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Abstract. The related works of the diamond burnishing processes focused on improvements in surface quality. The study aims 

to optimize burnishing factors, including the spraying distance of the nozzle (S), the inlet pressure of the cold air (I), and the 

quantity of the liquid CO2 (L) of the cool and cryogenic-assisted diamond burnishing operation for minimizing energy consumed 

(EC) and arithmetical mean surface height roughness (Sa). Burnishing responses are modeled based on the radial basis function 

network and full factorial data. The entropy method, improved grey wolf optimizer, non-dominated sorting genetic algorithm II, 

and technique for order of preference by similarity to ideal solution were implemented to calculate the weights, produce solutions, 

and select the best outcome. As a result, the optimal data of the S, I, and L were 15.0 mm, 3.0 bar, and 11.0 L/min, respectively. 

The Sa and EC were reduced by 20.4% and 3.8%, respectively, at the optimality. The optimized outcomes could be employed 

to improve energy efficiency and machining quality for the internal diamond burnishing process. The optimizing technique could 

be used to solve complicated issues for different burnishing operations. The cool and cryogenic-assisted diamond burnishing 

process could be utilized for machining different internal holes.  
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1. INTRODUCTION 

The diamond burnishing process is renowned for its ability to 

produce a glossy surface finish with minimized friction. It 

offers additional benefits, such as a hardened surface layer for 

enhanced wear resistance and a compact surface topology that 

provides improved chemical resistance. The diamond tip 

smooths and polishes the surface when pressure is applied, 

reducing the need for additional finishing operations such as 

honing and polishing. Consequently, diamond burnishing 

operations can be considered a cost-effective method for 

machining ferrous and nonferrous materials. 

Various burnishing processes have been considered and 

optimized to boost technical performances. A set of 

experiments of the burnished GCR15 steel was conducted to 

investigate the fatigue performance [1]. The authors indicated 

that the fatigue strength was increased by 36%, as compared 

to the non-burnished case. The surface properties of the 

burnished butt joints of the 2024 aluminum alloy were 
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investigated by Kluz et al. The results revealed that the surface 

roughness and Vickers hardness were enhanced by 73.8% and 

84.2%, respectively, with the aid of the diamond burnishing 

operation [2]. The MQL-assisted burnishing operation was 

developed to facilitate the external surface [3]. The authors 

stated that the total carbon emission and the roughness of the 

external diamond burnishing operation were reduced by 3.8% 

and 11.6% with the aid of the Taguchi method. Sachin et al. 

demonstrated that the ideal spindle speed, feed rate, and 

burnishing force could be used to achieve the surface 

roughness of 0.2 µm and Vickers hardness of 397.5 HV for 

the cryogenic burnished 17-4 steel [4]. The impacts of the 

burnishing speed, feed, and force on the surface properties of 

42CrMo4 hard-turned steel were explored [5]. The authors 

presented that the force was the most dominant factor and the 

Vickers hardness was enhanced by 51.0%. A FEM model was 

developed to predict the roughness of the burnished surface 

[6]. The small errors between the simulated and actual data 
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indicated the effectiveness of the proposed model. The 

Kriging models of the coefficient of friction, energy 

efficiency, and specific wear rate were developed in terms of 

the burnishing factors [7]. The authors stated that the 

responses were primarily affected by the burnishing speed and 

depth. Maximov et al. presented that the fatigue limit of the 

burnished 304 steel could be improved by 36.4%, as compared 

to untreated specimens [8]. A new burnishing tool was 

developed to enhance the wear corrosion of the burnished 

cylinder [9]. The authors presented that the wear rate of the 

specimen was reduced by 68.2%, as compared to un-

burnished case. A multi-objective optimization was carried 

out using the desirability function for the sliding burnishing 

AISI 52100 steel [10]. The results revealed that the surface 

roughness and Vickers hardness were improved by 92% and 

117%, respectively, while the fatigue life was increased up to 

120%. A simulation model using the Cowper–Symonds 

coefficients was proposed to effectively predict the stress and 

deformation of the burnished 41Cr4 steel [11]. 

As a result, various diamond burnishing operations with MQL 

and cryogenic conditions have been developed. However, a 

novel diamond burnishing process comprising the cryogenic 

CO2 and Vortex tube has not been developed. The proposed 

operation can be considered as a sustainable burnishing 

process due to the elimination of any lubricants. The EC and 

Sa models regarding cooling parameters have not been 

proposed for the internal diamond burnishing process. The 

optimal cooling parameters have not been selected to reduce 

the EC and Sa. Moreover, the cool and cryogenic-assisted 

burnishing process of the chromium-molybdenum 

steel (SCM440) has not been proposed [12].  

  

Fig. 1. Optimization approach 

2. OPTIMIZATION APPROACH 

In this work, the EC and Sa of the cool and cryogenic-assisted 

diamond burnishing operation are minimized by selecting 

optimal spraying distance, inlet pressure, and CO2 quantity. 

The radial basis function network (RBFN) is used to develop 

the response models. The entropy method, improved grey 

wolf optimizer (IGWO), non-dominated sorting genetic 

algorithm II (NSGA II), and technique for order of preference 

by similarity to ideal solution (TOPSIS) are employed to 

calculate the weights, produce solutions, and select the best 

outcome. 

The Sa is computed as: 
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where Sai is arithmetical mean surface height roughness at the 

measured location, respectively. 

The EC is computed as: 
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where Pmi and tm are the power consumed at the ith time and 

machining time, respectively. 

The cooling parameters, including the S, I, and L are presented 

in Table 1. The ranges of each factor are determined based on 

the characteristics of the Vortex tube and CO2 storage tank. 

These values are confirmed by related works and burnishing 

experts. The experimental values of the spindle speed, feed 

rate, and depth of penetration are 630 rpm, 0.05 mm/rev, and 

0.06 mm, respectively. 

The optimizing approach is presented in Fig. 1: 

Step 1: Performing burnishing experiments [13].  

Step 2: Developing RBFN models for responses [14]. 

TABLE 1. Diamond burnishing factors 

Symbol Cooling factors Values  

S Spraying distance of the nozzle (mm) 15.0-25.0-35.0 

I Inlet pressure of the cold air (bar) 2.0-4.0-6.0 

L Quantity of the liquid CO2 (L/min) 4.0-8.0-12.0 

 

 

Fig. 2. The operating steps of the IGWO 
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Fig. 3. Experiments of the diamond burnishing operation 

The RBFN is utilized to present experimental data with the aid 

of the gaussian function. RBFN is a special type of the feed-

forward neural network with three layers, including the input, 

hidden layer, and output. The network receives an n-

dimensional input vector, while the Euclidean distance 

between the input vector and each neuron’s center is 

computed at the hidden layer. The output node is used to 

calculate a score based on a weighted sum of the activation 

values from the hidden layer and expressed as: 

2
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The gaussian function is expressed as:  

2( ) exp( )r r = −  
(4) 

where γ is a parameter, which is computed at the cross-

validation stage. 

The RBFN model for a given input is expressed as: 
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where w0 and wm are the bias and weight, respectively.  

Step 3: Computing the weight of each response.  

The normalized response (nij) is computed as: 
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The entropy value (ej) of each response is computed as: 
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The weight (ωi) is computed as: 
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Step 4: Selecting the bets optimal solution using the IGWO 

and TOPSIS. 

In this work, the IGWO is proposed with the setting, 

evolution, and generation stages (Fig. 2).  

In the setting stage, the wolves are distributed in the search 

space and expressed as: 

( )ij j j j jX l rand u l= +  −  (9) 

where Xi(t) is the position of the ith wolf. lj and uj are the given ranges.    

In the evolution stage, an individual is learned by its different 

neighbors. A radius Di(t) is calculated using Euclidean 

distance between the current position of Xi(t) and the 

candidate position Xi(t+1) and expressed as: 

( ) ( ) ( 1)i i iD t X t X t= − +  (10) 

The neighbor (Ni(t)) is expressed as:  

 ( ) ( ) ( ( ), ( )) ( )i j i i j iN t X t D X t X t R t=   (11) 

A prominent candidate Xm(t+1) is expressed as: 

,( 1) ( , ( ) ( ))m n r dX t rand X d t X t+ =  −  (12) 

where Xr,d(t) is a random wolf from the whole population. 

The normalized solution (pij) is computed as [15]: 
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A set of positive solution (S+) is expressed as:  
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A set of positive solution (S-) is expressed as:  
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The evaluation indicator (EI) is expressed as:  

i
I

i i

S
E

S S

−

+ −
=

+
 (16) 

3. EXPERIMENTAL FACILITIES 

The burnishing trails are executed using a conventional lathe 

(Fig. 3). The 42CrMo4 steel is used to produce specimens due 

to its extensive usage in gears, engine shafts, and mold bushes. 

The length, internal diameter, and outer diameter of each 

specimen are 62 mm, 46 mm, and 56 mm, respectively. The 

drilling and internal turning operations are used to generate 

the hole. The cold air and cryogenic lubricant are produced 

from a Vortex tube and CO2 tank, respectively. The 

burnishing device is clamped on the tool post. The burnishing 

length of 30 mm is conducted for all tests. The Sa of the initial 

surfaces is 4.632 µm. A new diamond tip is utilized after each 

burnishing trial.  

The Sa values and power consumed are captured using the 

ZeGage Pro 3D optical profiler and Kyoritsu 6315 meter, 

respectively. The  experimental results of No. 8 and 9 are 

depicted in Fig. 4. 
4. RESULTS AND DISCUSSIONS 

The experimental results of the burnishing trials are exhibited 

in Table 2. 
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4.1. ANOVA analysis 

The ANOVA results for the Sa model are shown in Table 3 

[16, 17, 18]. The R2 value of 0.9834 indicates that the 

developed model is significant. As a result, the contributions 

of the S, I, and L are 17.52%, 21.78%, and 25.51%, 

respectively (Fig. 5a). The contributions of the SI, SL, and IL 

are 5.55%, 8.33%, and 3.89%, respectively. The contributions 

of the S2, I2, and L2 are 8.88%, 3.33%, and 5.21%, 

respectively. 

The ANOVA results for the EC model are shown in Table 4. 

The R2 value of 0.9846 indicates that the developed model is 

significant. As a result, the contributions of the S, I, and L are 

23.19%, 30.63%, and 33.81%, respectively Fig. 5b). The 

contributions of the SI, SL, and IL are 2.71%, 2.27%, and 

1.77%, respectively. The contributions of the S2 and L2 are 

2.83% and 2.05%, respectively. 

As shown in Figs. 6 a and b, the data are distributed on straight 

lines; hence, the developed RBFN models are adequate.  

Table 5 presents the comparisons between the actual and 

RBFN-predicted outcomes. The slight variations (less than 

5%) demonstrated that the RBFN models could be used to 

accurately predict burnishing responses. 

TABLE 2. Experimental outcomes for the diamond burnishing operation 

No. S (mm) I (bar) L (L/min) Sa (μm) EC (kJ) 

Data for developing RBFN models 

1 15.0 2.0 4.0 0.647 60.42 

2 15.0 2.0 8.0 0.492 65.83 

3 15.0 2.0 12.0 0.377 70.72 

4 15.0 4.0 4.0 0.576 65.28 

5 15.0 4.0 8.0 0.401 70.47 

6 15.0 4.0 12.0 0.271 75.11 

7 15.0 6.0 4.0 0.535 69.95 

8 15.0 6.0 8.0 0.342 74.91 

9 15.0 6.0 12.0 0.195 79.31 

10 25.0 2.0 4.0 0.674 64.62 

11 25.0 2.0 8.0 0.554 69.75 

12 25.0 2.0 12.0 0.479 74.31 

13 25.0 4.0 4.0 0.577 69.13 

14 25.0 4.0 8.0 0.441 74.02 

15 25.0 4.0 12.0 0.347 78.34 

16 25.0 6.0 4.0 0.511 73.44 

17 25.0 6.0 8.0 0.356 78.09 

18 25.0 6.0 12.0 0.246 82.18 

19 35.0 2.0 4.0 0.783 68.07 

20 35.0 2.0 8.0 0.697 72.89 

21 35.0 2.0 12.0 0.662 77.14 

22 35.0 4.0 4.0 0.659 72.22 

23 35.0 4.0 8.0 0.559 76.79 

24 35.0 4.0 12.0 0.504 80.81 

25 35.0 6.0 4.0 0.567 76.15 

26 35.0 6.0 8.0 0.454 80.49 

27 35.0 6.0 12.0 0.377 84.27 

Data for testing accuracy of RBFN models 

28 18.0 5.0 6.0 0.448 71.38 

29 27.0 3.0 5.0 0.603 68.91 

30 20.0 5.0 7.0 0.408 73.32 

31 26.0 3.0 9.0 0.478 73.39 

32 31.0 4.0 10.0 0.461 77.91 

33 23.0 3.0 11.0 0.404 74.66 

34 27.0 6.0 5.0 0.475 75.24 

35 33.0 4.0 7.0 0.551 75.19 

36 24.0 3.0 5.0 0.582 67.85 

37 28.0 4.0 11.0 0.402 78.16 

38 29.0 5.0 9.0 0.401 78.28 

39 32.0 6.0 10.0 0.366 81.86 

40 24.0 4.0 7.0 0.464 72.52 

  
(a) Sa values at the experimental No. 8 (b) Sa values at the experimental No. 9 

 
(c) The power consumed at the experimental No. 8 

 
(d) The power consumed at the experimental No. 9 
Fig. 4. Example results of the burnishing process 
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TABLE 3. ANOVA results for the Sa model 

So. SS MS F-Value p-value Cont. (%) 

Model 0.2459 0.0273 46.08 < 0.0001  

S 0.0500 0.1513 252.17 < 0.0001 17.52 

I 0.0780 0.1881 313.49 < 0.0001 21.78 

L 0.1100 0.2203 367.18 < 0.0001 25.51 

SI 0.0025 0.0479 79.88 0.0007 5.55 

SL 0.0056 0.0719 119.90 0.0005 8.33 

IL 0.0012 0.0336 55.99 0.0009 3.89 

S2 0.0067 0.0767 127.81 0.0006 8.88 

I2 0.0009 0.0288 47.93 0.0009 3.33 

L2 0.0021 0.0450 74.99 0.0007 5.21 

Residual 0.0041 0.0006    

Cor Total 0.25     

R2 = 0.9834; Adjusted R2 = 0.9753; Predicted R2 = 0.9678 

TABLE 4. ANOVA results for the EC model 

So. SS MS F-Value p-value Cont. (%) 

Model 385.29 42.81 36.82 < 0.0001  

S 79.86 1230.16 1430.42 < 0.0001 23.19 

I 139.17 1624.83 1889.33 < 0.0001 30.63 

L 169.67 1793.52 2085.49 < 0.0001 33.81 

SI 0.54 143.76 167.16 0.0004 2.71 

SL 0.38 120.42 140.02 0.0005 2.27 

IL 0.23 93.89 109.18 0.0008 1.77 

S2 0.63 150.12 174.56 0.0003 2.83 

I2 0.04 39.25 45.65 0.8427 0.74 

L2 0.33 108.75 126.45 0.0006 2.05 

Residual 6.03 0.86    

Cor Total 391.32     

R2 = 0.9846; Adjusted R2 = 0.9764; Predicted R2 = 0.9668 

 

     
(a) For the Sa model 

 
(b) For the EC model 

Fig. 5. Comparisons between the predictive and actual values  

 

 

 

(a) Parametric contributions for the Sa model 

 

(b) Parametric contributions for the EC model 

Fig. 6. Parametric contributions for burnishing responses 

TABLE 5. Testing results for developed RBFN models 

No. 
Sa (µm) EC (KJ) 

Exp. RBFN Er. (%) Exp. RBFN Er. (%) 

28 0.448 0.452 -0.89 71.38 70.92 0.64 

29 0.603 0.598 0.83 68.91 69.34 -0.62 

30 0.408 0.411 -0.74 73.32 73.86 -0.74 

31 0.478 0.473 1.05 73.39 72.98 0.56 

32 0.461 0.465 -0.87 77.91 78.24 -0.42 

33 0.404 0.408 -0.99 74.66 74.28 0.51 

34 0.475 0.471 0.84 75.24 75.48 -0.32 

35 0.551 0.554 -0.54 75.19 74.98 0.28 

36 0.582 0.586 -0.69 67.85 67.24 0.90 

37 0.402 0.405 -0.75 78.16 78.35 -0.24 

38 0.401 0.397 1.00 78.28 78.64 -0.46 

39 0.366 0.363 0.82 81.86 81.36 0.61 

40 0.464 0.468 -0.86 72.52 72.24 0.39 

4.2. Parametric impacts 

As a result, a higher inlet pressure causes a reduction in the 

roughness (Fig. 7a). At a low inlet pressure, the temperature 

of the cold air slightly reduces, resulting in a reduction in the 

cooling impact. This leads to a higher friction in the 

burnishing region; hence, the roughness increases. At a high 

inlet pressure, the temperature of the cold air significantly 

reduces, leading to lower friction in the burnishing region; 

hence, a lower roughness is obtained [26].  

As a result, a higher CO2 quantity causes a reduction in the 

roughness (Fig. 7b). At a high CO2 quantity, an increased 

amount of liquid CO2 is transferred into the interfaces, leading 
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to low friction [19]. The material compression is easily 

performed; hence, the roughness reduces. 

As a result, more energy is consumed with a higher spraying 

distance (Fig. 8a). At a higher distance between the nozzle and 

specimen, increased friction is produced due to the low 

cooling impact [19]. An increase in energy is required to 

overcome a higher resistance. More energy is consumed with 

a higher inlet pressure (Fig. 8a). At a higher inlet pressure, 

cooler air is transferred into the interfaces, leading to higher 

specimen hardness [20].  An increase in energy is required to 

process the material.     

 As a result, more energy is consumed with a higher CO2 

quantity (Fig. 8b). A higher quantity of the liquid CO2 

increases the workpiece’s hardness due to an efficient cooling 

impact [21]. A higher amount of energy is consumed to 

compress the specimen. 

 

 

(a) Sa versus S and I 

 

(b) Sa versus S and L 

Fig. 7. The main impacts of process parameters on the Sa 

4.3. The optimal results 

The computed weights of the Sa and EC are 0.63, and 0.37, 

respectively. Fig. 9 shows the Pareto graphs produced by IGWO. 

As a result, a low energy has corresponded with a higher 

roughness. The best solution is selected using the TOPSIS. As a 

result, the optimal S, I, and L are 15.0 mm, 3.0 bar, and 11.0 

L/min, respectively. At the selected solution, the Sa and EC are 

reduced by 20.4% and 3.8%, respectively (Table 6).  

The NSGA-II and TOPSIS are utilized to find optimal factors. 

As a result, the optimal S, I, and L are 15.0 mm, 2.0 bar, and 

12.0 L/min, respectively (Table 6). The Sa and EC are reduced 

by 13.3% and 2.9%, respectively. It was pointed out that the 

IQWO provided better optimal results, as compared to the 

NSGA-II. 

 

 

(a) EC versus S and I 

 

(b) EC versus S and L 

Fig. 8. The main impacts of process parameters on the EC 

 

 

Fig. 9. Pareto fronts produced by the IGWO 

 

 

 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



7 

TABLE 6. Optimization results produced by the IGWO and NSGA-II 

Method 
S  

(mm) 

I 

 (bar) 

L  

(L/min) 

Sa 

(μm) 

EC  

(kJ) 
EI 

Initial 
results 

25.0 4.0 8.0 0.441 74.02  

IQWO 15.0 3.0 11.0 0.351 71.22 0.884 

Reductions 

by the 
IQWO (%) 

 -20.4 -3.8  

NSGA-II 15.0 2.0 12.0 0.382 71.86 0.832 

Reductions 

by the 
NSGA-II 

(%) 

 -13.3 -2.9  

 

5. CONCLUSIONS 

In this investigation, a cool and cryogenic-assisted diamond 

burnishing operation was developed and optimized. The 

reductions in the roughness and energy consumed were obtained 

using optimal S, I, and L. The RBFN, IGWO, NSGA-II, and 

TOPSIS were utilized to propose burnishing responses and select 

the optimality. The conclusions can be expressed as:   

1. A lower spraying distance could be used to minimize the Sa 

and EC. Higher inlet pressure and CO2 quantity could be 

applied to reduce the Sa. The lower inlet pressure and CO2 

quantity could be applied to save EC.  

2. In terms of the Sa and EC models, the CO2 quantity had the 

highest contribution, followed by the inlet pressure and 

spraying distance, respectively.  

3. The optimal S, I, and L generated by the IGWO were 15.0 mm, 

3.0 bar, and 11.0 L/min, respectively. The reductions in the Sa 

and EC were 20.4% and 3.8%, respectively.   

4. The optimization approach can be effectively used to solve 

optimizing issues for different burnishing processes. 

5. The BRFN approach can be employed to present non-linear 

relations of experimental data. 

6. The developed cooling system can be effectively employed to 

facilitate other burnishing operations without any lubricants. 

7. The developed burnishing operation can be utilized to 

produce surface finishing for interior holes. 

8. The designed and fabricated tool can be utilized in other 

internal diamond burnishing operations. 

9. To improve the roughness and energy efficiency of the 

practical diamond burnishing operation, optimal parameters 

and responses can be utilized. 

10. The investigation's results can be used to create an 

intelligent system that will enable the internal diamond 

burnishing operation across a range of industries. 

11. The impacts of the process parameters on the hardness and 

the depth of the affected layer will be explored in future 

works. 
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