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Abstract. Traffic accident prediction is a crucial component of the Intelligent Traffic System, which is important to maintain 
citizen safety and decrease economic losses. Current deep learning based methods for traffic accident prediction fail to consider 
the driving mechanism of traffic accidents, so a novel traffic accident prediction method based on multi-view spatial-temporal 
learning is proposed, which represents the driving mechanism of traffic accidents from multiple views. Firstly, for the urban 
regions divided by grids, a new augmentation has been designed to augment the spatial semantic information of regions through 
learnable semantic embedding, then Deformable Convolutional Networks with non-fixed convolution kernels are used to learn 
dynamic spatial dependencies between regions and Gated Recurrent Units are used to learn temporal dependencies, which can 
capture dynamic spatial-temporal evolution patterns of traffic accidents. Secondly, Long Short-Term Memory is employed to 
learn the traffic flow breakdown from the flow difference of adjacent time steps in each region to recognize the traffic accident 
precursor  in  the  risk  environment.  Thirdly, accident  patterns  in  different  regions  are learned  from  historical  traffic  flow  to 
determine whether the flow is the dominant factor and capture the spatial heterogeneity of traffic accidents. Finally, the above 
features are fused for accident prediction at the regional level. Experiments are conducted on 2 real datasets, and the experimental
results show that the proposed method outperforms 8 benchmark methods.
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1. INTRODUCTION 

Traffic safety is becoming increasingly serious due to the rapid 
development of motorized transportation, and traffic accidents 
are becoming an important factor in influencing the quality of 
life and safety level of people. Traffic accident prediction aims 
to predict future accidents by analysing prior accidents and 
considering relevant factors to reduce property damage and 
casualties. Meanwhile, other research fields in the traffic system 
[1-3] will also benefit from the development of traffic accident 
prediction, such as Intelligent mobility [4], autonomous driving 
[5], and trajectory planning [6]. 

Traffic accident prediction is a typical spatial-temporal 
problem. The most recent paradigm employs deep learning (DL) 
techniques to learn the spatial-temporal dependencies from 
spatial-temporal grids or spatial-temporal graphs constructed 
by traffic accidents, traffic flow, road network topology, etc. 
Generally, Convolutional Neural Networks (CNN) [7] and 
Graph Convolutional Networks (GCN) [8] are used to learn 
spatial dependencies from spatial-temporal grids and spatial-
temporal graphs respectively, and Recurrent Neural Networks 
(RNN) [9,10] are used to learn temporal dependencies. 

Due to the strong nonlinear learning capability, DL has 
demonstrated significant advancements in traffic accident 

prediction in recent years. However, traffic accidents result 
from multiple interacting factors, including individuals, 
vehicles, road conditions, environment, etc., and their spatial-
temporal dependencies are very complex. Current researches 
have insufficient consideration in multiple aspects, including: 

Spatial dependencies. On the one hand, the traffic 
conditions are constrained by the topology of the road network, 
so the interplay between adjacent regions is intricate. However, 
existing research often ignores the dynamic changes of mutual 
influence between adjacent regions after establishing the initial 
influence [11,12], such as vehicle diversion resulting from road 
works. On the other hand, although there is physical location 
information of the accidents in the traffic accident data, the 
corresponding spatial semantic information of the accidents is 
not provided explicitly, which affects the in-depth analysis of 
the spatial pattern of traffic accidents. For example, shopping 
malls and residential regions have different accident patterns. 
Although Wang et al. [13] explored the semantic information 
behind points of interest (POI) through the similarity between 
different regions, they ignored the dynamic changes of spatial 
dependence like other works. In contrast, Trilat et al. [14] 
considered dynamic views but failed to mine the semantic 
information behind specific regions. 

Accident precursor. The initial phase of a traffic accident 
typically exhibits gradual or sudden changes in traffic *e-mail: fengjian@xust.edu.cn 
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conditions, which are manifested in varied degrees through 
traffic flow parameters. Traditional traffic accident analysis is 
usually carried out from two scenarios: normal and risky traffic 
environment, because the mechanisms of the two situations that 
trigger the change of traffic operation state are different. 
Nevertheless, the existing research for traffic accident 
prediction using DL focuses on capturing the nonlinear 
correlation between traffic flow and traffic accidents [11-14], 
disregards the underlying accident-caused mechanisms, and so 
neglects the accident precursor thoroughly. 

Spatial heterogeneity. The primary factors for accidents in 
different regions are different, leading to distinct accident 
patterns. For example, in rural regions, the abominable weather 
often causes the emergence of accidents, but in urban regions, 
accidents are common during rush hours. Existing research 
tends to handle diverse regions homogeneously, learning 
different accident patterns in various regions inadequately. 
Although a few studies [11, 15] addressed heterogeneity by 
treating different regions differently, they failed to explore the 
underlying influencing factors while increasing costs. 

To this end, a traffic accident prediction method based on 
Multi-view Spatial-temporal Learning (MVSTL) is proposed 
based on analysing the potential mechanism of traffic accidents. 
MVSTL captures the complex spatial-temporal dependencies 
of traffic accidents by learning the influence from multiple 
perspectives among multi-source data such as traffic flow, POI, 
weather, date, and traffic accidents. The main contributions of 
the paper are as follows: 
 MVSTL is proposed to investigate the occurrence rules of 

traffic accidents from three perspectives, namely spatial-
temporal dependencies, accident precursor, and spatial 
heterogeneity. 

 When learning spatial-temporal dependencies, on the one 
hand, the semantics of POI and weather are augmented by 
learnable semantic matrixes to strengthen spatial 
dependencies. On the other hand, Deformable 
Convolutional Networks (DCN) [16] are introduced to 
learn dynamic dependencies between regions adaptively. 

 The accident precursor is learned from the flow difference 
of adjacent time steps. The accident pattern of different 
regions is expressed by the ratio of the current flow to the 
historical flow to learn the spatial heterogeneity. 

 Experimental results on real datasets demonstrate that 
MVSTL outperformed the benchmark methods.  

The rest of the research is organized as follows: In section 2, 
we review related work. The proposed method is detailed in 
section 3. In section 4, the effectiveness of the proposed method 
was demonstrated through experiments. Finally, section 5 
summarizes the research and directs future research. 

2. RELATED WORKS 

Research on traffic accident prediction can be roughly divided 
into two categories, statistical methods and machine learning 
(ML) based methods. 

2.1. Statistical methods.   

The statistical methods explore the relationship between 
variables based on statistical theory. Typical methods include 
the Vector Autoregressive model (VAR), Autoregressive 
Integrated Moving Average model (ARIMA), Seasonal 
Autoregressive Integrated Moving Average model (SARIMA), 
and Exponential Smoothing (ES). For example, Li et al. [17] 
analysed the different influences of traffic, weather, and 
socioeconomic characteristics on traffic collisions by VAR and 
Bayesian inference, and found that different types of collisions 
have different trends during the prediction period. Getahun [18] 
modeled the trend of traffic accidents by ARIMA and found 
that traffic accidents within a week have an uneven distribution. 
Rabbani et al. [19] predicted the number of accidents by 
SARIMA and ES and found traffic accidents have considerable 
seasonality and non-stationarity. These studies are suitable for 
analysing the influencing factors of accidents since they can 
reveal the characteristics of accidents, such as causality and 
randomness. However, while statistical methods are good at 
analysing low-dimensional data, they are challenging to handle 
high-dimensional traffic data. 

2.2. Machine learning based methods 

2.2.1.  Traditional machine learning based methods 

Combining domain expert experience, early research based on 
traditional ML based methods through learning the 
relationship between accident-related factors and accidents in 
high-dimensional data. Typical methods include Bayesian 
Networks (BN), Support Vector Machines (SVM), Artificial 
Neural Network (ANN), etc. For example, Castro and Kim 
[20] explored variables that affect the degree of accident risk 
by BN and found that lighting conditions and road types are 
the decisive factors of traffic accidents. Xiong et al. [21] 
studied the impact of precipitation and weather conditions on 
accidents based on SVM. Lee et al. [22] used ANN and k-
nearest neighbors to explore the factors that influence accident 
duration. Fallah Tafti and Roshani [23] identified the most 
effective factors influencing accidents that occurred on the 
final sections of main access roads to the cities through ANN. 
These works improve prediction accuracy compared to the 
statistical methods but rely on artificial feature extraction. 

2.2.2.  Deep learning based methods 

Both the statistical and traditional ML based methods only 
consider the temporal dependencies and ignore the spatial 
dependencies, so traffic accident prediction in these methods 
will be restricted by the road topology and fail. To learn the 
potential temporal and spatial characteristics of traffic 
accidents automatically and further improve the prediction 
accuracy, DL is applied to traffic accident prediction. 

The DL based method fuses heterogeneous data from 
multiple sources to realize grid division or graph construction 
and then extracts spatial-temporal dependencies using the 
powerful nonlinear learning capability of DL. The accident-
related multi-source heterogeneous data include road network 
structure, weather, traffic flow, and so on. Among them, the 
road network structure is often used to build topology, while 
other data are used as features of grids or nodes.  As an early 
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representative method, a stacked denoising autoencoder was 
used by Chen et al. [24] to learn the relationship between 
traffic accidents and human activities. On this basis, Chen et 
al. [25] added CNN to analyze the spatial dependence of 
adjacent regions. In contrast, Sameen and Pradhan [26] 
learned the temporal dependencies between accidents based 
on Long-Short Term Memory (LSTM) [10]. However, these 
studies only model single spatial or temporal dependencies. 

With the deepening of research, for spatial-temporal grid 
data, the current typical method is to learn spatial 
dependencies by CNN and learn temporal dependencies by 
RNN, and for spatial-temporal graph data, the spatial 
dependencies are learned by GCN to adapt its non-European 
structure, and the temporal dependencies are learned by RNN-
like methods, and then spatial-temporal dependencies are 
combined. For example, CNN and LSTM were combined to 
learn spatial-temporal dependencies from multi-source data 
by Yuan et al. [11]. Yu et al. [12] used roads as nodes to 
construct road network graphs, and then learned spatial-
temporal dependencies by combining GCN and temporal 
convolutions. Nevertheless, these methods learn spatial-
temporal dependencies from fixed structures. To overcome 
this obstacle, Wang et al. [13] combined CNN and Gated 
Recurrent Unit (GRU) [9] to learn spatial-temporal 
dependencies and additionally construct graphs by the 
similarity of accident risks, roads, and POI between grids to 
learn global semantic spatial dependencies through GCN.  
Trilat et al. [14] considered the time factor in calculating 
similarity and learned various dependency relationships 
between regions besides the traditional adjacency matrix 
through GCN after constructing the graph. Wang et al. [27] 
constructed a graph based on learned features, hoping to learn 
spatial-temporal dependencies adaptively. 

In general, early statistical methods are good at discovering 
the relationship between the influencing factors of traffic 
accidents, and can effectively reveal the mechanism of traffic 
accidents, but they ignore the spatial characteristics and have 
low accuracy. On the contrary, the DL based methods as 
current mainstream methods can improve prediction accuracy, 
because they can learn high-dimensional and complex 
characteristics from traffic data automatically. However, 
existing studies usually ignore the mechanism analysis of 
traffic accidents and cannot fully consider the characteristics 
of accidents. On instinct, if the mechanism of traffic accidents 
can be considered in DL methods, working together with their 
complex nonlinear learning ability, the corresponding DL 
methods could be proposed, and the accuracy of traffic 
accident prediction should be further improved. 

To this end, MVSTL combines DCN and GRU to learn the 
dynamic spatial-temporal dependencies of traffic accidents 
after using learnable embedding matrixes to augment 
semantics. And then, the accident precursor is learned by the 
flow difference of adjacent time steps by analysing the 
occurrence mechanism of traffic accidents. Finally, 
considering that accident patterns have spatial heterogeneity, 
accident patterns in different regions are learned from the ratio 
of current flows to historical flows. 

3. METHOD 

3.1. Problem Formulation 

The traffic data are first introduced and then the traffic accident 
prediction problem is formalized. 

3.1.1.  Multi-source traffic data 

Traffic data are divided into three categories: spatial data, 
temporal data, and spatial-temporal data. Among them, the 
spatial data is only related to the location, including the region 
and POI; the temporal data change over time, such as calendar 
information; the spatial-temporal data are affected by both 
location and time, including weather, traffic flow per unit time, 
accident risk level, and so on. Due to the inconsistent numerical 
range of these data, normalization is required. For enumerated 
data, such as weather and POI, one-hot encoding is used; for 
numerical data, normalized numerical encoding is used. The 
specific definition of multi-source data is explained below. 

Traffic grid. The city is divided into 𝐼 𝐽 grids according 
to latitude and longitude, each grid represents a region. 

Traffic accident. Firstly, the accidents are matched to 
different time steps of the traffic grids based on the location 
and time. Then the accidents are divided into three levels 
according to the number of casualties: mild, moderate and 
severe, and the corresponding accident levels are assigned as 
1, 2, and 3. Finally, the accident risk of each grid at each time 
step is calculated by the weighted sum based on weights 
assignment to different accident levels [28]. At time step 𝑡, the 
accident risk of region 𝑚 is 𝑌 , ∈ ℝ, and the accident risk 
distribution of all regions is 𝑌 ∈ ℝ . 

Traffic flow consists of the inflow and outflow of vehicles 
at each time step in each region. For example, the inflow and 
outflow of region 𝑚  at time step 𝑡  are respectively 𝑋 , ,

𝑋 , ∈ ℝ, and the traffic flow of all regions is 𝑋 ,𝑋 ∈
ℝ , where the feature dimension 𝑑 2. 

POI generally refers to all geographical objects that can be 
abstracted into points, especially some geographical entities 
that are closely related to people’s lives, such as shopping 
malls, hospitals, and so on. According to the relationship with 
traffic accidents, seven types of POI are used in this paper: 
residence, school, culture facility, recreation, social service, 
transportation, and commercial premises. Since the 
distribution of POIs does not change with time in the short 
term, the number of POIs in each traffic grid reflects the 
geographic characteristics of different regions. 𝑋 ∈ ℝ  is 
used to represent the distribution of POIs in region 𝑚, where 
𝑑 7. POI distribution is denoted as 𝑋 ∈ ℝ . 

Weather includes temperature and weather conditions, 
which are collected in the time interval of traffic data. While 
the temperature is represented by a normalized numerical 
value, the weather conditions are enumerated and represented 
by one-hot encoding, including five categories: sunny, rainy, 
snowy, cloudy, and foggy. Therefore, the weather of region 𝑚 
at time step 𝑡 is denoted as 𝑋 , ∈ ℝ , where 𝑑 6, and 
the weather of all regions is denoted as 𝑋 ∈ ℝ . 

Calendar is represented by one-hot encoding. A specific 
period of time in a day is represented by 24-bit one-hot 
encoding, a week is represented by 7-bit one-hot encoding, 
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and whether it is a holiday is represented by 1-bit one-hot 
encoding. The calendar information of region 𝑚 at time step 
𝑡 is 𝑋 , ∈ ℝ , where 𝑑 32. The calendar information of 
all regions is 𝑋 ∈ ℝ . 
3.1.2.  Traffic accident prediction 

Based on the above multi-source historical data, traffic 
accident prediction aims to find a function 𝑓 ∙  to predict 
the accident risk at the next time step. Let 𝑋
𝑌 ,𝑋 ,𝑋 ,𝑋 ,𝑋  be the multi-source data collected before 

time step 𝑇 1, then the prediction of the traffic accident risk 
at the target time 𝑇 is shown in Eq. (1): 

𝑌 𝑓 𝑋 , … ,𝑋 , … ,𝑋 1  

where 𝑛 , 𝑛  denotes the number of hours and weeks before 
the target time step, and 𝐼  is the number of time steps in one 
week, as shown in Fig. 1. Such inputs are designed to learn 
proximity and periodicity simultaneously. 

3.2. Architecture of MVSTL 

MVSTL consists of three modules, namely data preprocessing 
module, spatial-temporal feature learning module and 
prediction module, as shown in Fig. 2. The multi-source data is 
processed by data preprocessing module to usable input. The 
spatial-temporal feature learning module is divided into three 
submodules, including the spatial-temporal dependencies 
learning submodule, the accident precursor learning submodule 
and the spatial heterogeneity learning submodule, to learn the 
spatial-temporal dependencies, accident precursor and spatial 
heterogeneity of accidents from the perspective of accident 
driving mechanism respectively. The prediction module 
predicts the accident risk in the next time step through a Fully 
Connected (FC) layer. 

3.3. Spatial-temporal dependencies learning submodule 

The most crucial problem in traffic accident prediction is 
capturing complex spatial-temporal dependencies. When 
learning spatial dependencies, on the one hand, although 
existing research has constructed the road network structure and 
learned its spatial dependencies in different ways, they often 
ignore the semantic information in the structure. There are 
various POIs in cities, and the distribution of POIs determines 
whether the current region belongs to a commercial region, 
office region, or education region, which can help reveal the 
spatial semantic pattern of the accident and explore the 
occurrence rules of the accident. On the other hand, existing 
research often uses CNN to learn the spatial dependencies of 
traffic grids. However, CNN has a limited capacity to learn 
long-distance dependencies and also lacks the ability to learn 
the dynamic changes of spatial dependencies. 

To solve the above problems, the learning of spatial-
temporal dependencies is divided into three steps: 

(1) Semantic augmentation 
Firstly, the semantic information of each region is 

augmented by converting the original POI number into the 
semantic accumulation of different POI through the 
embedding matrix. Eq. (2) is the calculation process. 

𝐸 𝑋 𝑊 ∈ ℝ 2  

 

Fig.2. Architecture of MVSTL.

 

Fig.1. Time steps of historical data. 
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where 𝑊 ∈ 𝑅  is a trainable embedding matrix, 𝑑  is 
the dimension of the augmented POI, i.e. 𝐸 . 

Secondly, different weather conditions have varied impacts 
on traffic patterns. For example, bad weather can lead to 
adverse traffic conditions, such as traffic jams and mixed 
traffic of pedestrians and vehicles, which can easily cause 
accidents. Therefore, the weather information 𝑋  also needs 
to be augmented. By the augmented method same as POI, the 
augmentation result is 𝐸 ∈ ℝ , where 𝑑  is the 
embedding dimension of the enhanced weather information.  

(2) Spatial dependencies learning 
After augmenting POI and weather information, DCN is 

employed to learn dynamic spatial dependencies for multi-
source data. Unlike CNN, DCN can learn the relationship 
between grids adaptively by changing the shape mapping in 
the target receptive field of the convolution kernel through an 
offset adding, which can better capture the dynamic spatial 
dependencies between traffic grids. 

The augmented multi-source data is 𝑋 ,
… ,𝑋 , … ,𝑋 , where𝑋 𝑌 ,𝑋 ,𝐸 ,𝐸 ,𝑋 . For each 
time step, the specific convolution operation is: 

𝐻 𝜎 𝐻 ∗𝑊 𝑏 3  

where 𝐻 𝑋 , * indicates the convolution operation, 𝑊  
and 𝑏  respectively indicate the parameters of DCN in the 𝑙th 
layer, 𝜎  is the activation function Relu, and 𝐻  is the 
representation of the 𝑙th layer at the time step 𝑡 . Finally, the 
output of 𝐿 layer DCN is 𝐻 , … ,𝐻 , … ,𝐻 . 

(3) Temporal dependencies learning 
The temporal dependencies between different time steps 

are learned by GRU. Taking 𝐻  as an example, the calculation 
process of GRU is as follows: 

𝑟 𝜎 𝑊 𝐻 𝑈 ℎ 4  

𝑧 𝜎 𝑊𝐻 𝑈 ℎ 5  

ℎ 𝑡𝑎𝑛ℎ 𝑊 𝐻 𝑟 ⨀𝑈 ℎ 6  

ℎ 𝑧 ⨀ℎ 1 𝑧 ⨀ℎ 7  

where 𝑊  and 𝑈 , 𝑊  and 𝑈 , 𝑊  and 𝑈  are the weights of 
the reset gate, update gate and 𝑡𝑎𝑛ℎ  function respectively, 
ℎ  is the hidden state of the previous moment, and ⨀ is the 
Hadamard product. The output of the last time step is the 
output of this submodule. 

𝑌 ℎ 8  

3.4. Accident precursor learning submodule 

The occurrence of traffic accidents is accidental. However, 
existing research has proved that the occurrence of accidents 
is also inevitable in some cases from the perspective of traffic 
flow changes, since the traffic flow parameters will change in 
some pattern before and after the accident [29]. This change 
is called accident precursor. From the perspective of accident 

causes, accident precursor is mainly divided into two 
situations. One is a sudden change in traffic conditions, and 
the other is the cascading effect brought by an existing 
accident, namely a secondary accident. 

In the first case, traffic accidents are triggered by changes 
in traffic flow due to the increase in traffic demand. But in the 
second case, a sharp drop in traffic capacity caused by the 
occurrence of existing traffic accidents leads to traffic flow 
breakdown and is often accompanied by the risk of secondary 
accidents. So, the change in traffic flow can reflect the 
accident precursor to some extent. 

To learn the accident precursor, flow difference of adjacent 
time steps is calculated firstly, and then it is combined with 
the accident risk to form sequence data, recorded as 
𝑋 , … ,𝑋 , … ,𝑋 , where 𝑋 𝑌 ,𝑋 ,𝑋 , 𝑋  

and 𝑋  represent the difference between the inflow and 
outflow at time step 𝑡 and time step 𝑡-1 respectively, and the 
calculations are shown in Eq. (9) and Eq. (10). 

𝑋 𝑋 𝑋 9  

𝑋 𝑋 𝑋 10  

Then, LSTM is used to learn the accident precursor.  Take 
𝑋  as an example, the calculation is as follows: 

𝑓 𝜎 𝑊 ℎ ,𝑋 𝑏 11  

𝑖 𝜎 𝑊 ℎ ,𝑋 𝑏 12  

 �̃� 𝑡𝑎𝑛ℎ 𝑊 ℎ ,𝑋 𝑏 13  

𝑐 𝑓 ⨀𝑐 𝑖 ⨀�̃� 14  

𝑜 𝜎 𝑊 ℎ ,𝑋 𝑏 15  

ℎ 𝑜 ⨀ tanh 𝑐 16  

where ℎ  is the hidden state at time step 𝑡, 𝑐  denotes the 
state of the memory unit, 𝑊  and 𝑏 , 𝑊  and 𝑏 , 𝑊  and 𝑏 , 
𝑊  and 𝑏  denote the weight and bias of the forgetting gate, 
input gate, output gate and 𝑡𝑎𝑛ℎ function, respectively. The 
output of the last time step is the output of the submodule. 

𝑌 ℎ 17  

3.5. Spatial heterogeneity learning submodule 

There are different causes of accidents in different geographic 
regions. For example, some regions may be prone to traffic 
accidents due to road design defects, while others may be due 
to heavy traffic. Therefore, different regions may have 
different accident patterns, namely spatial heterogeneity. 
There are many factors that affect spatial heterogeneity, but 
some are not easy to learn, so we only learn spatial 
heterogeneity from the traffic flow. 

Firstly, the average value of historical traffic flow is 
calculated, and the ratio of the traffic flow at current moment 
to the historical average traffic flow is calculated to learn 
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accident patterns. Specifically, for the target time step 𝑇, the 
input is recorded as 𝑋 𝑋 ,𝑋 , where 𝑋 ,𝑋 ∈
ℝ  are the ratios of the current inflow and outflow to the 
average value of historical flow respectively: 

𝑋
1
𝑁

𝑋 18  

𝑋
1
𝑁

𝑋 19  

𝑋
𝑋

𝑋 1
20  

𝑋
𝑋

𝑋 1
21  

where 𝑋 and 𝑋  denote the average inflow and outflow 
of each region, and 𝑁  represents the number of historical 
weeks. In the Eq. (20) and Eq. (21), 𝑋 and 𝑋  are added 
1 to prevent calculation errors when the traffic is 0. 

Accident patterns 𝑌  is learned by FC for 𝑋 . 

𝑌 𝐹𝐶 𝑋 22  

3.6. Prediction module 

The prediction module fuses the outputs of the above three 
submodules for the final prediction. Considering the impact of 
the fusion method on the final prediction result, the 1*1 
convolution is used for vector reduction and redundant 
information elimination, and then the Hadamard product is 
used for fusion. The accident risk prediction is performed 
through FC after fusion. 

𝑌 𝐹𝐶 𝑊 ∗ 𝑌  ⨀ 𝑊 ∗ 𝑌  ⨀ 𝑊 ∗ 𝑌 23  

where * represents the convolution operation. 𝑊 , 𝑊  and 
𝑊  are parameters of convolution kernel, and 𝑌  is the 
accident risk of all regions at target time step. 

3.7. Model training 

Since traffic accidents are sparse compared to normal travel 
data, the model will be more inclined to predict non-accident 
for the target moment, which makes model training difficult. 

To address the sparsity of accidents, a joint loss function is 
used in training [30]. Among them, the Mean Square Error 
(MSE) focuses on reflecting the distribution of low-risk 
accidents, and the Mean Absolute Error (MAE) focuses on 
reflecting the distribution of high-risk accidents. The sparsity 
problem can be alleviated by combining these two loss 
functions. The calculation of MSE and MAE is as follows: 

ℒ
1
𝑁

𝜆 𝑌 𝑖 𝑌 𝑖 24  

ℒ
1
𝑁

𝜆 𝑌 𝑖 𝑌 𝑖 25  

where 𝑁  represents the number of samples, each sample is 
composed of accident risk values of all regions at a specific time. 
𝑌 𝑖  and 𝑌 𝑖  represent the true value and predicted value of 
the 𝑖-th sample respectively, and 𝜆  represents the weight of 
the 𝑖-th sample, and different weights are given according to 
the risk of the corresponding sample [13]. 

The final joint loss function is as follows: 

ℒ ℒ ℒ 26  

4. EXPERIMENTS AND ANALYSIS 

In this section, MVSTL is evaluated on two datasets, and the 
experiments are designed to answer the following questions. 
(1) Q1: Does MVSTL outperform competing baselines? 
(2) Q2: Are the key components of MVSTL helpful for 

prediction? 
(3) Q3: How does the fusion method affect the method’s 

performance? 
(4) Q4: How efficient is MVSTL? 

4.1. Experiment preparation 

4.1.1. Datasets 

The experimental data comes from the public data of the 
governments of New York (NYC) and Chicago (Chicago). It 
contains 5 types of data on the two cities, including traffic 
accidents, taxi orders, POI, weather and time data. The 
specific information is shown in Table 1. 

TABLE 1. Datasets. 

Dataset NYC Chicago 

Time range 01/01/2013-

31/12/2013 

01/02/2016-

30/09/2016 

Number of traffic accidents 147K 44K 

Number of taxi orders 173,179K 1,744K 

Number of POI 15,625 - 

Number of weather 8,760 5,823 

4.1.2. Baseline   

The baseline includes 2 classic ML based methods (XGBoost 
and MLP) and 6 latest DL based methods, in order: 
(1) XGBoost: The ensemble learning model uses a 

regression tree as the base learner. 
(2) MLP: Multilayer Perceptron. 
(3) GRU: Gated RNN approach, good at learning temporal 

dependencies in data. 
(4) SDCAE [25]: Introducing CNNs to learn spatial 

dependencies in stacked denoising autoencoders. 
(5) ConvLSTM [11]: Combining CNNs with LSTMs to 

learn spatial-temporal dependencies. 
(6) ST-RistNet [28]: Joint GCN and GRU to learn spatial-

temporal dependencies in traffic flow. 
(7) GSNet [13]: CNN and GRU are used to learn spatial-

temporal dependencies; the semantic spatial-temporal 
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dependencies are learned through GCN based on three 
semantic graphs constructed according to road features, 
POI, and risks. 

(8) MG-TAR [14]: GCN and temporal attention are used to 
learn various dependencies from graphs constructed 
from environmental data besides the traditional 
adjacency matrix. 

In DL methods, GRU and SDCAE only learn temporal or 
spatial dependencies respectively. The remaining methods are 
designed based on spatial-temporal dependencies. 

4.1.3. Experimental environment and settings  

The operating system environment is Ubuntu 18.04, and the 
development framework is Pytorch 1.8.1. The hardware 
equipment uses NVIDIA RTX3080Ti GPU for training, and 
its CPU is Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, 
and the memory is 32GB. The number of training batches is 
32 and the learning rate is 1e-6. The early stopping mechanism 
is enabled, and the patience is 5. 

4.1.4. Evaluating metrics 

Root Mean Square Error (RMSE) is used as an evaluation 
index. At the same time, considering that the prediction result 
is the accident risk distribution and contains multiple 
prediction regions, the recall rate and Mean Average Precision 
(MAP) are introduced to evaluate the hit rate of each time step 
for the risk regions. 

𝑅𝑀𝑆𝐸
1
𝑁

𝑌 𝑖 𝑌 𝑖 27  

𝑅𝑒𝑐𝑎𝑙𝑙
1
𝑁

𝑅 ∩ 𝑅
|𝑅 |

28  

𝑀𝐴𝑃
1
𝑁

∑ 𝑝 𝑗 𝑟 𝑗| |

|𝑅 |
29  

where 𝑅  and 𝑅  are the sets of actual and predicted top |𝑅 | 
highest risk regions for sample 𝑖, respectively. 𝑝 𝑗  represents 
the precision ranking list from 1 to j. 𝑟 𝑗 1 indicates that 
accidents have occurred in region j, otherwise 𝑟 𝑗 0. 

4.2. Experiment 1: Comparative experiment 

For Q1, Experiment 1 compared the performance of MVSTL 
with each baseline. Table 2 shows the results on the two data 
sets, where * represents the Chicago dataset. 

The bold ones in the table are the optimal results, and the 
underlined ones are the suboptimal results. It can be seen from 
Table 2 that MVSTL generally has lower RMSE and higher 
recall and MAP. Lower RMSE indicates that MVSTL is more 
accurate in predicting the risk of all regions. Higher recall and 
MAP indicate that MVSTL has a higher hit rate for the 
prediction of high-risk regions, and the prediction results are 
more correlated with the real risk distribution. Therefore, 
considering all metrics, MVSTL outperforms all baselines. 

TABLE 2. Performance comparison. 

Methods RMSE Recall MAP RMSE* Recall* MAP* 

XGBoost 10.513 21.56% 0.103 15.104 12.01% 0.048 

MLP 8.488 27.41% 0.119 11.948 16.71% 0.056 

GRU 7.852 30.43% 0.151 11.617 17.63% 0.069 

SDCAE 8.020 31.08% 0.152 11.613 17.59% 0.066 

ConvLSTM 7.674 31.27% 0.173 11.717 19.38% 0.079 

ST-RiskNet 7.660 32.46% 0.181 11.487 20.04% 0.083 

GSNet 7.671 33.42% 0.185 11.373 21.11% 0.090 

MG-TAR 7.810 30.19% 0.184 10.607 18.43% 0.091 

MVSTL 7.622 34.55% 0.195 11.868 21.98% 0.105 

Among baselines, XGBoost and MLP perform poorly 
because they process each piece of data individually and ignore 
the spatial dependencies between data. The performance of DL 
based methods has improved. For example, GRU performs 
better in modeling the time series of accident data because it can 
capture short-term proximity and long-term periodicity, further 
confirming the importance of modeling temporal dependencies 
in traffic accident prediction. SDCAE models the spatial 
dependencies of adjacent regions by stacking multi-layer 
convolutional neural networks but ignores the temporal 
dependencies and spatial dependencies of the global region. 
ConvLSTM can capture the temporal and spatial dependencies 
of traffic accidents simultaneously by combining convolutional 
neural networks and long short-term memory networks. ST-
RiskNet and GSNet achieve good results by modeling local 
spatial-temporal dependencies and global spatial-temporal 
similarities based on static convolution kernels and fixed graph 
structures. The above two methods can capture the global 
spatial dependencies to a certain extent by constructing the 
global similarity graph but cannot capture its dynamic changes. 
MG-TAR considers dynamic changes by taking into account 
time factors, but ignores accident precursor. In contrast, 
MVSTL takes into account the dynamic spatial-temporal 
dependencies between regions and deeply explores the problem 
of accident precursor and spatial heterogeneity. The hidden 
semantic information behind POI and weather is also extracted 
to learn the traffic accident mode better, so the best results are 
obtained. The experimental results illustrate that it is feasible 
and effective to capture multiple accident characteristics from 
the perspective of accident driving mechanisms. 

4.3. Experiment 2: Ablation experiment 

For Q2, Experiment 2 verified the impact of different 
submodules in MVSTL on the prediction results. To this end, 
three model variants, MVSTL-ST, MVSTL-AP, and 
MVSTL-SH, were designed, representing the removal of the 
spatial-temporal dependencies learning submodule, the 
accident precursor learning submodule, and the spatial 
heterogeneity learning submodule, respectively. Figure 3 
shows the results on the NYC dataset. The results obtained on 
the Chicago dataset are similar and will not be repeated here. 

It can be seen that MVSTL has the best overall 
performance because it considers the occurrence mode of 
accidents from multiple perspectives. Removing any one of 
the modules ignores a certain characteristic of the accident, 
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resulting in a decline in the effect.  This phenomenon reflects 
that each accident characteristic is helpful to the prediction, 
and the combination of different accident characteristics also 
has a positive impact. 

4.4. Experiment 3: Parameter experiment 

For Q3, experiment 3 discusses the impact of different fusion 
methods on performance. There are 6 common fusion 
methods, including Concatenate (C), LSTM (L), Point-wise 
Addition (P), CNN (N), Max-Pooling (M), and Hadamard 
Product (H). In order to find a suitable fusion method for the 
prediction module, six variants were designed, denoted by 
MVSTL-C, MVSTL-L, MVSTL-P, MVSTL-N, MVSTL-M, 
and MVSTL-H. The experimental results are shown in Fig. 4. 

In Fig. 4, the Hadamard product has the best effect when 
used to fuse the output results of the three sub-modules. This 
is because it can expand the importance of variables to a 
certain extent and increase attention to important information. 
LSTM may filter out some important information through the 
gating mechanism, so the result is lower than the Hadamard 
product fusion method. Concatenate and point-wise addition 
average the importance of information without considering 
the interaction between different space-time vectors, and 
certain semantic information will be lost. Max pooling will 
cause some hidden information to be lost. Therefore, 
Hadamard is used for the final feature fusion. 

4.5. Experiment 4: Efficiency experiment 

For Q4, Experiment 4 compared the model efficiency by 
recording the single-step prediction time of each model on the 
two data sets, and the results are shown in Fig. 5.  

As shown in Fig. 5, the prediction time of each model is 
within 0.5s. ML based methods have short prediction times, 
while DL based models have high time complexity, resulting 
in long prediction times.  Compared to the improvement in 
performance, the increased time cost of DL methods is 
acceptable, and the efficiency of MVSTL can support its 
practical application. 

Overall, the results of 4 experiments show that MVSTL can 
effectively predict traffic accidents. 

5. CONCLUSIONS 

This paper proposes a new DL method for traffic accident 
prediction. MVSTL is designed from the perspective of 
accident driving mechanism, which makes up for the 
shortcomings of existing research. The key design of MVSTL 
is to take different modules to extract relevant features by 
analyzing three accident characteristics, including dynamic 
spatial-temporal dependencies, accident precursor and spatial 
heterogeneity. After fusing the learned features, MVSTL is 
able to achieve regional level accident risk prediction. 

Three metrics are used to evaluate MVSTL and the 
experimental results show that it outperformed all baseline 
especially in terms of the accuracy of predictions for regions 
with high accident risk. This proves that introducing traffic 
accident driving mechanisms can improve the accuracy of 
prediction results, which can bring new thinking to related 
research and further introduce theoretical knowledge to guide 
model design. It is worth mentioning that MVSTL designed 
based on accident characteristics is more interpretable 
compared to other methods and may be helpful for some 
applicable occasions. Moreover, it is proved that MVSTL 
prediction speed is fast enough to meet the needs of the 
Intelligent Traffic System for real-time accident prediction. 

However, MVSTL has limitations. On the one hand, it is 
designed for grid data. We may hope to be able to predict the 
risk of accidents at the road level, which also places higher 
demands on the granularity of data. On the other hand, it fails 

 

Fig.5. Prediction time (s) on NYC and Chicago. 

 

Fig.3. Ablation experiments on NYC. 

 

Fig.4. Fusion methods on NYC. 
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to consider the cascading effect of traffic accidents in depth. 
The occurrence of an accident may lead to a series of chain 
reactions, resulting in the probability of subsequent accidents. 
Therefore, we will collect fine-grained data in the future to 
study road level accident prediction, and further study the 
cascading effects of traffic accidents through the theory of 
complex network dynamic evolution. 
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