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Abstract. Gas turbines are widely used for power generation globally, and their greenhouse gas emissions have increasingly 

drawn public attention. Compliance with environmental regulations necessitates sophisticated emission measurement 

techniques and tools. Traditional sensors used for monitoring emission gases can provide inaccurate data due to malfunction 

or miscalibration. Accurate estimation of gas turbine emissions, such as particulate matter, carbon monoxide, and nitrogen 

oxides, is crucial for assessing the environmental impact of industrial activities and power generation. This study used 5 

different machine learning models to predict emissions from gas turbines, including adaboost, xgboost, k-nearest neighbor, 

linear and random forest models. Random search optimization was used to set the regression parameters. The findings 

indicate that the adaboost regressor model provides superior prediction accuracy for emissions compared to other models, 

with an accuracy of 99.97% and a mean squared error of 2.17 on training data. This research offers a practical modeling 

approach for forecasting gas turbine emissions, contributing to the reduction of air pollution in industrial applications. 
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1. INTRODUCTION 

Gas turbines play an important role in various industries, 

providing a reliable power source for electricity generation 

and industrial processes. However, the environmental 

impacts of gas turbine operations, especially in terms of 

emissions, are receiving increasing attention [1]. Gas 

turbines are widely used for power generation and industrial 

processes and emit pollutants such as carbon monoxide 

(CO), nitrogen oxides (NOx) and particulate matter during 

combustion. Accurate estimation of these emissions is 

essential for assessing environmental impacts on air quality, 

ecosystems and human health. It provides valuable 

information on the contribution of gas turbine operations to 

overall air pollution [2]. Governments and environmental 

organizations worldwide have established strict regulations 

to control and limit air pollutants emitted from industrial 

facilities, including gas turbines. Emission estimation serves 

as a critical tool to ensure that industries comply with these 

regulations. Accurate forecasts enable organizations to 

proactively take measures to meet or exceed emission 

standards, avoid legal repercussions and contribute to a 

cleaner environment [3]. 

By understanding the factors that influence emissions, 

engineers and environmentalists can develop targeted 

approaches to reduce pollutant levels. This may involve 

optimizing combustion processes, adjusting operating 

conditions or adopting advanced technologies for emission 

reduction. Accurate emission estimation helps policy makers 

and health authorities assess potential health risks, enabling 

them to take preventive measures and reduce the impact on 

communities living near industrial facilities [4]. 

Traditionally, gas turbine emission estimation has been 

based on empirical models and simplified assumptions. 

While these simplified approaches provide a basic 

understanding of emissions, they are limited in their ability 

to capture the complex relationships between the various 

factors affecting gas turbine operations and pollutant release 

[5]. While these methods serve as initial benchmarks for 

regulatory compliance, they lack the precision and 

adaptability required for the dynamic and complex nature of 

modern industrial processes [6]. 

Despite the increasing need for sustainable energy sources, 

precise emissions forecasting from gas turbines is still a vital 

field of study and development. The integration of advanced 

modeling techniques, such as machine learning, offers 

promising opportunities to further improve the precision of 

emission estimation. Machine learning algorithms are 

characterized by their ability to process large and diverse 

datasets [7]. These algorithms can identify patterns and 

trends in data, leading to more accurate predictions. 

Regression models are among the machine learning 

algorithms that have shown to be effective for predicting gas 

turbine emissions. These models utilize historical emission 

data and a broader set of input parameters such as turbine 

operating conditions, fuel composition and environmental 

factors. Regression models can capture complex 

relationships using statistical techniques, enabling more 

nuanced and accurate prediction of emissions [8]. 

Gas turbine emission estimation faces several challenges that 
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affect the accuracy and reliability of estimates. One key 

challenge is the availability and quality of data. Missing or 

inaccurate data can lead to biases in regression models and 

hinder their effectiveness. Furthermore, because gas turbine 

operations can vary based on parameters like load demand, 

fuel type, and ambient conditions, the dynamic nature of 

industrial processes creates additional complications. This 

variability poses a challenge in developing models that can 

robustly address diverse and changing operational scenarios. 

Another critical challenge is the interpretability of the 

models. Understanding how different input parameters 

contribute to emissions is essential for informed decision 

making and targeted emission reduction strategies [9]. 

Future directions in gas turbine emission estimation include 

addressing current challenges and advancing the field 

through innovative approaches. One potential direction is the 

integration of advanced sensing technologies and real-time 

data streams. Another avenue for improvement is the 

exploration of hybrid models that combine regression 

techniques with artificial intelligence such as machine 

learning and deep learning. These hybrid models can utilize 

the strengths of both approaches, leveraging the 

interpretability of regression models and the complex pattern 

recognition capabilities of AI techniques. Going forward, 

ongoing research and collaboration between industry 

stakeholders, researchers and regulatory authorities will be 

crucial in improving and applying regression models for gas 

turbine emission prediction [10,11]. 

In this study, regression algorithms are used to evaluate their 

performance in gas turbine emission prediction. Linear, k-

nearest neighbors, xgboost, random forest and adaboost 

regressor algorithms were used for learning. To 

comprehensively explore the potential of the model, an 

extensive hyperparameter search was carried out that affects 

the variables that define the regression algorithms and the 

optimization. Random search optimization was used for 

optimization. The aim is to make better predictions for 

measuring emissions from gas turbines using machine 

learning and deep learning tools. 

In Section 1 of this study, general information about the 

problem is given. Section 2 contains literature studies for 

emission estimation in gas turbines. Section 3 contains the 

materials and methods required for the applications, Section 

4 contains the studies and discussion. Section 5 presents the 

conclusions and future work. 

 
2. LITERATURE REVIEW 

Research on gas turbine emissions has been an important 

focus in the field of environmental engineering and energy 

studies. This chapter reviews some of the studies that have 

contributed to a better understanding of the environmental 

impact by providing valuable insights into the mechanisms 

affecting gas turbine emissions. 

Starik et al. present a comparative analysis of the combustion 

characteristics and emissions of a gas turbine engine using 

various alternative fuels such as Fischer-Tropsch Synthetic 

Paraffinic Kerosene (FT-SPK), cryogenic methane, 

bioethanol, biomethanol, biomethanol, biobutanol, dimethyl 

ether, biodiesel and the conventional aviation kerosene Jet-

A. The analysis reveals that the use of alternative fuels 

generally increases H2O emissions, leading to higher water 

vapor supersaturation and potential impacts on contrail and 

cirrus cloud formation. The study also reveals that there are 

differences in emissions of CO2, NOx and N-containing 

species and that different alternative fuels show different 

effects on these emissions compared to kerosene [12]. 

Lebedev et al. A reactor model that predicts pollutant 

production in a diffusion-mode combustor was constructed 

using methane and kerosene as fuel, and it was validated 

against NOx emissions from a model aviation engine 

combustor based on three-dimensional Computational Fluid 

Dynamics (CFD) simulation. The research emphasized how 

heavily the applied reaction mechanism influences the 

expected NOx emission index, and the model that was 

created demonstrated agreement with experimental data for 

combustors powered by kerosene and methane. Based on the 

power setting of an aviation gas turbine engine, the model 

has also been used to estimate emissions of different species, 

such as sulfur compounds, carbon oxide, and unburned 

hydrocarbons [13]. Taha et al. emphasize the importance of 

efficiently monitoring operational parameters and 

environmental variables that affect gas turbine performance 

to reduce maintenance costs, component defects and 

manpower expenses. They emphasize that while traditional 

sensors can miss faults in the harsh gas turbine environment, 

machine learning-based monitoring systems, especially 

those using deep learning tools, offer a cost-effective and 

accurate solution to overcome these challenges and improve 

overall efficiency [14]. Kaya et al. presented new data and 

introduced a comparative Portable Emissions Measurement 

System (PEMS), focusing on the estimation of CO and NOx 

emissions from gas turbines. The research aimed to improve 

the accuracy of emission estimates through the application of 

this new PEMS methodology [15]. Egware and Kwasi-Effah 

research introduces a new empirical model specifically 

designed to estimate carbon dioxide emissions from gas 

turbine power plants. The research focuses on developing a 

model that improves the accuracy of estimating CO2 

emissions and thus contributes to understanding and 

managing the environmental impacts associated with gas 

turbine operations. The new empirical model proposed in the 

study provides a valuable tool for the assessment and 

mitigation of carbon dioxide emissions in the context of gas 

turbine power plants [16]. Lazzaretto and Toffolo involves 

the prediction of both the performance and emissions of a 

two-shaft gas turbine based on experimental data. The model 

is built in MATLAB/Simulink environment. This work 

contributes to the understanding of gas turbine behavior and 

helps to develop strategies to optimize performance and 

reduce emissions in two-shaft gas turbine systems [17]. 

Coelho et al. focus on estimating carbon oxide (CO) and 

nitrous oxide (NOx) emissions from a gas turbine using a 

dataset of estimated emission monitoring systems. 

Innovative feature generation methods are introduced and 

various regression models are evaluated after feature ranking 

and hyperparameter tuning. The results highlight the 

effectiveness of the Deep Forest Regression (DFR) model in 

predicting CO and NOx emissions and underline the impact 

of feature engineering and hyperparameter tuning on the 

overall predictive capacity of the models [18]. Faqih et al. 

introduce a semi-supervised technique for predicting the 

appropriate operating interval of Dry-Low Emission (DLE) 

gas turbines to avoid frequent start-ups and guide efficient 

load planning. The hybrid model combines Extreme 

Gradient Boosting and K-Means algorithms using real plant 

data and achieves high accuracy in predicting combustion 

temperature, nitrous oxide and carbon monoxide 

concentrations. The proposed technique defines safe 



operating zones for DLE gas turbines, with a typical 

operating range of 744.68 °C - 829.64 °C, provides a 

preventive maintenance strategy to reduce tripping 

problems, and provides valuable information to improve 

control strategies in power generation areas [19]. Zhao et al. 

presents a prediction model for NOx emissions in heavy-duty 

gas turbine combustors using moderate and intense low 

oxygen dilution combustion. Using the optimum gap filling 

design, the research determines the optimum combination of 

gas and air temperatures and mass flows, achieving a 

minimum NOx emission of 24.11 mg/m3 [20]. 

The motivation behind this work stems from the growing 

global concern about greenhouse gas emissions and their 

impact on climate change and public health.  

This study makes a significant contribution to the literature 

on gas turbine emission prediction using advanced machine 

learning techniques, including regression algorithms such as 

adaBoost, xgboost, k-nearest neighbors, linear regression, 

and random forest models. In order for the regression 

algorithms to give the best results, random search 

optimization was used to adjust the parameters for each 

regression. The primary contribution of the research lies in 

the comprehensive evaluation of the performance of these 

models in predicting emissions of critical pollutants such as 

nitrogen oxides and carbon monoxide from gas turbines. By 

achieving a very high prediction accuracy with the adaboost 

regressor model (99.97% on training data and 92.04% on test 

data), this study not only demonstrates the potential of 

machine learning in environmental monitoring, but also sets 

a new benchmark for predictive modeling in this field. 

Furthermore, the practical implications of the research are 

important as the proposed models can serve as valuable tools 

for industries and policy makers aiming to reduce air 

pollution from gas turbine operations. 

In summary, this study provides a robust framework for 

accurate prediction of gas turbine emissions using machine 

learning regression models. It highlights the potential for 

advanced algorithms such as adaboost to outperform 

conventional methods, thus adding valuable insights to the 

emission estimation literature. While the study is limited by 

data quality and model interpretability, it lays a strong 

foundation for future research aimed at overcoming these 

challenges and increasing the applicability of machine 

learning in environmental monitoring and industrial 

emission control. 

 
3. MATERIAL AND METHOD 

Artificial neural networks such as linear, k-nearest 

neighbors, xgboost, random forest and adaboost regressor 

were used to detect emissions from gas turbines. Figure 1 

shows a flow diagram showing the model development 

procedure. Initially, 80% of the real plant's DLE gas turbine 

data is split into training and 20% into testing sets. 

Preprocessing of the training data is done, along with 

correlation testing, in order to find significant characteristics 

for the model input.  

3.1. Dataset  

Exhaust Emission Dataset. (Accessed January 24, 2024). 

Online.Website:https://www.kaggle.com/datasets/muniryad

i/gasturbine-co-and-nox-emission-data) contains hourly 

average sensor readings of eleven variables, including nine 

input and two target variables, collected over 5 years, 

resulting in a total of 36,733 samples [21]. Table 1 lists the 

nine input measures along with their names, acronyms, and 

basic statistics. These measurements are categorized as 

ambient variables (such as temperature, humidity, and 

pressure) and process parameters (such as turbine energy 

efficiency, air filter differential pressure). The gas emissions 

measured by the gas analyzer are NOx and CO 

concentration. 

 
Fig. 1.  Flow diagram 

 
 TABLE 1. Basic statistical information about the data used in the 

dataset [15]. 

Variable Abb

r. 

Unit Min Max Mean 

Ambient 
temperature 

AT oC -6.23 37.10 17.71 

Ambient pressure AP mbar 985.8 1036 1013 

Ambient humidity AH (%) 24.08 100.2 77.87 

Air filter 

difference 

pressure 

AFD

F 

mbar 2.09 7.61 3.93 

Gas turbine 

exhaust pressure 

GTE

P 

mbar 17.70 40.72 25.56 

Turbine inlet 
temperature 

TIT oC 1000.8 1100.8 1081.43 

Turbine after 

temperature 

TAT oC 511.04 550.61 546.16 

Compressor 

discharge pressure 

CDP mbar 9.85 15.16 12.06 

Turbine energy 

yield 

TEY MWH 100. 179.5 13.51 

Carbon monoxide CO mg/m3 0.0 44.10 2.37 

Nitrogen oxides NOx mg/m3 25.90 119.9 65.29 



 

3.2. Data Preprocessing  

The correlation matrix result is displayed in Figure 2 to help 

visualize the link between the dataset's parameters. The 

relationship is then examined using the pairwise correlation 

between the input and target parameters as well as the 

correlation of each input parameter.  This correlation matrix 

shows the relationships between various variables measured 

in the gas turbine exhaust emission dataset considered in the 

study. The matrix contains the correlation coefficients 

between pairs of variables ranging from -1 to +1. When the 

correlation coefficient is +1, there is a positive and strong 

relationship between the two variables, while -1 indicates a 

negative and strong relationship. A correlation coefficient of 

0 indicates that there is no linear relationship between the 

variables. In this analysis, a strong positive correlation is 

observed, especially between TEY and CDP (0.99). These 

strong correlations indicate that as the turbine energy 

efficiency increases, the compressor discharge pressure also 

increases. Conversely, a negative correlation is observed 

between NOx and TAT (-0.70), indicating that higher final 

temperatures may be associated with lower NOx emissions.  

Overall, the correlation matrix highlights critical 

interdependencies between variables and provides vital 

insights for the development of predictive models for 

emission estimation. Understanding these relationships is 

essential for improving the accuracy of neural network 

models in predicting emissions and thus helping to reduce 

environmental impacts from gas turbine operations. 
 

 
Fig. 2.  Correlation matrix 

 3.3. Linear Regression 
This regression is a basic model used in statistics and 

machine learning [22]. This model is used to model the 

relationship of a dependent variable with one or more 

independent variables.  

3.4. K-Nearest Neighbors 

It is a basic classification and regression algorithm. This 

algorithm is used to predict a data point by the label or value 

of k-nearest neighbors around it. The working principle of k-

nn is quite simple. The data point calculates the distances to 

all other data points according to the similarity measure. The 

k closest data points are selected.  

3.5. Xgboost 

It is a learning algorithm that has recently achieved great 

success in machine learning competitions and industrial 

applications. It is based on Gradient Boosting methods, but 

has been improved, especially in terms of scalability, speed 

and accuracy. The basic working principle of xgboost is to 

combine many weak predictors into a strong predictor. The 

model trains these predictors sequentially, focusing on 

correcting the errors of previous predictions. This is a 

gradient descent approach to minimize the errors in the data 

set used to train the next predictor.  

3.6. Random Forest 

It is an ensemble learning algorithm based on decision trees. 

It is essentially an ensemble method that combines multiple 

decision trees. Random forest trains each tree in a different 

way and then aggregates their predictions to create a more 

robust and balanced predictor.  

3.7. Adaboost 

Adaboost is a variation of the Adaptive Boosting algorithm 

and is an ensemble method for regression problems. 

Adaboost combines weak predictors to form a strong 

predictor. 

3.8. Random Search Optimization 

Random search optimization is a highly effective method for 

tuning the hyperparameters of machine learning models. 

Instead of systematically evaluating every possible 

combination as in Grid Search, Random Search evaluates a 

set number of randomly selected points within the parameter 

space. This method greatly reduces the computational 



burden, especially when dealing with models that have large 

and intricate hyperparameter spaces, and often yields good 

results in a shorter amount of time. The randomness inherent 

in this approach also enhances the likelihood of exploring a 

broader region of the hyperparameter space, thereby 

increasing the chances of finding the global optimum. 

Random search is particularly advantageous when working 

with high-dimensional datasets and complex models. This 

efficiency is particularly valuable in real-world applications, 

such as power system fault detection using machine learning, 

where Random Search's flexibility and computational 

efficiency make it a powerful tool for model optimization. 

By preventing overfitting and enhancing performance 

metrics, this method plays a crucial role in improving the 

reliability and accuracy of machine learning models.  

3.9. Gas Turbine Data Acquistion  

The system flow diagram and the measurement sensors for a 

typical Dry Low Emission (DLE) gas turbine are depicted in 

Figure 3 [19]. Compressor components are subject to 

mechanical failure and are not guaranteed to burn out as 

components of a combustion engine. The operation of the gas 

turbine is dictated by the load demand, as noted in 1. The 

load being driven determines the power output by ensuring 

that the rotational speed of the mechanical turbine is 

maintained at a specific speed, referred to as 2. The ambient 

air temperature, which is 3, has a significant impact on the 

power production since rising temperatures reduce air 

density, which in turn lowers mass flow through the turbine 

and lowers power output. As a result, keeping an eye on the 

outside air temperature is essential to maintaining the gas 

turbine's dependability and efficiency. The compressor 

receives air through the Inlet Guide Vanes (IGV), shown at 

4. The air is then compressed and the discharge pressure is 

measured as the Compressor Discharge Pressure (CDP), 

shown at 5. The compressed air is then mixed with fuel in 

the combustion chamber. The fuel entering the combustion 

chamber passes through the Stop Ratio Valve (SRV) 

indicated at 6, which maintains constant gas pressure and 

regulates the pressure drop. The Gas Control Valve (GCV) 

at 7 controls the fuel flow necessary for the combustion 

process. Given that the DLE combustor requires separate 

sections for main fuel and pilot fuel, a splitter valve, 

designated at 8, manages the division of main and pilot fuel 

before they enter their respective chambers. At positions 9 

and 10, the fuel's flow and pressure are recorded. Because of 

the harsh circumstances and temperature differences inside 

the chamber, monitoring the combustion temperature is 

difficult. The temperature of the gas leaving the chamber has 

a direct bearing on the firing temperature. As direct 

measurement of temperature within the combustion chamber 

is not feasible due to sensor limitations, the temperature is 

instead measured at the exhaust point, labeled as T5. 

Consequently, in this study, T5 is considered the combustion 

temperature and will be employed for estimating the 

operating range. In the turbine’s exhaust section, temperature 

and pressure are monitored at points 12 and 13, respectively. 

The process generates NOx and CO emissions, which are 

measured at sites 14 and 15, respectively [19].

 

 
Fig. 3.  Flow diagram of the DLE gas turbine 

4. RESULTS AND DISCUSSION 

In this study, the performance of regression algorithms used 

in gas turbine emission estimation was evaluated. Linear, k-

nearest neighbors, xgboost, random forest and adaboost 

regressor algorithms were trained. In order to examine the 

potential of the model in detail, a comprehensive study was 

conducted on the variables and hyperparameters that define 

the regression algorithms. 

The parameters employed in the training with linear 

regression, as utilized in the study, are listed in Table 2. 

Following the training process, linear regression achieved a 

training performance of 52.17% and a test performance of 

51.37% in predicting emissions in gas turbines. The RMSE 

was calculated as 8.13, the MAE as 5.90, and the R² score as 

51.37%. A graph illustrating the gas turbine emissions 

predicted by the linear regression algorithm compared to the 

actual emission values is presented in Figure 4. Additionally, 

the actual values from the dataset and the values predicted by 

the Linear Regression algorithm are provided in Table 7. 
TABLE 2. Linear regression parameters 

Parameter Value 

Fit_intercept true 

copy_X true 

n_job none 

positive true 

Max_iter 10 

Random_state 10 

 



 

 
Fig. 4. Graph of actual value and predicted value with linear 
regression 

 

The parameters used in training with Random Forest 

Regression are given in Table 3. 
. 

TABLE  3. Random forest regression parameters 

Parameter Value 

n_estimators 1000 

criterion log_loss 

Max_depth none 

Max_iter 10 

Random_state 10 

 

As a result of the training of random forest regression, 

98.05% training performance and 86.72% test performance 

were obtained in predicting emissions in gas turbines. RMSE 

is 4.24, MAE is 2.69, R2 Score is 86.72. The graph showing 

the gas turbine emissions estimated by the Random Forest 

Regression algorithm and the prediction of actual emission 

values is given in Figure 5. Table 7 shows the values that the 

random forest regression algorithm predicted and the actual 

values in the data set. 

 
Fig. 5. Graph of actual value and predicted value with Random 
Forest Regression 
The parameters used for training with the k-nearest neighbor 

(k-nn) regression algorithm are listed in Table 4. After 

training, the k-nn regression achieved a training performance 

of 84.15% and a test performance of 80.42% in predicting 

emissions in gas turbines. The RMSE was 5.16, the MAE 

was 3.41, and the R² score was 80.42%. A graph depicting 

the gas turbine emissions predicted by the k-nn regression 

algorithm alongside the actual emission values is shown in 

Figure 6. Additionally, Table 7 provides a comparison 

between the actual values in the dataset and the predictions 

made by the k-nn regression algorithm. 
 

TABLE  4. K-nn regression parameters 

Parameter Value 

Probability True 

Epsilon 0.1 

Degree 3 

Max_iter 10 

Random_state 10 

 
Fig. 6. Graph of actual value and predicted value with k-nn 
regression 

The parameters used for training with the xgboost regression 

algorithm are presented in Table 5. The training process with 

xgboost regression resulted in a training performance of 

91.81% and a test performance of 84.51% in predicting 

emissions in gas turbines. RMSE was 4.58, the MAE was 

3.09, and the R² score was 84.54%. Figure 7 displays a graph 

comparing the gas turbine emissions predicted by the xgboost 

regression algorithm with the actual emission values. 

Additionally, Table 7 provides the actual values from the 

dataset alongside the predictions made by the xgboost 

regression algorithm. 
TABLE  5. Xgboost regression parameters 

Parameters Values 

booster gbtree 

verbosity 1 

eta 0.3 

learning_rate 0.99 

max_dept 6 

n_estimators 50 

 
Fig. 7. Graph of actual value and predicted value with xgboost 
regression 

The adaboost regressor's hierparameters are presented in 

Table 6. Adaboost regression training produced test 

performance of 92.04% and training performance of 99.97% 

for emissions prediction in gas turbines. RMSE is 3.95, MAE 

is 2.17 and R2 Score is 92.04. The graph showing the gas 

turbine emission predicted by adaboost regression algorithm 

and the prediction of actual emission values is given in Figure 

8. Table 7 shows the values that the adaboost regression 

method predicted and the actual values in the data set. 
TABLE  6. Adaboost regression parameters 

Parameters Values 

Base_estimator dtree 

learning_rate 0.99 

loss linear 

n_estimators 50 

Max_iter 10 

Random_state 10 



 
Fig. 8. Graph of actual value and predicted value with adaboost 
regression 

TABLE  7. Actual and predicted temperature 

I

D 

True  

Gas 

Turbine 

Emissio

n 

Predicted Gas Turbine Emission  

Linear  RF K-NN XGBoos

t 

AdaBoos

t 

1 48.876 52.54
7 

49.92
4 

50.23
9 

48.662 49.293 

2 68.584 69.84

0 

69.12

0 

69.24

5 

70.115 70.781 

3 55.400 56.95
3 

55.54
7 

53.56
4 

55.997 55.008 

4 52.123 54.98

9 

57.01

5 

57.71

0 

55.233 51.225 

5 57.123 60.92
8 

56.65
8 

50.37
1 

55.096 58.994 

6 69.161 71.10

2 

74.91

2 

78.65

1 

73.354 71.165 

7 80.834 74.86
3 

80.99
9 

80.93
9 

73.750 80.544 

8 66.639 59.59

8 

63.95

8 

62.09

9 

63.642 68.739 

9 63.983 66.38
3 

65.19
8 

68.76
1 

65.319 67.533 

10 67.361 71.13

3 

65.60

5 

70.46

2 

67.958 66.716 

Table 7 compares the actual values of gas turbine emissions 

with the predicted values by five different regression 

algorithms. The deviations between the actual emission 

values and the predicted values are a critical indicator to 

understand the accuracy and reliability of the model. 

As seen in the table, linear and Random forest algorithms 

generally show higher deviations in their predictions. The k-

nn, xgboost and adaboost algorithms also show deviations in 

some cases, but generally their predicted values are closer to 

the true values. In particular, the adaboost algorithm was 

more consistent than the other algorithms in many cases. For 

example, in ID 5, the true value was 57.123, while adaboost 

predicted 58.994, which is a lower deviation compared to the 

other algorithms. This shows that the prediction algorithms 

have different levels of performance. It is observed that the 

adaBoost algorithm performs the best overall, while the 

Linear model produces the largest deviations. These results 

show that the adaBoost algorithm outperforms the other 

algorithms in gas turbine emission forecasting and is 

therefore a reliable tool for gas turbine emission forecasting.  
 

TABLE  8. Comparison of regression algorithms 

Regressor 
Algorithm 

Training 

Accuracy 

Testing 

Accuracy 

RMS 

Score 

MAE 

Score 

R2 

Score 

Linear 52.17 51.37 8.13 5.90 51.37 

Random 

Forest 

98.05 86.72 4.24 2.69 86.72 

K-NN 84.15 80.42 5.16 3.41 80.42 

XGBoost 91.81 84.51 4.58 3.09 84.51 

AdaBoost 99.97 92.04 3.95 2.17 92.04 

Table 8 shows the metrics used to evaluate the scaling 

success and performance of the regression algorithms. Table 

8 presents various metrics comparing the performance of 

five different regression algorithms on training and test data. 

These metrics evaluate the ability of the algorithms to predict 

gas turbine emissions and are used to determine which one 

performs the best. Table 8 shows that the linear regression 

performance is quite low compared to the other algorithms. 

With a training accuracy of 52.17% and a test accuracy of 

51.37%, linear regression has the lowest accuracy rates 

compared to other models. Furthermore, with an RMS Score 

of 8.13 and MAE Score of 5.90, linear regression has the 

largest margin of error in emission estimates. The R2 score is 

also 51.37%, indicating that the model has a low capacity to 

explain the data. The random forest algorithm performed 

very well with a training accuracy of 98.05%. However, the 

testing accuracy drops to 86.72%, indicating that the model 

may be slightly overfitting. The RMS score is 4.24 and the 

MAE score is 2.69, indicating relatively low errors in 

predictions. The R2 score is 86.72%, indicating that the 

model explains the data quite well. The K-nn algorithm also 

performed reasonably well, but with a test accuracy of 

80.42%, it lags behind the random forest and adaboost 

algorithms. The RMS score of K-nn is 5.16 and the MAE 

score is 3.41, indicating that this model may also have 

significant errors in prediction in some cases. The R2 score 

is 80.42%, which can reasonably explain the data.  

The xgboost algorithm performed very well with 91.81% 

training accuracy and 84.51% test accuracy. The RMS score 

of 4.58 and MAE score of 3.09 indicate that the predictions 

of this model have a relatively low margin of error. Xgboost 

emerges as a strong option for model performance. The 

daboost algorithm performs the best compared to the other 

algorithms, offering the highest test accuracy (92.04%). The 

a accuracy is 99.97%, indicating that the ability of this model 

to learn the data is very high. The RMS score of 3.95 and 

MAE score of 2.17 show that adaboost has the lowest margin 

of error and is able to produce the most accurate predictions. 

The R2 score is 92.04%, indicating that the model has a very 

high capacity to explain the data. Table 8 clearly shows that 

the adaboost algorithm is superior to the other algorithms in 

predicting gas turbine emissions and performs the best in this 

area. Random forest and xgboost also stand out as strong 

alternatives, but the overall performance of adaboost makes 

it the most suitable model for this study. However, it should 

be noted that each algorithm may perform differently under 

certain datasets and conditions. 

One of the limitations of this work is the dependence on the 

quality and completeness of the dataset. As with most 

machine learning applications, the accuracy of the models is 

highly dependent on the quality of the input data. Missing or 

inaccurate data points can lead to biases, potentially affecting 

the reliability of the predictions. Furthermore, while the 

dataset used in this study is comprehensive, it may not fully 

capture the variability of real-world gas turbine operations 

across different geographic locations, fuel types, and 

operating conditions. This limitation may affect the 

generalizability of the models to other contexts. Another 

limitation is the complexity and interpretability, especially of 

well-performing machine learning models such as adaboost 

and xgboost. 

The limitations of the study can be improved by developing 

hybrid models that combine the strengths of traditional 

regression techniques with the advanced pattern recognition 



 

capabilities of machine learning and deep learning 

algorithms. In addition, future research could focus on 

expanding the dataset to include a wider range of operational 

scenarios, fuel compositions, and environmental conditions. 

 
5. CONCLUSIONS 

This study evaluated and compared the performance of 

different regression algorithms for predicting gas turbine 

emissions. Although gas turbines are a widely used 

technology in industrial power generation, their emissions 

are a major concern in terms of compliance with 

environmental regulations and protection of public health. 

Accurately estimating these emissions is therefore a critical 

requirement for sustainable energy production and 

environmental protection efforts. Among the five regression 

algorithms used in the study, the adaboost regressor model 

was the most successful in predicting gas turbine emissions, 

offering the highest accuracy and the lowest margin of error. 

The adaboost model outperformed the other models with a 

training accuracy of 99.97% and a test accuracy of 92.04%. 

Moreover, the low RMS and MAE scores of this model 

indicate that adaboost not only provides high accuracy but 

also minimizes the margin of error in predictions. Random 

forest and xgboost algorithms also showed remarkable 

performances and achieved results close to adaboost. The 

results of this study prove that machine learning methods, 

especially robust models such as adaboost, are effective tools 

for emission estimation in industrial processes. By offering 

higher accuracy and lower margin of error compared to 

conventional methods, these models can make a significant 

contribution to assessing environmental impacts and 

ensuring compliance with regulatory requirements. This 

provides an important support to efforts to reduce 

environmental pollution by enabling industrial facilities to 

more accurately predict their emissions and proactively take 

necessary measures. However, this study also has some 

limitations. For example, the size and diversity of the dataset 

used are important factors that can affect model 

performance. Future studies should test the general validity 

of these models by using larger and more diverse data sets 

and evaluate their performance under different operational 

conditions. Furthermore, the interpretability of the models 

needs to be emphasized, because in industrial applications, 

not only high accuracy but also comprehensibility of the 

model's decision mechanisms is of great importance. 
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