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Abstract. The main causes of aviation accidents in recent years are mostly related to pilot operational errors and pilot operational characteristics
directly reflect flight quality. Hence, flight quality and flight safety are inseparable. Improving the assessment method of flight quality is of
great significance for building a competency-based and evidence-based flight training system as well as enhancing flight safety. However, the
problem is that some of the existing research is one-sided, and the assessment accuracy is not high. We propose a flight quality assessment
method based on KOA-CNN-GRU-self-attention for the whole flight phase to accurately assess the flight quality and to improve and supplement
the existing system. Firstly, the QAR data of the whole flight phase is selected and divided into three data sets according to the three indexes of
operational smoothness, accuracy, and promptness, which are respectively substituted into the PCA comprehensive evaluation model to assess
flight quality. Then, the evaluation results are labelled with the rating as the input of CNN-GRU-self-attention, and the parameters are optimized
using KOA. Finally, the evaluation of flight quality for the three indexes was achieved by training the KOA-CNN-GRU-self-attention model. The
test results show that the accuracy of operational smoothness, accuracy, and promptness reaches 98.73%, 95.07%, and 97.18%, respectively, and
the assessment outcome is better and higher than the existing model. The model is also compared and analyzed with three base models CNN,
QDA, XGBoost, and three fusion models CNN-self-attention, GRU-self-attention, CNN-GRU-self-attention, which show overall better results in
accuracy, recall, precision, and F1-Score.

Keywords: KOA (Kepler optimization algorithm); CNN; GRU; self-attention; flight quality.

1. INTRODUCTION
With the swift growth of the civil aviation sector, civil avi-
ation flight safety has emerged as a key concern for society,
vital to the business and revenue of airlines, and directly re-
lating to the safety of individuals. Indeed, flight safety stands
as the bedrock of progress of the civil aviation industry. Over
the recent years, enhancements have been implemented across
various facets of civil aviation safety. In tandem with these ad-
vancements, civil aviation safety is witnessing a shift towards
digitization and artificial intelligence, propelled by the modern-
ization of aircraft equipment, ongoing innovation in production
technologies, and the exponential growth of AI capabilities [1].
Although the global aviation industry has been tirelessly com-
mitted to improving flight safety, the potential for risks remains,
with the capacity to be profoundly disruptive [2]. On March 21,
2022, a Boeing 737–800, with the registration number B-1791,
operated by China Eastern Airlines Yunnan Limited Company,
was flying from Kunming to Guangzhou as flight MU5735. The
aircraft was involved in a catastrophic accident in the airspace
controlled by Guangzhou, leading to the tragic loss of all 123
passengers and nine flight crew members [3]. The catastrophe
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led to a combined tally of direct and indirect economic damage
estimated at around 6 billion yuan [4]. Statistics indicate that
human operational issues have been a primary cause of aviation
accidents. There is an urgent need to bolster the safety of civil
aviation by training pilots who are highly skilled, capable, and
exhibit consistent operational stability. Throughout the flight, it
is essential for pilots to maintain stable flight conditions and
to be equipped with the necessary skills to effectively counter
aviation threats, thus ensuring the safety of the flight [5].

Human-induced operational errors have a direct bearing on
the flight parameters of an aircraft, which in turn can compro-
mise the quality of the flight. Consequently, the focus of flight
safety research can shift from human operational errors, which
are in the subjective realm, to studying aircraft flight param-
eters, which is a more objective domain, that is, the study of
flight quality. QAR (quick access recorder) is a flight recorder
installed on civil aviation aircraft, and its recorded data covers
most of the important data on flight quality and engine perfor-
mance status [6]. The Department of Transportation of the Civil
Aviation Administration of China (CAAC) has issued the “Guid-
ance Opinions on Comprehensively Deepening the Reform of
Flight Training of Transport Airlines” in recent years, which
requires relevant personnel to make good use of QAR data, and
encourages airlines to introduce data sources such as analysis
of aircraft flight parameters and training data, to analyze flight
safety issues and build a competency-based and evidence-based
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flight training system [7]. This study did the following four main
tasks:
1. The QAR data of the whole flight phases, such as the take-

off phase, initial ascent phase, climb phase, cruise phase,
descent phase, initial approach phase, final approach phase,
and land phase, were selected for the experiment, which
avoided the one-sidedness of the previous studies.

2. Based on the existing documents and classification methods,
the QAR (quick access recorder) data is meticulously seg-
mented into three distinct datasets focusing on operational
smoothness, operational precision, and operational prompt-
ness. This stratification facilitates a more holistic and thor-
ough evaluation of flight quality.

3. The comprehensive evaluation of QAR data using PCA over-
comes the influence of human subjective factors, and the
evaluation is accurate and effective, making the experimen-
tal analysis and results objective. The PCA algorithm is only
affected by the data set itself, not affected by other factors,
and it can eliminate the factors that affect each other among
the original data components so that the model can be gen-
eralized.

4. We established a holistic flight quality evaluation model
grounded in KOA-CNN-GRU-self-attention, capable of cat-
egorizing and assessing the flight quality of flights with
remarkable accuracy and efficiency. This model not only
elevates the efficacy and precision of the assessment pro-
cess but also provides a valuable resource and reference for
addressing flight quality evaluation challenges.

The layout of this paper unfolds as follows: Section 2 introduces
related work. Section 3 describes the proposed method in detail.
Section 4 conducts the experimental evaluation and comparative
analyses. Section 5 concludes this paper and provides future
work.

2. RELATED WORK

Within the realm of civil aviation, human-induced errors, en-
compassing those stemming from human operational mishaps,
have remained a predominant factor in the occurrence of avia-
tion accidents. Human-induced errors are difficult to analyze di-
rectly. The post-competency model of civil aviation flight cadets
proposed by Lin et al. [8] uses a questionnaire to analyze the
four dimensions of pilots’ core qualities, ethical discipline, psy-
chological quality, and leadership. Although this method can
evaluate pilot competency to a certain extent, it is too subjec-
tive and is most likely to be influenced by the pilot’s personal
emotions, environment, and other factors at that time, and lacks
reliability and persuasive power.

Utilizing QAR data for the analysis of flight quality adeptly
shifts the investigative focus from the subjective aspects, human
operational errors, to the more objective aspects, flight parame-
ters, namely the study of flight quality. Over the past few years,
a substantial number of researchers have delved deeply into the
evaluation of flight quality, leveraging QAR data. The emer-
gence of artificial intelligence has transformed the once daunt-
ing task of swiftly pinpointing operations that surpass safety

thresholds from a complex array of aviation safety data into a
tangible possibility. Weiliang Yuan et al. [9] proposed a flight
quality assessment method based on PCA-PSO-SVM (principal
component analysis-particle swarm optimization-support vec-
tor machine), which analyses the take-off climb phase and ap-
proach landing phase, the two most dangerous phases in the
whole flight, but the accuracy is 90%, which needs to be im-
proved. Benchi Wang et al. [10] combined the hierarchical
analysis method with TOPSIS (a technique for order prefer-
ence by similarity to an ideal solution) to determine the in-
tegrated weights to evaluate the flight quality of the takeoff
phase, and Zhong et al. [11] proposed a method to analyze the
flight quality of the actuator in the case of no failure. Xing et
al. [12] proposed a time series method to analyze the flight
quality in the landing phase, but the shortcomings are that only
the landing phase is studied, and the assessment points of the
landing phase of flight training only include the attitude and
speed control of the aircraft, so the research is relatively one-
sided.

For related evaluation issues, Rizvi [13]] summarized some
commonly used methods, including XGBoost, RF, SVM, CNN,
and so on. XGBoost and RF rely on data features and have lower
accuracy, which makes them prone to overfitting when the data
is noisy; the accuracy of SVM [8] in evaluating flight quality is
only 90%. In contrast, CNN can effectively extract features from
data using its convolutional structure, retaining useful informa-
tion while reducing parameters and accelerating convergence,
thereby improving classification accuracy, and offering a distinct
advantage [14]. Traditional CNNs often require a large amount
of data for effective training, and their max pooling layers reduce
network dimensionality by selecting the maximum value within
a given kernel. However, this approach only retains the most
active neurons, which may lead to the loss of valuable inter-
layer information and spatial details, and there are issues with
gradient descent or explosions [15]. Adding attention mecha-
nisms [16] and model fusion [17] are both popular and effective
methods for improving convolutional neural networks.

Optimization algorithms work by adjusting the parameters of
the model during model training to minimize or maximize a cer-
tain loss function. In recent years, optimization algorithms such
as Harris hawk optimization (HHO), grey wolf optimization
(GWO), and particle swarm optimization (PSO) have become
quite common and popular, known for their excellent perfor-
mance and widespread citation [18]. In 2023, the Kepler op-
timization algorithm (KOA), proposed by Abdel-Basset et al.
was comprehensively validated for its faster convergence rate
and its ability to approach the optimal solution more readily for
the vast majority of optimization problems compared to other
optimization algorithms [19].

After considering a number of factors and ensuring the gen-
eralizability of the model, in this paper, the PCA comprehensive
evaluation method is used to analyze the data in terms of weights
and explained variance ratio, etc. to derive a composite score
that can reflect the degree of data deviation, and thus assess the
quality of the flight. The main advantages of the PCA algorithm
include the need to measure the amount of information only
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in terms of variance, which is not affected by factors outside
the data set; and the orthogonality of principal components,
which removes the factors that influence each other among the
components of the original data [20]. These advantages allow
us to analyze the different flight stages without considering the
specific meaning of the data, but only the data itself, which fa-
cilitates the analysis of the overall data without the necessity
to evaluate them separately in stages, saving analysis costs and
time.

Based on the above, to accurately assess the flight quality of
civil aviation airliners during flight more effectively and easily,
to provide a reliable method for analyzing flight safety, and to
improve flight quality, we constructed a KOA-CNN-GRU-self-
attention (Kepler optimization algorithm-convolutional neural
networks-gate recurrent unit-self-attention) evaluation model
based on the QAR data to evaluate the flight quality with high
precision. In this method, the QAR data of the whole flight
phases, such as the take-off phase, initial ascent phase, climb
phase, cruise phase, descent phase, initial approach phase, final
approach phase, and land phase, were selected to be analyzed.
The data are divided into three datasets of operational smooth-
ness, accuracy, and promptness indicators according to the ex-
isting documents and division methods. A comprehensive eval-
uation of the three datasets is conducted respectively through
the PCA comprehensive evaluation method and the three sets of
data are divided into four categories and labelled according to
the normal distribution law separately. The labelled data are fed
into the CNN-GRU-self-attention classification model for train-
ing, and the loss function is calculated using KOA to optimize
the model hyperparameters. Finally, the data are brought into
the KOA-CNN-GRU-self-attention model to evaluate the flight
quality.

3. METHODS

3.1. KOA optimizes the CNN-GRU-self-attention process

The KOA-CNN-GRU-self-attention classification model pro-
posed in this paper mainly consists of the Kepler optimization
algorithm (KOA) and the CNN-GRU-self-attention classifica-
tion model. The KOA has the advantages of strong optimization
and faster convergence [19]. The CNN-GRU-self-attention clas-
sification model can better extract data features and thus improve
classification accuracy. KOA is used for hyper-parameter opti-
mization to find the optimal combination of convolution kernel
size, number of gated recurrent unit hidden states, and learn-
ing rate. The rationale for our choice of hyperparameters is as
follows:
1. Convolution kernel size [21]: Larger convolutional kernel

can bring a better receptive field, that is, to retain more
data features, but the complexity will increase significantly,
smaller convolutional kernel is less complex, with faster
computation, but too small convolutional kernel cannot fully
represent the original obvious features of the data.

2. Number of gated recurrent unit hidden states (hidden
units) [22]: A smaller number of hidden units can reduce
the model complexity, accelerate the training speed, and de-

crease the risk of model overfitting. However, when dealing
with more complex data, this might not be sufficient to accu-
rately extract the internal information on the data, leading to
model distortion. Conversely, an excessive number of hidden
units may lead to model overfitting, impairing the ability to
make reasonable predictions and reducing the generalization
capability of the model.

3. Learning rate [23]: It determines the step size of each train-
ing iteration. When the learning rate is set too small, the rate
of descent is too slow, and it may take a long time to find
the minimum value of the loss function. When the learning
rate is too large, although the convergence is very fast, it will
ignore the minimum value of the loss function, resulting in
oscillating back and forth and being unable to converge.

Concurrently, focusing on the parameters of the Kepler op-
timization algorithm (KOA), we have selected a maximum of
20 evaluations as the benchmark for assessment. Additionally,
we have set the number of populations for each dataset at 100
or more, ensuring the optimization requirements are met while
reducing computational load and enhancing computational ef-
ficiency. As for the convolution kernel size, number of gated
recurrent unit hidden states, and learning rate, we have estab-
lished them within a reasonable range based on the explanations
provided earlier. More specific initial parameter settings are il-
lustrated in Table 3 and Table 4.

The overall process of model building is shown in Fig. 1 and
is implemented as follows:

Step 1: Data processing
Extract the QAR data of the whole flight stage as the original

data, divide the data into three data sets according to the three
indices of operational smoothness, operational accuracy, and
operational promptness, and finally clean the data separately.

Step 2: Comprehensive evaluation design
The cleaned data are firstly subjected to principal component

analysis, and after obtaining the results of principal component
analysis, the comprehensive evaluation of principal components
is carried out to obtain the comprehensive score of each flight,
and finally, the data are classified into four levels according to
the 𝜎 law of normal distribution and labelled.

Step 3: Optimization of model parameters
Divide the processed data into a test set and training set, bring

the training set into the CNN-GRU-self-attention model train-
ing, output the classification results, and carry out the loss func-
tion calculation to further train the model hyper-parameters until
reaching the specified number of training times. After the opti-
mization is completed, the optimization result is obtained and
the model is optimized, i.e. the KOA-CNN-GRU-self-attention
model is constructed.

Step 4: Derive results
Bring the test set into the KOA-CNN-GRU-self-attention

model, and obtain the KOA adaptation curves, accuracy iter-
ation curves, error iteration curves, confusion matrix, and ac-
curacy prediction results for the three data sets of operational
smoothness, operational accuracy, and operational promptness.
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Fig. 1. Training process of KOA-CNN-GRU-self-attention model

3.2. Data segmentation

A complete flight process is shown in Fig. 2, where the phases
that account for a greater percentage of accidents are Land,
Final approach, and Take-off, which account for 29.3%, 19.8%,
and 12.8%, respectively. Therefore, the analysis of these stages
is essential. However, in the cruise phase, which has the lowest
accident rate of all phases of off-ground flight, the probability of
an accident is still as high as 5.8%. As aviation safety is related

to people’s health and safety, the 5.8% accident rate should not
be ignored. Therefore, this paper selects the QAR data of the
whole flight phase to be analyzed based on the perspective of
aviation safety [24].

Fig. 2. Chart of the percentage of accidents and flight time by flight
phase

The quality of the pilot’s operational characteristics directly
reflects the flight quality. In determining the indexes of operat-
ing characteristics, the extracted QAR data are used as the basis,
and according to the CAA document “Flight Quality Monitoring
(FOQA) Implementation and Management” and other informa-
tion, and regarding the flight quality indexes proposed by Sun
Ruisan et al. [25], this paper takes the operational smoothness,
accuracy, and promptness as the pilot’s operating characteristics.
The interpretation is as follows:
1. Operational smoothness

Passenger comfort is the intuitive feedback of good flight
quality, smoothness requires pilots to minimize overly violent
operations, the number of controllable events occurring is small,
and the operation should try to ensure that the aircraft is smooth;
if the aircraft receives external disturbances (sudden winds, un-
stable airflow, etc.), it should be maintained as much as possible
in the original flight state. For example, Max(g)G2toG3, i.e. the
maximum g value during the climb from 1000 ft to the approach
to 1500 ft.
2. Operational accuracy

To reduce the occurrence of accidents, pilots should strictly
follow the operation manual when operating, and control the
aircraft pitch, roll, and yaw attitude as well as flight parameters
such as flight and taxiing speeds within certain limits at different
flight stages. For example, TO_Trim, i.e. the pitch levelling
position when lifting the front wheels.
3. Operational promptness

During the flight operation, the pilot is required to manoeuvre
in time for each action, and the timing should not be too early or
too late. For example, TimeToGearSelUp, i.e. time from take-off
to retracting the landing gear (in seconds).

3.3. PCA comprehensive evaluation

Since the selected indicators do not have exactly the same scale,
the QAR data are first de-scaled. In this paper, the data are nor-
malized by z-score to achieve the purpose of de-quantification,
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and the formula is as follows:

𝑧 =
𝑥− 𝜇
𝜎

, (1)

where 𝑥 is the raw data, 𝜇 is the mean of all data, and 𝜎 is the
standard variance.

We used PCA (principal component analysis) for the com-
prehensive evaluation of QAR data. The principal component
analysis method was first proposed by Karl Pearson in 1901.
The analysis includes the special values of the covariance ma-
trix [26]. Its main advantage is that it can effectively deal with
high dimensional data, analyze the correlation between vari-
ables, and achieve data compression without losing too much
information from the original data while ensuring the original
trend of the data. The advantages of applying PCA in this paper
are the following. It allows the experiment to consider only the
data itself and ignore other factors, saving the cost and time
of the experiment and making the method highly generalizable;
through the analysis of the variance, the degree of data deviation
is derived to evaluate its flight quality, which is a simple and ob-
jective method with strong practical significance. The principal
component explained variance ratio graph is shown in Fig. 3.

Fig. 3. Plot of explained variance by principal components

From Table 1 and Fig. 3, based on the calculation of the ex-
plained variance of the principal components and the cumula-
tive explained variance, 12 principal components were selected
for the smoothness indicator, 26 principal components for the
accuracy indicator, and 18 principal components for the time-
liness indicator. Thus, the principal component score matrix is
obtained as

𝑃𝐶 = (𝑃𝐶1, 𝑃𝐶2, . . . , 𝑃𝐶𝑒) = 𝑍 (𝑎1, 𝑎2, . . . , 𝑎𝑒) . (2)

In turn, the integrated evaluation model, weighted by the ex-
plained variance ratio, was found to be

𝑃𝐶𝑧 =

𝑒∑︁
𝑑=𝑐

𝑃𝐶𝑑𝜆𝑑

𝑒∑︁
𝑑=1

𝜆𝑑

, (3)

where 𝑃𝐶1, 𝑃𝐶2, 𝑃𝐶𝑒 denotes the 1st, 2nd, . . . , 𝑘-th principal
components; 𝑎1, 𝑎2, 𝑎𝑒 is the unit eigenvector of the matrix of

Table 1
Table of cumulative explained variance by each principal component

Principal
compo-

nent
S-EVR S-CEVR A-EVR A-CEVR P-EVR P-CEVR

1 16.259 16.259 10.453 10.453 13.301 13.301
2 12.088 28.347 9.246 19.699 7.223 20.523
3 10.591 38.938 7.883 27.583 6.821 27.345
4 7.345 46.283 5.712 33.295 6.294 33.639
5 6.791 53.074 4.329 37.624 5.517 39.156
6 5.995 59.07 3.93 41.555 4.849 44.004
7 5.045 64.115 3.341 44.896 4.335 48.339
8 4.304 68.419 3.278 48.174 4.203 52.542
9 3.768 72.187 2.964 51.138 3.832 56.374

10 3.246 75.433 2.613 53.751 3.447 59.821
11 3.006 78.439 2.48 56.231 3.344 63.165
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

26 0.015 100 1.221 80.704 1.083 93.519

Note. EVR: explained variance ratio, CEVR: cumulative explained variance ra-
tio, S: operational smoothness, A: operational accuracy, P: operational prompt-
ness. e.g. S-EVR: explained variance ratio for the data set of operational smooth-
ness, S-CEVR: cumulative explained variance ratio for the data set of operational
smoothness

correlation coefficients between variables; 𝜆𝑐 is the eigenvalue
of the matrix of correlation coefficients between variables.

Substituting the principal component score matrix into equa-
tion (3), the composite score of each flight can be obtained. The
comprehensive score is sorted in the order from the smallest to
the largest to get the comprehensive score of each flight, and the
lower the score, the higher the flight quality of the flight. The
results of the operational smoothness evaluation are shown in
Table 2.

Table 2
Operational smoothness principal component composite evaluation

score

Flight
Principal component score Ran-

king
Aggre-

gate
score1st 2nd 3rd · · · 12th

1 –1.2367 –0.9744 0.3728 · · · 0.1603 494 –0.2707
2 –0.5292 0.0612 1.6399 · · · –0.6719 1331 0.0640
3 –0.5525 0.2367 1.1646 · · · –0.5977 630 –0.2067
4 –1.0499 0.4196 –0.5754 · · · –0.9421 387 –0.3309
5 –0.7373 –1.9436 0.2090 · · · –0.6290 33 –0.7890
6 0.3332 –1.9296 0.6539 · · · –0.8934 220 –0.4492
7 –0.6222 –0.3690 –0.3872 · · · 1.0888 524 –0.2533
8 –0.5752 0.0102 –1.1684 · · · –0.8344 259 –0.4213
9 0.3402 0.4300 1.0689 · · · –0.7789 1605 0.1616
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

2367 0.6120 –0.5614 0.9078 · · · 0.2522 2009 0.3359
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To improve the evaluation efficiency, according to the compre-
hensive evaluation ranking of PCA, the raw data were classified
into four categories: A, B, C, D, i.e. excellent, good, moderate,
and poor, according to the normal distribution 𝜎 rule, which
accounted for 15.865%, 34.135%, 34.135%, and 15.865% of
the original data, respectively, and were marked with labels as
inputs to the KOA-CNN-GRU-self-attention.

3.4. Kepler optimization algorithm (KOA) model

The Kepler optimization algorithm (KOA) is a new physics-
based meta-heuristic algorithm said to be inspired by Kepler’s
laws of planetary motion for predicting the position and velocity
of a planet at any given time. Candidate solutions (planets)
behave differently from the Sun (optimal solution) at different
times, allowing for a more efficient exploration and utilization
of the search space. KOA has faster speed and better results than
the more widely used genetic algorithm (GA), particle swarm
optimization (PSO), etc. [19]. Using the KOA, we can rationally
optimize different parameters in the deep learning network. The
steps are as follows:

1. Initialization process
The population is first initialized by placing each planet at a

random position on the orbit and giving a random value to the
orbital eccentricity e and the orbital period 𝑇 .

2. Defining the gravitational force (F)
Gravity is then defined according to the universal gravitation

formula:

𝐹𝑔𝑖 (𝑡) = 𝑒𝑖 × 𝜇(𝑡) ×
�̄�𝑆 × �̄�𝑖

𝑅𝑖
2 + 𝜀

+ 𝑟1 , (4)

where �̄�𝑆 and �̄�𝑖 denote the normalized values of 𝑀𝑆 and 𝑚𝑖 ,
which represent the masses of 𝑋𝑆 and 𝑋𝑖 , respectively, and 𝜀 is
a small value; 𝜇 is the universal gravitational constant; 𝑒𝑖 is the
eccentricity of the planetary orbits, which is a value between
0 and 1 designed to give the KOA a stochastic character; 𝑟1
is a randomly generated value between 0 and 1 to give more
variability to the values of the gravitational forces during the
optimization process; and 𝑅𝑖 is the normalized value of 𝑅𝑖 ,
which represents the Euclidean distance between 𝑋𝑆 and 𝑋𝑖 .

3. Calculating the object velocity
The speed of celestial bodies is affected by the gravitational

pull of the sun, as a planet moves closer to the sun, its speed
increases, and as it moves farther away, its speed decreases.

𝑉𝑖 =



ℓ×
(
2𝑟4 ®𝑋𝑖 − ®𝑋𝑏

)
+ ¥ℓ×

(
®𝑋𝑎 − ®𝑋𝑏

)
+ (1−𝑅i-norm (𝑡)) ×F × ®𝑈1 × ®𝑟5

×
(
®𝑋𝑖,up − ®𝑋𝑖,low

)
, if 𝑅i-norm (𝑡) ≤ 0.5,

𝑟4 ×L ×
(
®𝑋𝑎 − ®𝑋𝑖

)
+ (1−𝑅i-norm (𝑡)) ×F × ®𝑈2 × ®𝑟5

×
(
𝑟3 ®𝑋𝑖,up − ®𝑋𝑖,low

)
, else,

(5)

ℓ = ®𝑈 ×M ×L , (6)

L =

[
𝜇(𝑡) × (𝑀𝑆 +𝑚𝑖)

���� 2
𝑅𝑖 (𝑡)

− 1
𝑎𝑖 (𝑡) + 𝜀

����] 1
2

, (7)

M = (𝑟3 × (1− 𝑟4) + 𝑟4) , (8)

®𝑈 =

{
0 ®𝑟5 ≤ ®𝑟6 ,

1 else,
(9)

F =

{
1 if ®𝑟4 ≤ 0.5,
−1 else,

(10)

¥ℓ =
(
1− ®𝑈 ×𝑀 ×L

)
, (11)

®𝑀 = (𝑟3 × (1− 𝑟5) + 𝑟5) , (12)

®𝑈1 =

{
0 ®𝑟5 ≤ ®𝑟4 ,

1 else,
(13)

®𝑈2 =

{
0 ®𝑟3 ≤ ®𝑟4 ,

1 else,
(14)

𝑎𝑖 (𝑡) = 𝑟3 ×
[
𝑇2
𝑖 ×

𝜇(𝑡) × (𝑀𝑆 +𝑚𝑖)
4𝜋2

] 1
3

, (15)

𝑅i-norm (𝑡) =
𝑅𝑖 (𝑡) −min(𝑅(𝑡))

min(𝑅(𝑡)) −min(𝑅(𝑡)) , (16)

where ®𝑉𝑖 (𝑡) represents the velocity of the 𝑖-th planet; 𝑟3 and 𝑟4
are two numerical values chosen at random between 0 and 1
according to the uniform distribution; and ®𝑟5 and ®𝑟6 stands for
two vectors of numerical values that are generated arbitrarily in
the range (0, 1). ®𝑋𝑎 and ®𝑋𝑏 are two objects chosen arbitrarily
from the individuals in the current population; F is a variable
including randomly one value of [1, −1] to alter the search
direction.
4. Escaping from the local optimum

In our solar system, most objects rotate counterclockwise
around the sun, but some rotate around the sun in a clockwise
direction. KOA simulates this behavior by using a flag F that
changes the direction of the search, giving the agent a good
chance of scanning the search space accurately, using this be-
havior to escape from the local optimum.
5. Updating the positions of objects

Objects rotate around the sun in their own elliptical orbits.
During rotation, an object moves closer to the sun for a certain
amount of time and then moves away from the sun. KOA models
this behaviour through two main phases: the exploration and
exploitation phases. KOA explores objects far from the Sun
to find new solutions while using solutions closer to the Sun
more accurately when searching for new locations near the best
solutions.

Update the new position of each object away from the sun
with the following equation:

®𝑋𝑖 (𝑡 +1) = ®𝑋𝑖 (𝑡) +F × ®𝑉𝑖 (𝑡) +
(
𝐹𝑔𝑖 (𝑡) + |𝑟 |

)
× ®𝑈

×
(
®𝑋𝑆 (𝑡) − ®𝑋𝑖 (𝑡)

)
, (17)

where ®𝑋𝑖 (𝑡 +1) is the new position of object 𝑖 at time 𝑡+1; ®𝑉𝑖 (𝑡)
is the velocity of object 𝑖 required to reach the new position;

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 6, p. e151677, 2024



Flight quality assessment in full flight phase based on KOA-CNN-GRU-self-attention

®𝑋𝑆 (𝑡) is the best position of the sun found so far, and F is used
as a flag to change the direction of the search.
6. Updating distance with the Sun

To further improve the exploration and exploitation of plan-
ets, the algorithm mimics the typical behavior of the distance
between the sun and the planets; when the planets are close to
the sun, the KOA will focus on optimizing the exploitation op-
erator; when they are far from the sun, the KOA will optimize
the exploration operator. The conversion of the rule will depend
on the regulation parameter ℎ

®𝑋𝑖 (𝑡 +1) = ®𝑋𝑖 (𝑡) × ®𝑈1 +
(
1− ®𝑈1

)
×

(
®𝑋𝑖 (𝑡) + ®𝑋𝑆 + ®𝑋𝑎 (𝑡)

3.0

+ ℎ×
(
®𝑋𝑖 (𝑡) + ®𝑋𝑆 + ®𝑋𝑎 (𝑡)

3.0
− ®𝑋𝑏 (𝑡)

))
, (18)

where ℎ is the adaptive factor used to control the distance be-
tween the Sun and the current planet at time 𝑡, defined as follows:

ℎ =
1
𝑒𝜂𝑟

, (19)

𝑟 is a randomly generated number based on a normal distribu-
tion, and 𝜂 is a linear decreasing factor from 1 to −2

𝜂 = (𝑎2 −1) × 𝑟4 +1. (20)

The cyclic control parameter 𝑎2 gradually decreases from −1 to
−2 throughout the 𝑇 cycles of the optimization process and is
defined as follows:

𝑎2 = −1−1×
©«
𝑡%
𝑇max
𝑇

𝑇max
𝑇

ª®®¬ . (21)

7. Elitism
This step establishes an elite strategy to ensure that the Sun

and planets are always in optimal localized positions, defined as

®𝑋𝑖,new (𝑡+1) =
{
®𝑋𝑖 (𝑡 +1), if 𝑓

(
®𝑋𝑖 (𝑡 +1)

)
≤ 𝑓

(
®𝑋𝑖 (𝑡)

)
,

®𝑋𝑖 (𝑡) else.
(22)

The general flow is shown in the following diagram.
In Fig. 4, the initialization of the object population is carried

out first, including selecting random positions, orbital eccen-
tricity, and orbital period. Then, evaluate fitness values for the
initial population and determine the global best ( ®𝑋𝑆) solution
as the Sun. Next, calculate the Euclidian distance and gravita-
tional force between the Sun and all the objects and calculate
the velocity of all the objects. Generate two random numbers
𝑟1, 𝑟 between 0 and 1. If 𝑟 is less than 𝑟1, use equation (18)
to update the distance between the object and the sun. If 𝑟 is
greater than 𝑟1, use equation (5) and equation (17) to update
the position of the object, and apply an elite strategy through
equation (22) to ensure the optimal position of the planet and
the sun. Finally, evaluate the fitness values of all objects and the

Fig. 4. KOA optimization flowchart

sun and determine the global best ( ®𝑋𝑆) solution as the Sun, thus
obtaining the best solution. If the final solution is not acceptable,
recalculate the Euclidean distance, gravity, and velocities of all
objects between the sun and all objects and repeat the previous
process until the best solution is achieved.

The initial parameter settings of KOA are shown in Table 3.

Table 3
KOA initial parameter table

Data set
Number of
searching

individuals
(planets)

Maximum
number of
function

evaluations

Variable
lower

bounds

Variable
upper

bounds

Accuracy 100 20 [0.001, 1, 50] [0.01, 5, 100]

Promptness 300 20 [0.001, 1, 50] [0.01, 5, 100]

Smoothness 200 20 [0.001, 1, 50] [0.01, 5, 100]

where the lower bound of the variable and the upper bound of the variable
contains the learning rate, the convolutional kernel size, and the hidden layer
unit.

3.5. CNN-GRU-self-attention classification model

The CNN-GRU-self-attention model utilizes the convolutional
layer of CNN for partial effective data feature extraction and
parameter sharing, which effectively improves the efficiency
and speed of feature extraction. Next, a GRU layer is combined
with the CNN layer, which has high training efficiency. Finally,
integrates the results with the self-attention mechanism. This
facilitates better prediction of data. The process of realization is
as follows. Firstly, the data are fed into the convolutional layer
to extract features and activate them using the Relu function;
next, the sequence layer is used as the input to the GRU layer for
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Fig. 5. CNN-GRU-self-attention model

unfolding and tiling; after that, the model is trained by accessing
the discard layer with a discard rate of 0.1; finally, the fully
connected layer is used for the integration of the results and the
linear transformation. The model structure is shown in Fig. 5.

And in our model, we divide the three datasets of operational
accuracy, promptness, and smoothness into three sets of experi-
ments, and optimize the hyperparameters of the CNN-GRU-self-
attention model with KOA, respectively, and the optimization
results are shown in Table 4.

Table 4
CNN-GRU-Self-Attention parameter optimization results

Data set Learning
rate

Convolution
kernel size

Hidden
units

Accuracy 0.0010 [2, 1] 88

Promptness 0.0021 [2, 1] 84

Smoothness 0.0012 [1, 1] 77

3.5.1. CNN model

Since Lecun proposed convolutional neural networks in 1989
[27], they have been widely used in the fields of data prediction
and image recognition [28]. They usually consist of an input
layer, a convolutional layer, a pooling layer, a fully connected
layer, an activation layer, and an output layer.

The pooling layer is usually used for data downscaling, pre-
serving salient features. However, our data has been dimension-
ally reduced by PCA. So we omit the pooling layer (maxPool-
ing2D), to retain the characteristics of the data at the same time,
and to improve the operation speed. The core formula of CNN
is shown as

Input𝑛+1 = ReLU
(
Σ𝑤𝑛 ∗ Input𝑛 + 𝑏𝑛

)
, (23)

where Input𝑛+1 and Input𝑛 denote the input of the next layer
and the current layer, respectively; 𝑤𝑛 denotes the weight of the
current layer; and 𝑏𝑛 denotes the bias function for the current
layer.

3.5.2. GRU model

GRU has been widely used since its introduction in 2014 [29].
Compared with LSTM and RNN, it can alleviate the problem
of gradient disappearance of RNN and achieve the same effect
as the LSTM model with longer training time [30]. The number
of units of GRU is searched by the Keplerian optimization algo-
rithm. For the data set of accuracy, promptness and smoothness
are 88, 84, and 77. The calculation of the GRU unit can be shown
as the formula

𝑅𝑡 = 𝜎 (𝑋𝑡𝑊𝑥𝑟 +𝐻𝑡−1𝑊ℎ𝑟 + 𝑏𝑟 ) , (24)

𝑍𝑡 = 𝜎 (𝑋𝑡𝑊𝑥𝑧 +𝐻𝑡−1𝑊ℎ𝑧 + 𝑏𝑧) , (25)

�̃�𝑡 = tanh (𝑋𝑡𝑊𝑥ℎ + (𝑅𝑡 ⊙𝐻𝑡−1)𝑊ℎℎ + 𝑏ℎ) , (26)

𝐻𝑡 = 𝑍𝑡 ⊙𝐻𝑡−1 + (1− 𝑍𝑡 ) ⊙ �̃�𝑡 , (27)

where 𝑅𝑡 denotes the reset gate; 𝑍𝑡 denotes the update gate;
�̃�𝑡 denotes the candidate’s hidden state; 𝐻𝑡 denotes the hidden
state; ⊙ denotes Hadamard product;𝑊𝑥𝑟 ,𝑊ℎ𝑟 ,𝑊ℎ𝑧 ,𝑊𝑥𝑧 ,𝑊𝑥ℎ,
𝑊ℎℎ denote the weight of the corresponding state; 𝑏𝑟 , 𝑏𝑧 , 𝑏ℎ
denote the bias function for the corresponding state; 𝜎 denotes
the sigmoid active function.

3.5.3. Self-attention model

The self-attention mechanism proposed by the Google machine
translation team in 2017 began to become a research hotspot for
attention neural networks. Each unit of self-attention captures
the information of the whole sentence, and the output can also be
computed in parallel. Self-attention is a special case of general
attention, where𝑄 = 𝐾 =𝑉 . Attention is computed for each unit
in a sequence and for all units in that sequence.

An attention function can be described as mapping a query
and a set of key-value pairs to an output, where the query, keys,
values, and output are vectors. The output is computed as a
weighted sum of the values, where the weight assigned to each
value is computed by the compatibility function of the query
with the corresponding keyword. The matrices 𝑄, 𝐾 , and 𝑉 are
the query, key value, and value, respectively.

The input consists of queries and keys of dimension 𝑑𝑘 , and
values of dimension 𝑑𝑣 . We compute the dot products of the
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query with all keys and divide each by
√
𝑑𝑘 , and apply a softmax

function to obtain the weights on the values [31].
The output matrix is calculated as

Attention(𝑄, 𝐾, 𝑉) = softmax
(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉. (28)

4. FLIGHT QUALITY CLASSIFICATION AND EVALUATION
EXPERIMENT

4.1. Data cleaning

The data in this article comes from the QAR data provided by
the Chinese Society of Optimization, Overall Planning, and Eco-
nomic Mathematics for 2370 flights on the Boeing 737 series air-
craft. In the process of data collection, transmission and storage,
the raw data contains some outliers, poor integrity, high noise,
and low consistency due to a variety of factors such as hardware
equipment limitations, variable collection environment, trans-
mission validity, and storage reliability, which creates a great
obstacle to the subsequent analysis. Therefore, it is necessary to
clean the data and improve the quality of the data [32].
1. Data streamlining. Remove objective data items in the data

table that are not relevant to the study, such as “time”, “air-
port of departure” and “aircraft weight”.

2. Missing value processing. For the missing values of some
fixed characteristics, this paper deletes the object; for the
rest of the data, this paper carries out Hermite interpolation
on the missing data items.

4.2. Model training

We used Matlab R2023b, SPSSPRO1.1.21, and Origin 2021 for
data analysis and experiments. We divided the data into three
datasets according to operational smoothness, operational accu-
racy, and operational promptness for three separate experiments,
and the number of samples in each experimental dataset was
2367. 70% of the data were randomly selected as the training
set and the remaining 30% as the test set according to the ratio of
7:3. Each principal component score was brought into the model
as input and the composite score as output for training. The
operational smoothness, operational accuracy, and operational
promptness KOA fitness curves are as follows, respectively:

As can be seen from Fig. 6, the degree of convergence is
different for different datasets and different numbers of planets
(number of searching individuals). Therefore, we take 200, 300,
and 100 as the number of searching individuals for the Kepler
optimization algorithm for smoothness, accuracy, and prompt-
ness datasets, respectively, i.e. for smoothness, accuracy, and
promptness datasets, the number of planets for KOA is 200, 300
and 100, respectively. At this time, the error is fundamentally
converged.

Figure 7 shows the iterative change curves of the accuracy of
operation smoothness, accuracy, and promptness classification
with the iterative change curves of the error. As can be seen from
the figure, when the number of iterations is small, the accuracy
of the model is low, the error is large, and the fluctuations are
all large, and the model is still learning. With the growth of

Fig. 6. KOA fitness curves

Fig. 7. Iteration change curve of accuracy & error

the number of iterations, the model accuracy shows an upward
trend, but the fluctuations are large and unstable. Although the
error decreases, the fluctuations are still large. The number of
iterations approximates the set value (operation smoothness data
for 200 times, operation accuracy data for 100 times, operation
promptness data for 200 times). We can see that the accuracy
of the model fluctuates in a higher range, the amplitude of the
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iteration is smaller than the beginning of a lot of times, and it
basically tends to be stable. The error diminishes, and in addition
to a few big fluctuations it tends to be stable, and the model
has completed learning. To facilitate training and graphing, we
transform the categories A, B, C, D into 1, 2, 3, 4 for training.

4.3. Model performance

After training, the prediction set data is forecast. To further val-
idate the effectiveness of the model effectively, we evaluate the
effect of the KOA-CNN-GRU-self-attention model by four eval-
uation indexes, namely, ACCURACY, RECALL, PRECISION
& F1-SCORE [33], which are formulated as follows [34]:

precision =
𝑇𝑃

(𝑇𝑃+𝐹𝑃) , (29)

recall =
𝑇𝑃

(𝑇𝑃+𝐹𝑁) , (30)

accuracy =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁 +𝐹𝑁) , (31)

F1-score =
2𝑃 ∗𝑅
(𝑃+𝑅) , (32)

where
𝑇𝑃 – True Positive, predicted positive, actual positive, suc-

cessfully predicts positive samples as positive;
𝐹𝑃 – False Positive, predicted as positive, actually negative,

incorrectly predicted the negative sample as positive;
𝑇𝑁 – True Negative, Predicted Negative, Actual Negative,

Successfully Predicted Negative Sample as Negative;
𝐹𝑁 – False Negative, predicting with negative and actu-

ally positive, incorrectly predicting positive samples
as negative;

𝑃 – precision;
𝑅 – recall.

The confusion matrices for the three datasets were derived as
shown in Figs. 8–10.

From Figs. 8–10, it can be seen that for the operational
smoothness, accuracy, and promptness dataset, the accuracy
of the model is above 95%, with operational smoothness of

Fig. 8. Confusion matrix of operational smoothness

Fig. 9. Confusion matrix of operational promptness

Fig. 10. Confusion matrix of operational accuracy

98.7%, operational accuracy of 95.1%, and operational prompt-
ness of 97.2%, which is much better than the 90% of the existing
model [4]. For the fourth category, the recall rates are all above
98%, and the precision is higher than or equal to 94.1%, which
is better than the 94.1% of the existing model [4].

4.4. Comparative analyses

We compare the constructed models with XGBoost [35], QDA,
CNN, CNN-self-attention, GRU-self-attention, and CNN-GRU-
self-attention, and by analyzing the accuracy, recall, precision,
and F1-score of different models, we can compare the fitting
effect of different models.

The comparison graph of prediction accuracy is shown in
Figs. 11–13. From the figures, it can be seen that in the neu-
ral network algorithm represented by CNN, the decision tree
algorithm represented by XGBoost, and the discriminant anal-
ysis algorithm represented by QDA, the accuracy of CNN is
higher than that of the other two basic models, which is the
main reason why the CNN algorithm is chosen for optimization
in this paper. After adding a self-attention mechanism, the effect
of CNN is obviously improved. GRU can effectively control the
information flow through the gating mechanism to overcome the
problem of gradient vanishing and has a simple structure and
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Fig. 11. Comparison of accuracy of operational smoothness

Fig. 12. Comparison of accuracy of operational accuracy

Fig. 13. Comparison of accuracy of operational promptness

high training efficiency. After replacing CNN with GRU, it is
found that the effect of CNN-self-attention is comparable with
GRU-self-attention. So we fused CNN with GRU, combined
the advantages of CNN and GRU, and added the self-attention
mechanism, and found that the accuracy was much higher than
the model before fusion. To seek a better classification effect and
give full play to the advantages of the CNN-GRU-self-attention
model, this paper uses KOA to optimize the model hyperpa-
rameters to achieve a better combination. It can be seen that
the accuracy of the CNN-GRU-self-attention model after KOA
optimization has been improved to a certain extent, which is

better than all other models. To be able to distinguish the clas-
sification effects of different models more comprehensively and
intuitively, based on comparing the accuracy, this paper also
compares and analyses the precision, recall, and F1-score of all
the models, and the results are as shown in Figs. 14–16.

Fig. 14. Comparison of precision & recall & F1-score of operational
smoothness

Fig. 15. Comparison of precision & recall & F1-score of operational
accuracy

Fig. 16. Comparison of precision & recall & F1-score of operational
promptness
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From Figs. 14–16, it can be seen that the three base models
CNN, XGBoost, and QDA are not so good for classification,
but CNN is still better than the other two base models overall.
And the fusion models all tend to become better. KOA-CNN-
GRU-self-attention has better data in the precision, recall, and
F1-score in all categories of the three metrics of operational
smoothness, accuracy, and promptness. Although the metrics
data of KOA-CNN-GRU-self-attention is slightly worse than
CNN-GRU-self-attention in some of the categories, it is better
than CNN-GRU-self-attention in general. It proves the effec-
tiveness of the KOA optimization and the excellent effect of the
KOA-CNN-GRU-self-attention classification model.

From Table 5, it can be seen that the KOA-CNN-GRU-self-
attention accuracy is better than the other models, no matter the

operational smoothness, operational accuracy, or operational
promptness. In summary, the KOA-CNN-GRU-self-attention
assessment model has good classification prediction perfor-
mance for flight quality assessment and can effectively improve
the efficiency of flight quality assessment.

5. CONCLUSIONS

Flight quality and flight safety are inseparable, and QAR data
covers most of the important data of flight quality and engine
performance status. Using QAR to classify flight quality and
identify over-limit and dangerous operations is of great signifi-
cance to improve the existing flight training system and enhance

Table 5
Data table of classification effects of different models

Models Cate-
gories

Operational accuracy Operational promptness Operational smoothness
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

KOA-CNN-
GRU-self-
attention

A

0.9507

0.9478 0.9646 0.9561

0.9718

0.9735 0.9735 0.9735

0.9873

0.9912 1.0000 0.9956
B 0.9463 0.9463 0.9463 0.9707 0.9587 0.9647 0.9876 0.9835 0.9855
C 0.9617 0.9339 0.9476 0.9634 0.9793 0.9713 0.9875 0.9793 0.9834
D 0.9407 0.9823 0.9610 0.9911 0.9823 0.9867 0.9826 1.0000 0.9912

CNN-GRU-
self-

attention

A

0.9521

0.9035 0.9810 0.9406

0.9620

0.9231 0.9897 0.9552

0.9775

0.9813 0.9722 0.9767
B 0.9436 0.9544 0.9490 0.9605 0.9681 0.9643 0.9630 0.9873 0.9750
C 0.9726 0.9342 0.9530 0.9721 0.9569 0.9644 0.9874 0.9671 0.9771
D 0.9820 0.9561 0.9689 0.9804 0.9346 0.9569 0.9836 0.9836 0.9836

GRU-self-
attention

A

0.9408

0.9710 0.8790 0.9227

0.9211

0.9800 0.8200 0.8929

0.9479

0.9340 0.9610 0.9473
B 0.9290 0.9440 0.9033 0.8720 0.9530 0.8452 0.9520 0.9440 0.9565
C 0.9290 0.9650 0.9364 0.9310 0.9390 0.9107 0.9300 0.9670 0.9480
D 0.9650 0.9480 0.9364 0.9620 0.9270 0.9419 1.0000 0.9000 0.9369

CNN-self-
attention

A

0.9183

0.9407 0.8810 0.9098

0.9549

0.9450 0.9537 0.9493

0.9521

0.9737 0.9569 0.9652
B 0.9057 0.9286 0.9170 0.9607 0.9442 0.9524 0.9461 0.9744 0.9600
C 0.8932 0.9457 0.9187 0.9459 0.9722 0.9589 0.9639 0.9339 0.9486
D 0.9737 0.8880 0.9289 0.9735 0.9402 0.9565 0.9151 0.9417 0.9282

CNN

A

0.8746

0.8450 0.8300 0.8374

0.9056

0.8710 0.8890 0.8799

0.9183

0.9240 0.9170 0.9205
B 0.8660 0.8760 0.8476 0.8820 0.9190 0.8855 0.9230 0.9040 0.9200
C 0.8790 0.8860 0.8710 0.9350 0.8950 0.9001 0.8860 0.9460 0.9134
D 0.9160 0.8910 0.8775 0.9240 0.9170 0.9269 0.9670 0.8990 0.8949

QDA

A

0.8254

0.8764 0.6964 0.7761

0.8732

0.9659 0.7589 0.8500

0.9366

0.9817 0.9469 0.9640
B 0.8320 0.8765 0.8537 0.8506 0.9136 0.8810 0.9615 0.9298 0.9454
C 0.7893 0.9095 0.8451 0.8370 0.9339 0.8828 0.8897 0.9630 0.9249
D 0.8706 0.6607 0.7513 0.9560 0.7699 0.8529 0.9519 0.8839 0.9167

XGBoost

A

0.6170

0.7568 0.4553 0.5686

0.6580

0.7903 0.5678 0.6608

0.7020

0.8421 0.5565 0.6701
B 0.5315 0.6609 0.5892 0.6694 0.6803 0.6748 0.6842 0.7647 0.7222
C 0.6431 0.6308 0.6369 0.6026 0.7137 0.6535 0.6392 0.7409 0.6863
D 0.6979 0.6837 0.6907 0.7172 0.5635 0.6311 0.8421 0.6154 0.7111

PCA-PSO-
SVM [4] D 0.9000 0.9410 – – 0.9000 0.9410 – – 0.9000 0.9410 – –
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flight safety. In this paper, we make full use of the QAR data,
propose three kinds of indicators to measure flight quality ac-
cording to the existing standards, and utilize PCA to conduct a
comprehensive evaluation, substitute it into the model training,
and finally propose an objective full-stage flight quality eval-
uation model based on KOA-CNN-GRU-self-attention, which
is free from the one-sidedness of the previous research, and
improves the accuracy of the classification, and the method
is new and novel. The KOA algorithm optimizes the parame-
ters of CNN-GRU-self-attention, and automatically optimizes
and adjusts the parameters of CNN-GRU-self-attention while
successfully and reasonably evaluating flight quality, and the
introduction of KOA can automatically adjust the parameters
in the model for different data. This adjustment method can
also adjust the parameters of other models in other deep learn-
ing algorithms, such as the number of convolutional kernels,
the probability of discarding layers, etc., which is expected to
achieve better results when training 3D image data. Meanwhile,
with the progress of technology, it has become possible to in-
stall real-time transmission of QAR data recording systems on
civil airliners in the future, and this paper is of strong practi-
cal significance to reasonably analyze and evaluate the complex
QAR data to evaluate the flight quality, and it is also expected
to provide a more reasonable categorization of the flight level
of each pilot.

Although the KOA-CNN-GRU-self-attention model is more
comprehensive for the analysis of QAR data, this study does not
combine the environmental factors and other special circum-
stances for a comprehensive analysis, and future research can
consider more comprehensive factors. Moreover, when choos-
ing KOA hyperparameters and optimized hyperparameters in
this paper, the optimum achieved may be a local optimum, and
in the future, the idea of a confidence test can be borrowed to
set a credibility index to measure the optimized parameters as
the global optimum.
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