheuristic PSO method was used
to solve the nonlinear optimization problem. Based on the calculation, the optimal
modes of joint start-up of the mechanisms for load slewing and hoisting of a boom
crane were determined, making it possible to minimize dynamic loads and, as a result,
reduce oscillations of the system links and energy consumption of the drives.

1. Introduction

To increase the productivity of boom cranes, the combined movement of sev-
eral mechanisms is used. In particular, the joint movement of the slewing and load
hoisting mechanisms is commonly applied. The case when both mechanisms simul-
taneously carry out transient processes (start-up, braking) is particularly dangerous
for the boom crane operation. In such an instance, increased dynamic loads occur

B Yuriy ROMASEVYCH, e-mail: romasevichyuriy@ukr.net
1National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
2Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

0

© 2024. The Author(s). This is an open-access article distributed under the terms of the Creative
Commons Attribution (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/), which permits
use, distribution, and reproduction in any medium, provided that the author and source are cited.

https://orcid.org/0000-0003-4259-3900
https://orcid.org/0000-0001-5069-5929
https://orcid.org/0000-0002-7988-8350
https://orcid.org/0009-0008-2913-7197
mailto:romasevichyuriy@ukr.net
https://creativecommons.org/licenses/by/4.0/


352 V.S. LOVEIKIN, Yu.O. ROMASEVYCH, A.V. LOVEIKIN, D.I. VELYKOIVANENKO

in the crane’s structural elements, and the energy consumption of the drive mech-
anisms increases. In addition, oscillatory processes happen in the crane structure
elements, drive mechanisms, and the load on the flexible suspension. In this case,
high-frequency oscillations in structural components and low-frequency spatial os-
cillations of the load on a flexible suspension are hazardous, affecting the crane’s
reliability and complicating the crane operator’s work. Therefore, determining the
optimal modes of joint start-up of the mechanisms for slewing and hoisting the
load, which minimize dynamic loads and oscillatory processes in the elements of
the crane boom system, is a promising area of research.

The operation of crane mechanisms and the crane system as a whole is signif-
icantly affected by transient processes (start-up, braking), during which additional
dynamic loads occur in structural elements and drives [1–4], reducing the produc-
tivity and reliability of cranes and increasing energy losses. Considerable attention
has been paid to the study of dynamic processes that occur during the operation of
cranes. In [1, 2], modeling and dynamic analysis of tower cranes were performed,
and in [3, 4], the dynamics of bridge cranes and container handlers were studied.
These papers show a significant impact of dynamic loads on crane exploitation.

To increase the productivity of tower cranes, the movement of several individ-
ual mechanisms is combined. In paper [5] modelling and dynamic analysis of the
joint movement of tower crane’s slewing and trolley movement mechanisms were
performed, which showed the overloading of the mechanisms and the presence
of load oscillations on a flexible suspension. In [6], a mathematical model of the
joint movement of the mechanisms for trolley movement, slewing, and hoisting
was developed, based on which the dynamics of loads on the crane structural el-
ements were estimated. The authors of [7] modeled and evaluated the impact of
dynamic loads on the performance of a five-stage boom crane. The authors of [8]
determined the effect of a load swinging on a flexible suspension on the dynamic
loads impacting the drive mechanisms and structure of a double-boom crane. They
controlled it with a PID controller with a nonlinear scheme. During the joint start-
up of the mechanisms, oscillations of the load on the flexible suspension occur,
which reduces the performance and reliability of tower cranes, so there is a need
to study their dynamics during the simultaneous operation of crane slewing and
load hoisting mechanisms. To reduce dynamic loads and prevent oscillations of
crane structures and load on a flexible suspension, crane mechanisms are regulated
during movement. Paper [9] analyzed the dynamical models of the tower crane. The
stress is put on different pendulum effects (complex load oscillation) when ten 2D
and 3D dynamical models are compared. The results of the work give the approach
to reasonable selection of the tower crane dynamical model for the monitoring
and control problems solution. The authors of [10] study a 4-DOF underactuated
tower crane. To find the optimal control, a multiple time-step approach developed
by the authors was applied. On each time step, a nonlinear model was linearized
near the temporary operating point, then based on the algebraic Riccati equation
solution H-infinity feedback controller was designed. The authors pointed out the
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advantages of the approach. However, there was an obvious drawback – a huge
volume of computation, which the control system should make on each time step.
In the work [11], the characteristics and conditions of load oscillations and tower
cranes construction vibrations in difficult conditions of crane work are considered.
Paper [12] developed a non-model-based control of the tower crane, which was
based on fuzzy logic. The obtained control provides optimal load positioning and
reduces the load oscillations (but does not completely eliminate them). An impor-
tant result of the study – is that only one state (position) can be considered. It,
in turn, significantly reduces the complexity of the controller. The authors of [13]
developed a mathematical model of a tower crane to eliminate load oscillations,
which considers the boom’s rotation and the hoisting of the load. The model is
used to predict the oscillation frequencies during the simultaneous movement of
mechanisms. In [14], the tower crane’s load slewing mechanism is controlled by
an artificial neural network. Here, the load oscillation is minimized by generating
efficient input data. The methodology anticipates and adjusts the optimal control
parameters based on the length of the flexible load suspension. The authors of the
work [15], based on the observer, developed a control strategy, which suppresses
the load oscillations in plane crane systems during hoisting and lowering of the
load. In the article [16], a linear model of a bridge crane was used to solve the
trajectory planning problem. Based on the S-shaped curve, a control law was found,
which eliminates load’s double pendulum oscillations. The author of the paper [17]
solved the problem of global optimization of the ratio between the operation of
the drive mechanisms of cranes. The author stated that findings may be used to re-
duce the dynamics forces on the crane structure. In [18], optimization criteria were
obtained as quadratic functions for each tower crane mechanism, for which a mini-
mization algorithm was developed, and optimal parameter values were determined
to reduce the load on the crane structure and mechanisms. An approach similar
to the previous one was designed in [19, 20], where optimization criteria in inte-
gral functionals are developed based on the differential equations of a single crane
mechanism motion or the joint motion of several mechanisms. These functions rep-
resent the root mean square values of the driving torques, rate, and acceleration of
their change in time [20] or a dimensionless reduction of these criteria in the form
of a complex criterion [19]. By minimizing these functions, the optimal modes
of crane mechanisms movement are determined, which reduce the load, oscilla-
tions, and energy consumption of cranes. Optimization of the operational modes
of tower crane mechanisms leads to heightened productivity, enhanced reliability,
and improved energy efficiency.

The analysis of studies concerning the joint operation of crane mechanisms
shows a significant interest of researchers in the dynamic analysis of crane structures
and their impact on crane efficiency. To achieve high crane efficiency, considerable
attention is paid to solving dynamic optimization problems in operating individual
mechanisms and their joint movement. The proposed work is devoted to the latter
research area.
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The research aims to minimize dynamic loads and vibrations of crane structural
elements, drive mechanisms, and load on a flexible suspension during the joint
movement of mechanisms by optimizing the processes of starting boom crane’s
slewing and load hoisting mechanisms.

2. Optimization problem statement

The joint movement of the boom crane’s hoisting and slewing mechanisms
is represented by a dynamic model (Fig. 1), which includes absolutely rigid links
of the mechanisms, where the traction rope of the hoisting mechanism and the
transmission mechanism of the crane’s slewing have elastic properties, and the
flexible suspension of the load performs spatial oscillations. The drive links of the
hoisting mechanism are connected to the axis of the drive drum, and the drive
links of the slewing mechanism are connected to the crane’s slewing column. The
flexible load suspension includes block-and-tackle with mechanical advantage 𝑛,
and the load with mass 𝑚 is hanged on a hook.

Fig. 1. Dynamic model of the boom system with joint movement of the slewing and hoisting
mechanisms

Based on the above information, the dynamic model of the joint movement of
the boom crane’s slewing and hoisting mechanisms is represented by a mechanical
system with 5-DOF, where the angular coordinates of the slewing mechanism drive
𝛼, the hoisting mechanism drive 𝛽, the crane slewing column 𝜑, the load rotation
𝜓, and the linear coordinate of the center of mass of the vertical hoisting of the
load of the trough 𝑢 are taken as generalized coordinates.
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The system of joint movement of a boom crane’s mechanisms is affected by the
driving torques of the drive mechanisms, respectively, of slewing 𝑀1 and hoisting
𝑀2, as well as the torque of resistance forces in the crane’s slewing mechanism
𝑀0 and the weight of the load with a gripping device and flexible suspension 𝑚𝑔.
Elastic forces act in the elastic elements of the drive mechanisms for slewing and
hoisting. These are 𝑔 – acceleration of free fall.

To develop a mathematical model of the dynamics of the joint movement of
the hoisting and slewing mechanisms, represented by the dynamic model in Fig. 1,
the Lagrange equations were used:

d
d𝑡
𝜕𝑇

𝜕 ¤𝛼 − 𝜕𝑇

𝜕𝛼
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,

(1)

where𝑇 ,𝛱 are the kinetic and potential energies of the system, respectively;𝑀1,𝑀2
are the driving torques of the slewing and hoisting drive mechanisms, reduced to the
crane slewing column and the drive drum of the hoisting mechanism, respectively;
𝑀0 – torque of resistance forces in the crane slewing part, reduced to the rotation
axis.

The kinetic energy of the boom system during the joint movement of the
slewing and hoisting mechanisms is represented as follows

𝑇 =
1
2
𝐼1 ¤𝛼2 + 1

2
𝐼2 ¤𝛽2 + 1

2
𝐼3 ¤𝜑2 + 1

2
𝑚

(
¤𝑢2 + ¤𝜓2𝑎2

)
, (2)

where 𝐼1, 𝐼2 are the moments of inertia of the drives of the crane and the drive
drum of the hoisting mechanism reduced to the axes of rotation of the crane and
the drive drum of the hoisting mechanism, respectively, of the slewing and load
hoisting mechanisms; 𝑚 is the mass of the load; 𝐼3 is the moment of inertia of the
crane’s rotary part relative to its axis of rotation. In dependence (2), it is assumed
that the deviation from the vertical of the flexible suspension has a negligible effect
on the load’s vertical hoisting rate.

Let us find the potential energy function of the system of joint movement of
the slewing and load hoisting mechanisms,

𝛱 =
1
2
𝐶1 (𝛼 − 𝜑)2 + 1

2
𝐶2 [𝛽𝑟 − 𝑛 (𝑢0 − 𝑢)]2 + 𝑚𝑔𝑦, (3)
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where 𝐶1, 𝐶2 – stiffness coefficients of the drive mechanisms for slewing and
load hoisting are reduced in accordance with the axes of the crane rotation and
the drive drum of the hoisting mechanism; 𝑟 – radius of the drive drum of the
hoisting mechanism; 𝑢0 – length of flexible load suspension at the beginning of
the movement; 𝑣 is the angular coordinate of the deviation from the vertical of the
flexible load suspension.

Using the geometric relations from Fig. 1, we find the angular coordinate of
the deviation from the vertical of the flexible load suspension a:

a = 𝑎
𝜑 − 𝜓
𝑢

, (4)

where 𝑎 is the initial value of the load position.
We then determine the vertical coordinate of the center of mass of the load:

𝑦 = 𝑢0 − 𝑢 cos a. (5)

Let’s find the partial and total derivatives of the kinetic energy (2) and the
partial derivatives of the potential energy (3), which are included in Equation (1).
In this case, in the expressions of partial derivatives of potential energy, we can
assume that sin(a) = a, since in actual operating conditions of boom cranes, the
angular coordinate of deviation from the vertical of a flexible suspension with a
load does not exceed 12◦. Substituting the found expressions into system (1), we
obtain a system of nonlinear differential equations for the joint movement of the
boom crane’s slewing and load hoisting mechanisms:

𝐼1 ¥𝛼 = 𝑀1 − 𝐶1(𝛼 − 𝜑),
𝐼2 ¥𝛽 = 𝑀2 − 𝐶2𝑟 (𝛽𝑟 − 𝑛(𝑢0 − 𝑢)),

𝐼3 ¥𝜑 = −𝑀0 + 𝐶1(𝛼 − 𝜑) − 𝑚𝑔𝑎2 𝜑 − 𝜓
𝑢

,

𝑚𝑎2 ¥𝜓 = 𝑚𝑔𝑎2 𝜑 − 𝜓
𝑢

,

𝑚 ¥𝑢 = −𝐶2𝑛(𝛽𝑟 − 𝑛(𝑢0 − 𝑢)) + 𝑚𝑔
(
1 + 𝑎2 (𝜑 − 𝜓)2

𝑢2

)
.

(6)

When the load hoisting and slewing mechanisms are started together, sig-
nificant dynamic loads occur in the crane structure, which intensifies oscillatory
processes in its individual elements and the load on the flexible suspension. Dy-
namic loads largely depend on the magnitude and nature of the change in the driving
torques of the drive mechanisms for load slewing and hoisting. Therefore, there is a
need to determine the nature of the change in driving torques. This can be achieved
by optimizing the mode of movement of the drive mechanisms for slewing the
crane and hoisting the load, minimizing the effect of dynamic loads. As a criterion
for optimizing the starting modes of the slewing and hoisting mechanisms, we use
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the total dimensionless RMS value of the driving torques during the start-up time,
which has the following form:

𝐾𝑐𝑘 =


1
𝑡1

𝑡1∫
0

[
𝛿
𝑀2

1

𝑀2
1𝐻

+ (1 − 𝛿)
𝑀2

2

𝑀2
2𝐻

]
d𝑡


1/2

→ min . (7)

Since with an increase in the value of the driving torques, the dynamic loads
in the design of the crane boom system increase. Therefore, to reduce the dynamic
loads in the crane hoisting and slewing mechanisms during their joint start-up,
criterion (7) must be minimized. Criterion (7), which is an integral functional,
must be minimized when the boundary conditions for the joint movement of the
slewing and hoisting mechanisms are satisfied:

𝑡 = 0: 𝛼 =
𝑀0
𝐶
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2
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𝜔𝑡1
2
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𝜔𝑡1
2
, ¤𝜓 = 𝜔, 𝑢 = 𝑢0 −

a𝑡1
2
, ¤𝑢 = −a,

𝛽 =
𝑚𝑔

𝐶2𝑛𝑟
+ 𝑛a𝑡1

2𝑟
, ¤𝛽 =

𝑛

𝑟
a

(8)

along with the constraints on the driving torques of the crane slewing drives 𝑀1
and hoisting drives 𝑀2:

𝑀1 min ⩽ 𝑀1 ⩽ 𝑀1 max , (9)
𝑀2 min ⩽ 𝑀2 ⩽ 𝑀2 max , (10)

where 𝑡 is time; 𝑡1 – the duration of the joint starting process of the slewing and
hoisting mechanisms; 𝜔 is the steady-state angular velocity of the crane slewing
column; 𝑣 – steady-state linear speed of hoisting the load; 𝛿 – weight coefficient
that takes into account the share of the driving torque of the slewing mechanism in
criterion (7); 𝑀1𝐻 , 𝑀2𝐻 – rated values of the driving torques of the drives of the
slewing and hoisting mechanisms, reduced to the axis of rotation of the crane and
the axis of rotation of the drive drum of the hoisting mechanism, respectively;𝑀1 max
and 𝑀2 max – minimum and maximum allowable values of the driving torque of
the slewing mechanism drive; 𝑀2 min and 𝑀2 max – the minimum and maximum
permissible values of the driving torque of the hoisting mechanism drive.

In the optimization problem (7)÷(10), it is necessary to determine the modes
of joint start-up of the boom crane’s slewing and hoisting mechanisms, which
minimize the complex dimensionless criterion (7) and provide boundary conditions
(8) and limiting driving torques (9) and (10).
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3. Problem solution

Let us express the integral criterion (7) through the generalized coordinates of
the load rotation 𝜓 and load hoisting 𝑢 and their time derivatives. In order to do
this, we express the driving torques of the drives, respectively, of the crane slewing
and hoisting mechanisms from the first and second equations of system (6):

𝑀1 = 𝐼1 ¥𝛼 + 𝐶 (𝛼 − 𝜑), (11)
𝑀2 = 𝐼2 ¥𝛽 + 𝐶2𝑟 (𝛽𝑟 − 𝑛 (𝑢0 − 𝑢)) . (12)

As a result of substituting the expression of the left-hand side of the fourth
equation into the third equation of the system (6), we obtain

𝐼3 ¥𝜑 = −𝑀0 + 𝐶1(𝛼 − 𝜑) − 𝑚𝑎2 ¥𝜓. (13)

From equation (13), we express the angular coordinate of the drive of the
slewing mechanism:

𝛼 = 𝜑 + 1
𝐶1

(
𝐼3 ¥𝜑 + 𝑚𝑎2 ¥𝜓 + 𝑀0

)
. (14)

Taking the time derivatives of expression (14) sequentially, we obtain the
angular velocity and acceleration of the slewing mechanism drive:

¤𝛼 = ¤𝜑 + 1
𝐶1

(
𝐼3𝜑 + 𝑚𝑎2𝜓

)
, (15)

¥𝛼 = ¥𝜑 + 1
𝐶1

(
𝐼3

𝐼𝑉

𝜑 +𝑚𝑎2 𝐼𝑉

𝜓

)
. (16)

Expressions (11)÷(16) include the angular coordinate of the column of the
slewing mechanism and its time derivatives, including the fourth order ones. Let
us determine this coordinate from the fourth equation of system (6), as a result of
which we have:

𝜑 = 𝜓 + 𝑢
𝑔
¥𝜓. (17)

Now let us take the time derivatives of expression (17) four times, and then
we get:

¤𝜑 = ¤𝜓 + 1
𝑔

(
𝑢𝜓 + ¤𝑢 ¥𝜓

)
, (18)

¥𝜑 = ¥𝜓 + 1
𝑔

(
𝑢

𝐼𝑉

𝜓 +2 ¤𝑢𝜓 + ¥𝑢 ¥𝜓
)
, (19)

𝜑 = 𝜓 + 1
𝑔

(
𝑢

𝑉

𝜓 +3 ¤𝑢
𝐼𝑉

𝜓 +3 ¥𝑢𝜓 + 𝑢 ¥𝜓
)
, (20)



Optimization of the joint start-up mode of the hoisting and slewing mechanisms of a boom 359

𝐼𝑉

𝜑 =
𝐼𝑉

𝜓 +1
𝑔

(
𝑢

𝑉𝐼

𝜓 +4 ¤𝑢
𝑉

𝜓 +6 ¥𝑢
𝐼𝑉

𝜓 +4𝑢𝜓 + 𝐼𝑉

𝑢 ¥𝜓
)

; (21)

After substituting expressions (14)÷(21) into dependence (11), we obtain the
function of the driving torque of the slewing mechanism drive, which depends on
the generalized coordinates of rotation 𝜓 and hoisting 𝑢 of the load and their time
derivatives

𝑀1 = (𝐼1 + 𝐼3 + 𝑚𝑎2) ¥𝜓 + (𝐼1 + 𝐼3)
𝑔

(
𝑢

𝐼𝑉

𝜓 + 2 ¤𝑢𝜓 + ¥𝑢 ¥𝜓
)
+ 𝐼1
𝐶1

[
(𝐼3 + 𝑚𝑎2)

𝐼𝑉

𝜓

+ 𝐼3
𝑔

(
𝑢

𝑉𝐼

𝜓 + 4 ¤𝑢
𝑉

𝜓 + 6 ¥𝑢
𝐼𝑉

𝜓 + 4𝑢𝜓 + 𝐼𝑉

𝑢 ¥𝜓
) ]

+ 𝑀0 . (22)

Using dependence (17) and making some transformations, the last equation of
system (6) can be represented as follows:

𝐶2𝑟 (𝛽𝑟 − 𝑛 (𝑢0 − 𝑢)) = 𝑚
𝑟

𝑛

(
𝑔 − ¥𝑢 + 𝑎

2

𝑔
¥𝜓2
)
. (23)

From equation (23), we determine the angular coordinate of the drive drum of
the hoisting mechanism:

𝛽 =
𝑛

𝑟
(𝑢0 − 𝑢) +

𝑚

𝐶2𝑛𝑟

(
𝑔 − ¥𝑢 + 𝑎

2

𝑔
¥𝜓2
)
. (24)

Taking twice the time derivative of expression (24), we obtain the angular
velocity and acceleration of the drive drum of the hoisting mechanism:

¤𝛽 = −𝑛
𝑟
¤𝑢 + 𝑚

𝐶2𝑛𝑟

(
−𝑢 + 2

𝑎2

𝑔
¥𝜓𝜓

)
, (25)

¥𝛽 = −𝑛
𝑟
¥𝑢 + 𝑚

𝐶2𝑛𝑟

[
− 𝐼𝑉

𝑢 +2
𝑎2

𝑔

(
𝜓2 + ¥𝜓

𝐼𝑉

𝜓

)]
. (26)

As a result of substituting expressions (23)÷ (26) into dependence (12), we
obtain the function of the driving torque of the hoisting mechanism, which depends
on the coordinates of rotation𝜓 and hoisting 𝑢 of the load and their time derivatives:

𝑀2 = 𝐼2

{
−𝑛
𝑟
¥𝑢 + 𝑚

𝐶2𝑛𝑟

[
− 𝐼𝑉

𝑢 +2
𝑎2

𝑔

(
𝜓2 + ¥𝜓

𝐼𝑉

𝜓

)]}
+ 𝑚 𝑟

𝑛

(
𝑔 − ¥𝑢 + 𝑎

2

𝑔
¥𝜓2
)
. (27)
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To take into account the constraints (9) and (10) in the optimization problem
(7)÷(10), we formulate a generalized criterion in the following form:

𝐶𝑟 = 𝐾𝐶𝐾 + 𝐼𝑀1 min + 𝐼𝑀1 max + 𝐼𝑀2 min + 𝐼𝑀2 max → min,

𝐼𝑀1 min =

{
0, if min(𝑀1) ⩾ 𝑀1 min,

min(𝑀1)𝛿𝑀1 , if min(𝑀1) < 𝑀1 min ;

𝐼𝑀1 max =

{
0, if max(𝑀1) ⩾ 𝑀1 min,

max(𝑀1)𝛿𝑀1 , if max(𝑀1) < 𝑀1 max;

𝐼𝑀2 min =

{
0, if min(𝑀2) ⩾ 𝑀2 min,

min(𝑀2)𝛿𝑀2 , if min(𝑀2) < 𝑀2 min;

𝐼𝑀2 max =

{
0, if max(𝑀2) ⩾ 𝑀2 min,

max(𝑀2)𝛿𝑀2 , if max(𝑀2) < 𝑀2 max ,

(28)

where 𝐼𝑀1 min and 𝐼𝑀1 max are the penalty components of the criterion responsible
for satisfying the first and second inequality of constraints (9), respectively; 𝐼𝑀1 min
and 𝐼𝑀1 max are the penalty components of the criterion accountable for satisfying
the first and second inequality of constraints (10), respectively; 𝛿𝑀1 and 𝛿𝑀2 –
weighting coefficients that determine the number of penalties for non-compliance
with constraints (9) and (10), respectively (in the paper we use 𝛿𝑀1 = 1010 and
𝛿𝑀2 = 1010).

Let us reduce the boundary conditions (8) to the generalized coordinates of
rotation 𝜓 and hoisting 𝑢 of the load and their time derivatives, resulting in

𝑡 = 0: 𝑢 = 𝑢0, ¤𝑢 = 0, ¥𝑢 = 0, 𝑢 = 0,

𝜓 = 0, ¤𝜓 = 0, ¥𝜓 = 0, 𝜓 = 0,
𝐼𝑉

𝜓 = 0,
𝑉

𝜓 = 0;

𝑡 = 𝑡1 : 𝑢 = 𝑢0 −
a𝑡1
2
, ¤𝑢 = −a, ¥𝑢 = 0, 𝑢 = 0,

𝜓 =
𝜔𝑡1
2
, ¤𝜓 = 𝜔, ¥𝜓 = 0, 𝜓 = 0,

𝐼𝑉

𝜓 = 0,
𝑉

𝜓 = 0.

(29)

The complex dimensionless criterion (7), expressions (14)÷(27), and con-
straints (9) and (10) with boundary conditions (29) reflect an optimization problem.
In this problem, it is necessary to determine the laws of change in the coordinates
of rotation 𝜓(𝑡) and hoisting 𝑢(𝑡) of the load, which minimize criterion (7) and
satisfy constraints (9), (10), and boundary conditions (29).

Since the above optimization problem is nonlinear, an approximate method is
used to solve it, where the unknown functions 𝜓(𝑡) and 𝑢(𝑡) are represented by
polynomials with two terms:

𝜓(𝑡) = 𝜓1(𝑡) + 𝜓2(𝑡), (30)
𝑢(𝑡) = 𝑢1(𝑡) + 𝑢2(𝑡). (31)
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In expressions (30) and (31), the first terms 𝜓1(𝑡) and 𝑢1(𝑡) are selected
polynomials that satisfy the boundary conditions (29), and the second 𝜓2(𝑡) and
𝑢2(𝑡) are the polynomials that include the free coefficients and satisfy the zero
boundary conditions:

𝜓2(0) = ¤𝜓2(0) = ¥𝜓2(0) = 𝜓2(0) =
𝐼𝑉

𝜓 2(0) =
𝑉

𝜓2(0) = 0,

𝜓2(𝑡1) = ¤𝜓2(𝑡1) = ¥𝜓2(𝑡1) = 𝜓2(𝑡1) =
𝐼𝑉

𝜓 2(𝑡1) =
𝑉

𝜓2(𝑡1) = 0;
(32)

𝑢2(0) = ¤𝑢2(0) = ¥𝑢2(0) = 𝑢2(0) = 0,
𝑢2(𝑡1) = ¤𝑢2(𝑡1) = ¥𝑢2(𝑡1) = 𝑢2(𝑡1) = 0.

(33)

The function 𝜓1(𝑡) is represented by an eleventh-order polynomial, and the
function 𝑢1(𝑡) – by the fifth order one. These functions satisfy the boundary
conditions (28) and have the following form:

𝜓1(𝑡) =
11∑︁
𝑘=0

𝐶𝑘𝑡
𝑘 , (34)

𝑢1(𝑡) =
7∑︁
𝑖=0

𝐷𝑖𝑡
𝑖 . (35)

Since in the boundary conditions (28), the time derivatives of the functions
𝜓(𝑡) and 𝑢(𝑡) are, respectively, of the fifth and third order, we will define them
from functions (34) and (35), and then we obtain:

¤𝜓1(𝑡) = 𝐶1 + 2𝐶2𝑡 + 3𝐶3𝑡
2 + 4𝐶4𝑡

3 + 5𝐶5𝑡
4 + 6𝐶6𝑡

5 + 7𝐶7𝑡
6 + 8𝐶8𝑡

7

+ 9𝐶9𝑡
8 + 10𝐶10𝑡

9 + 11𝐶11𝑡
10,

¥𝜓1(𝑡) = 2𝐶2 + 6𝐶3𝑡 + 12𝐶4𝑡
2 + 20𝐶5𝑡

3 + 30𝐶6𝑡
4 + 42𝐶7𝑡

5 + 56𝐶8𝑡
6

+ 72𝐶9𝑡
7 + 90𝐶10𝑡

8 + 110𝐶11𝑡
9,

𝜓1(𝑡) = 6𝐶3 + 24𝐶4𝑡 + 60𝐶5𝑡
2 + 120𝐶6𝑡

3 + 210𝐶7𝑡
4 + 336𝐶8𝑡

5

+ 504𝐶9𝑡
6 + 720𝐶10𝑡

7 + 990𝐶11𝑡
8,

𝐼𝑉

𝜓 1(𝑡) = 24𝐶4 + 120𝐶5𝑡 + 360𝐶6𝑡
2 + 840𝐶7𝑡

3 + 1680𝐶8𝑡
4 + 3024𝐶9𝑡

5

+ 5040𝐶10𝑡
6 + 7920𝐶11𝑡

7,
𝑉

𝜓1(𝑡) = 120𝐶5 + 720𝐶6𝑡 + 2520𝐶7𝑡
2 + 6720𝐶8𝑡

3 + 15120𝐶9𝑡
4

+ 30240𝐶10𝑡
5 + 55440𝐶11𝑡

6;

(36)

¤𝑢1(𝑡) = 𝐷1 + 2𝐷2𝑡 + 3𝐷3𝑡
2 + 4𝐷4𝑡

3 + 5𝐷5𝑡
4 + 6𝐷6𝑡

5 + 7𝐷7𝑡
6,

¥𝑢1(𝑡) = 2𝐷2 + 6𝐷3𝑡 + 12𝐷4𝑡
2 + 20𝐷5𝑡

3 + 30𝐷6𝑡
4 + 42𝐷7𝑡

5,

𝑢1 = 6𝐷3 + 24𝐷4𝑡 + 60𝐷5𝑡
2 + 120𝐷6𝑡

3 + 210𝐷7𝑡
4,

(37)
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where 𝐶0, 𝐶1, . . . , 𝐶11, 𝐷0, 𝐷1, . . . , 𝐷7 are the constants determined from the
boundary conditions of the boom system movement (29).

After substituting the boundary conditions (29) with the coordinate 𝜓 and its
time derivatives into dependences (34) and (36), we obtain:

𝐶0 = 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 𝐶5 = 0. (38)

The constants 𝐶6, 𝐶7, . . . , 𝐶11 are determined from the system of linear
equations:

𝐶6 + 𝐶7𝑡1 + 𝐶8𝑡
2
1 + 𝐶9𝑡

3
1 + 𝐶10𝑡

4
1 + 𝐶11𝑡

5
1 =

𝜔

2𝑡51
,

6𝐶6 + 7𝐶7𝑡1 + 8𝐶8𝑡
2
1 + 9𝐶9𝑡

3
1 + 10𝐶10𝑡

4
1 + 11𝐶11𝑡

5
1 =

𝜔

𝑡51
,

30𝐶6 + 42𝐶7𝑡1 + 56𝐶8𝑡
2
1 + 72𝐶9𝑡

3
1 + 90𝐶10𝑡

4
1 + 110𝐶11𝑡

5
1 = 0,

120𝐶6 + 210𝐶7𝑡1 + 336𝐶8𝑡
2
1 + 504𝐶9𝑡

3
1 + 720𝐶10𝑡

4
1 + 990𝐶11𝑡

5
1 = 0,

360𝐶6 + 840𝐶7𝑡1 + 1680𝐶8𝑡
2
1 + 3024𝐶9𝑡

3
1 + 5040𝐶10𝑡

4
1 + 7920𝐶11𝑡

5
1 = 0,

720𝐶6+2520𝐶7𝑡1+6720𝐶8𝑡
2
1+15120𝐶9𝑡

3
1+30240𝐶10𝑡

4
1+55440𝐶11𝑡

5
1 = 0.

(39)

As a result of substituting the boundary conditions (29) with the coordinate 𝑢
and its time derivatives in dependences (35), (37), we have:

𝐷0 = 𝑢0 , 𝐷1 = 𝐷2 = 𝐷3 = 0. (40)

Other constants 𝐷4, 𝐷5, 𝐷6, 𝐷7 are determined from the following system of
linear algebraic equations:

𝐷4 + 𝐷5𝑡1 + 𝐷6𝑡
2
1 + 𝐷7𝑡

3
1 =

𝑣

2𝑡31
,

4𝐷4 + 5𝐷5𝑡1 + 6𝐷6𝑡
2
1 + 7𝐷7𝑡

3
1 =

𝑣

𝑡31
,

𝐷4 + 10𝐷5𝑡1 + 15𝐷6𝑡
2
1 + 21𝐷7𝑡

3
1 = 0,

4𝐷4 + 10𝐷5𝑡1 + 20𝐷6𝑡
2
1 + 35𝐷7𝑡

3
1 = 0.

(41)

After substituting the constants (38) and (40), as well as those found as a
result of solving the systems of linear algebraic equations (39) and (41) in the
dependencies (34), (36), and (35), (37), we find functional dependencies that satisfy
the boundary conditions (29) in the coordinates 𝜓 and 𝑢 and their time derivatives.
Polynomials 𝜓2(𝑡) and 𝑢2(𝑡) will be represented in such a way as to satisfy the
boundary conditions (32) and (33) and to equalize the free coefficients to the
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same order:

𝜓2(𝑡) =
(
𝑡

𝑡1

)6 (
𝑡1 − 𝑡
𝑡1

)6 𝑛∑︁
𝑘=0

𝐴𝑘

(
𝑡

𝑡1

) 𝑘
𝜔𝑡1
2
, 0 ⩽ 𝑡 ⩽ 𝑡1 , (42)

𝑢2(𝑡) =
(
𝑡

𝑡1

)4 (
𝑡1 − 𝑡
𝑡1

)4 𝑝∑︁
𝑖=0

𝐵𝑖

(
𝑡

𝑡1

) 𝑖
a𝑡1
2
, 0 ⩽ 𝑡 ⩽ 𝑡1 , (43)

where 𝐴0, 𝐴1, . . . , 𝐴𝑛, 𝐵0, 𝐵1, . . . , 𝐵𝑝 are free coefficients influencing the optimiza-

tion criterion (28). Here,
(
𝑡

𝑡1

)6 (
𝑡1 − 𝑡
𝑡1

)6
is a multiplier ensuring the satisfaction

of zero boundary conditions (32) at arbitrary values of the coefficients 𝐴0, 𝐴1, . . . ,

𝐴𝑛, for the coordinate 𝜓2;
(
𝑡

𝑡1

)4 (
𝑡1 − 𝑡
𝑡1

)4
is the factor that ensures the satisfaction

of zero boundary conditions (33) at arbitrary values of the coefficients 𝐵0, 𝐵1, . . . ,
𝐵𝑝 for the coordinate 𝑢2(𝑡). The coefficients 𝐴0, 𝐴1, . . . , 𝐴𝑛, 𝐵0, 𝐵1, . . . , 𝐵𝑝 are
free and ensure that the minimum value of the criterion (28) is found.

As a result of substituting expressions (34)÷(43), taking into account the
boundary conditions (29), in dependence (30) and (31), we obtain the expressions
of functions 𝜓(𝑡) and 𝑢(𝑡) which include unknown free coefficients 𝐴0, 𝐴1, . . . ,
𝐴𝑛, 𝐵0, 𝐵1, . . . , 𝐵𝑝.

Knowing the expressions of the functions 𝜓(𝑡) and 𝑢(𝑡) using dependencies
(14), (17), and (24), we find the expressions of the angular coordinates of rotation
of the drive mechanism 𝛼(𝑡), the column 𝜑(𝑡) and the drive drum of the hoisting
mechanism 𝛽(𝑡) which also depend on the free coefficients 𝐴0, 𝐴1, . . . , 𝐴𝑛, 𝐵0,
𝐵1, . . . , 𝐵𝑝. When integrated, criterion (28) also becomes a function of the free
coefficients 𝐴0, 𝐴1, . . . , 𝐴𝑛, 𝐵0, 𝐵1, . . . , 𝐵𝑝. Thus, the approximate solution
of the optimization problem (7)÷(10), taking into account the replacement of
boundary conditions (8) by conditions (29), is reduced to finding the minimum of
the optimization criterion as a function of many variable free coefficients 𝐴0, 𝐴1,
. . . , 𝐴𝑛, 𝐵0, 𝐵1, . . . , 𝐵𝑝.

To solve this optimization problem, we use the metaheuristic method VCT-
PSO [21]. This algorithm has been successfully applied to solve a similar prob-
lem [22] and that is why we exploited it in the current study. The search domain for
the coefficients is chosen from –200 to 200. In this case, the generalized optimiza-
tion criterion (28), taking into account expression (7), is represented by a function
that depends on 12 free coefficients:

𝐶𝑟 = (𝐴0, 𝐴1, . . . , 𝐴5, 𝐵0, 𝐵1, . . . , 𝐵3) . (44)

Calculations of optimal power modes of joint start-up of the boom crane’s
slewing and hoisting mechanisms according to the complex dimensionless criterion
of the RMS value of driving torques (7) and constraints on the driving torques of
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the drives of the mechanisms for slewing (9) and hoisting the load (10) while
ensuring the boundary conditions for the movement of the mechanisms (29) are
carried out at the following values of the parameters of the boom crane: 𝑚 =

2000 kg; 𝐼1 = 71626.115 kg·m2; 𝐼2 = 1249.93 kg·m2; 𝐼3 = 4920738.85 kg·m2;
𝑀0 = 39890 Nm; 𝐶1 = 6.63 · 106 Nm/rad; 𝐶2 = 150796 Nm/rad; 𝑎 = 30 m;
a = 0.5 m/s; 𝜔 = 0.075 rad/s; 𝑢0 = 10 m; 𝑡1 = 8.0 s; 𝑔 = 9.81 m/s2; 𝑀1𝐻 =

46625 Nm; 𝑀2𝐻 = 3754 Nm; 𝑀1 min = 0; 𝑀1 max = 260000 Nm; 𝑀2 min = 0;
𝑀2 max = 14000 Nm.

4. Research results

Upon solving the optimization problem, the following values of the free coef-
ficients were obtained (Table 1).

Table 1. Optimization problem solutions

Coefficients
The value of the weighting factor 𝛿
0.1 0.5 0.9

𝐴0 199.95 124.25 61.96
𝐴1 –167.88 -154.90 102.30
𝐴2 5.11 153.59 –200.00
𝐴3 179.18 –7.12 60.11
𝐴4 180.69 32.12 195.61
𝐴5 92.22 198.90 191.60
𝐵0 -35.17 -30.86 –27.56
𝐵1 42.65 46.66 82.07
𝐵2 34.42 –23.32 –121.46
𝐵3 –101.15 –29.47 52.83

To illustrate the minimization of criterion (44) for different variants of the
weighting factor, we present plots (Fig. 2) that demonstrate the effective operation
of the VCT-PSO algorithm [21]. Indeed, to overcome the penalty component (28)
of criterion (44) and to ensure conditions (9) and (10), no more than fifty-six
iterations are enough. Subsequently, the integral component of (7) is minimized.
We find such values of criterion (7) when a further increase in the number of
iterations (in our case, up to 200) does not lead to its change. These values of the
criterion (7) are shown at different values of the coefficient 𝛿 in Fig. 2 by horizontal
lines. Thus, we can conclude that the minimum values of criterion (7) have been
found. This indicates that the optimization problem is solved.

As a result of solving the optimization problem of the combined process of
starting the slewing and load hoisting mechanisms according to a complex dimen-
sionless integral criterion, we obtained graphical dependences of the kinematic
(Figs. 3–6), dynamic (Figs. 7, 8), and energy (Figs. 9, 10) characteristics of the
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Fig. 2. Plot of minimization of criterion (44) when applying the VCT-PSO method,
built in a logarithmic scale

tower crane boom system at three values of the weight coefficients and for basis
solution (when all the coefficients 𝐴0, . . . , 𝐴5, 𝐵0, . . . , 𝐵3 equal to zero; it satis-
fies boundary conditions (8) and to some extent approximate of the optimization
problem solution).

Fig. 3 shows that all dependencies of the slewing mechanism’s angular velocity
drive at three weight coefficient values change in the oscillatory mode. At the same
time, larger values of oscillation amplitudes are observed at the beginning and end
of the start-up process. The most significant oscillation amplitude of the angular
velocity of the slewing mechanism drive is achieved at the end of the starting
process at the weight coefficient 𝛿 = 0.1. The best performance at the beginning of
the start-up process is obtained by the mode at 𝛿 = 0.9 at the end of the start-up
mode – at 𝛿 = 0.5. The angular speed of the hoisting mechanism drive (Fig. 4)
changes smoothly in all four starting modes, but preference should be given to the
starting mode at 𝛿 = 0.9.

The phase trajectories of pendulum oscillations of a load on a flexible suspen-
sion (Fig. 5) show that during the start-up time, the load oscillations are eliminated
in the motion modes corresponding to all three weight coefficients. The slightest
deviation of the load rope from the vertical is achieved in the start-up mode when
𝛿 = 0.1, but this launch mode also has the highest maximum deflection rate of the
flexible suspension. In the other two optimal launch modes, the phase trajectories
of the load’s pendulum oscillations have almost the same change pattern. The worst
features in this regard are observed at the basis solution, i.e., without optimization.
The phase trajectories of elastic oscillations of the hoisting mechanism rope (Fig. 6)
show that in all three optimal modes of movement, the oscillations are eliminated
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Fig. 3. Plots of the angular speed of the mechanism drive

Fig. 4. Plots of the angular speed of the drive of the hoisting mechanism

during the start-up time. The phase trajectory has the smoothest change at the
weight coefficient 𝛿 = 0.9. The highest maximum rope deformation is obtained at
the basis solution.

All the solutions provide pendulum oscillations of the load and elastic os-
cillations of the rope and crane column. However, Fig. 5 and 6 clearly show the
superiority of optimization approach over unoptimized (basis) one.
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Fig. 5. Phase trajectories of pendulum oscillations of a load in a plane perpendicular
to the crane boom

Fig. 6. Phase trajectories of elastic oscillations of the hoisting mechanism’s rope

All four dependencies reach the same maximum value, corresponding to the
drive torque maximum value (Fig. 7). In the middle part of the start-up process, the
driving torque has a horizontal section, which is desirable for the driving torque.
There are fluctuations in the driving torque at the beginning and the end of the
start-up process for optimal controls. They allow us to minimize criterion (7) and
satisfy constraints (9) and (10).

Fig. 8 and 9 show the smooth change in the driving torques for both of the
mechanisms. For the case 𝛿 = 0.1, the oscillatory manner of torques changes is
observed. However, they do not lead to high-frequency oscillations in the elements
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Fig. 7. Plots of the driving torque of the crane slewing mechanism

of the corresponding mechanisms (Fig. 5 and 6) after controlled mode end. For the
hoisting mechanism, one may observe that the drive torque of the basis solution
violates the constrain (10).

Fig. 8. Plots of the driving torque of the hoisting mechanism

The power of the slewing mechanism (Fig. 9) in all starting modes, which
are determined by the weight coefficients, at the beginning and the end of the
movement changes in an oscillatory mode, and in the middle part of the start, the
power change is close to a linear law and practically does not depend on the value
of the weight coefficient. The most significant amplitude of oscillations is in the
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Fig. 9. Power plots of the crane slewing mechanism

starting mode at 𝛿 = 0.1, and at 𝛿 = 0.5, 𝛿 = 0.9, and at the basis solution, the
oscillation amplitudes are close to one another. The reason why at 𝛿 = 0.1 power
function such oscillates is connected with the oscillations of function ¤𝛼 (Fig. 3):
its changes are the most significant compared to the cases 𝛿 = 0.5 and 𝛿 = 0.9.

Since the functions ¤𝛽 (Fig. 4) and 𝑀2 (Fig. 8) for all the cases of 𝛿 value do
not differ significantly, the power functions (Fig. 10) are very close to each other.
These functions smoothly change; their maximums are almost the same.

Fig. 10. Power plots of the hoisting mechanism
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We also calculated numerical estimates of the obtained optimal movement
modes of mechanisms at different values of the weighting coefficients in the com-
plex dimensionless integral criterion (Table 2).

Table 2 shows the estimated indicators’ RMS and maximum values for the
three optimal starting modes corresponding to the weighting coefficients 𝛿 = 0.1,
𝛿 = 0.5, 𝛿 = 0.9, and for the basis solution.

Table 2. Numerical estimates of the obtained optimal movement modes of mechanisms

Indicators Unit of
measurement

The value of the weighting factor 𝛿 Basis
solution0.1 0.5 0.9

The extreme domain of indicators
Power of the crane slewing
mechanism kW 7,844 6,975 7,157 7,130

Power of the load hoisting
mechanism kW 20,563 19,896 18,826 19,487

The total power of both mech-
anisms kW 28,097 25,908 24,020 26,551

The driving torque of the crane
slewing mechanism kNm 144,980 144,885 144,774 145,820

The driving torque of the load-
hoisting mechanism kNm 2,963 2,910 2,991 3,578

Elastic deformation of the rope
of the hoisting mechanism m 0.0329 0.0329 0.0329 0.0331

Elastic deformation of a crane
column rad 0.0540 0.0590 0.0598 0.0219

Deviation from the vertical of
a flexible load suspension rad 0.0162 0.0187 0.0190 0.0228

RMS domain of indicators
Power of the crane slewing
mechanism kW 4,699 4,682 4,687 4,722

Power of the load hoisting
mechanism kW 11,621 11,663 11,773 12,157

The total power of both mech-
anisms kW 16,234 16,253 16,394 16,846

The driving torque of the crane
slewing mechanism kNm 113,066 113,413 113,526 114,961

The driving torque of the load-
hoisting mechanism kNm 2,510 2,513 2,530 2,612

Elastic deformation of the rope
of the hoisting mechanism m 0.0328 0.0328 0.0329 0.0331

Elastic deformation of a crane
column rad 0.0377 0.0387 0.0389 0.0172

Deviation from the vertical of
a flexible load suspension rad 0.0108 0.0113 0.0114 0.0124
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According to the RMS power indicator, the lowest value is achieved for the
slewing mechanism in the starting mode, which corresponds to 𝛿 = 0.5 and the
biggest one – at 𝛿 = 0.1. The deviation between these indicators is 12.3%. For the
hoisting mechanism, the lowest power is in the starting mode when 𝛿 = 0.9, and
the largest when 𝛿 = 0.1, in the case of deviations between these indicators 9.2%.
The total control of the two mechanisms has similar indicators: the lowest power
corresponds to 𝛿 = 0.9, and the highest one to 𝛿 = 0.1. The deviation equals 17%.

The RMS value of the driving torque of the slewing mechanism drive for all
four starting modes is almost the same. For the drive of the hoisting mechanism,
the RMS value of the driving torque is the smallest when 𝛿 = 0.5; the highest one
corresponds to the basis solution. Thus, the provided optimization allows one to
improve the dynamical features of the system in terms of decreasing of dynamical
loads in the system elements.

The RMS value of the elastic deformation of the hoisting mechanism’s rope
for all four modes is almost the same. The only significant superiority of the basis
solution is in the RMS of elastic deformation of a crane column. The worst load
deflection in the plane perpendicular to the crane boom is for the basis solution,
the best one – for the case 𝛿 = 0.1 (Fig. 5), which is connected with fast changes
of angular velocity (Fig. 3).

Let us evaluate the mechanisms’ different starting modes by the maximum
absolute value indicators. The smallest value of maximum power of the slewing
mechanism corresponds to 𝛿 = 0.5, and the highest one – to the basis solution. The
difference in power indicators is insignificant, so all four modes may be considered
equivalent in this regard. The same may be true for torque characteristics. Since
the elastic deformation of the hoisting mechanism’s rope is caused by the weight
of the load, the maximum values for the four modes are almost the same.

The smallest maximum value of the elastic deformation of the crane column is
at the basis control, and the highest one is at 𝛿 = 0.9. However, for the load pendulum
oscillations, the basis control is the worst one. The reason is the relatively slow
increase of the angular velocity ¤𝛽.

5. Conclusions

The study presents the results of optimizing the joint start-up of a tower crane’s
hoisting and slewing mechanisms with a hoisting boom. The joint operation of
the tower crane mechanisms is represented by a dynamic model that considers
the main movement of the drives of the hoisting and slewing mechanisms, elastic
oscillations of the crane structure elements, and oscillations of the load on a flexible
suspension. In total, the dynamic model is represented by a system with 5-DOF,
for which the differential equations of motion are obtained. The coordinates of the
links of the crane boom system are expressed through the linear coordinates of the
horizontal and angular movement of the load. To minimize the dynamic loads on the
structural elements of the crane boom system, an optimization problem was set in
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which it was necessary to find the laws of motion of the crane hoisting and slewing
mechanisms while minimizing the integral criterion and ensuring the required
boundary conditions for the movement of the boom system links and constraints
on the power characteristics of the drive mechanisms. Here, an integral functional
is proposed as an optimization criterion, which is a dimensionless RMS value of
the driving torques of the drives of the crane hoisting and slewing mechanisms,
taking into account the weighting coefficients of each component of the criterion.

Since the optimization problem is nonlinear, an approximate method is used
to solve it, which is represented by a generalized criterion taking into account the
imposed constraints. When solving the optimization problem, the desired functions
of the coordinates of the load horizontal movement and rotation are represented
as polynomials with two terms. The first terms satisfy the boundary conditions
for the joint mechanisms movement during the start-up process, and the second
terms include free coefficients that satisfy zero boundary conditions. A modified
metaheuristic PSO is applied to determine the free coefficients in the nonlinear
optimization problem.

Based on the optimization, we have obtained the starting modes of hoisting
and slewing mechanisms that minimize dynamic loads and eliminate oscillations
of links and load when reaching the steady-state mode of mechanisms movement.
From the above optimal starting modes at different values of the weighting coeffi-
cients in the complex integral criterion, it was found that the latter have different
effects on individual estimated indicators, which vary from 0 to 18.8%. The most
significant value of the deviation of the estimated indicator between the optimal
starting modes is achieved for the total power of the drive mechanisms. The values
of the weighting coefficients also significantly impact the smoothness of changes
in the kinematic, dynamic, and energy characteristics of the crane boom system.
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