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Abstract.. In  a  very  broad  range  of  industrial  applications, especially  in  electric  vehicles, permanent  magnet synchronous 
motors (PMSMs) play an important role. Any failure in PMSMs may cause possible safety hazards, a drop in productivity, and 
expensive downtime. Therefore, their reliable operation is essential. Accurate failure identification and classification allow for 
addressing problems before they escalate, which helps ensure the seamless operation of PMSMs and reduces the likelihood of 
equipment failure. Therefore, in this paper, novel failure identification methods based on gated recurrent unit (GRU) and long 
short-term memory (LSTM) from recurrent neural network (RNN) methods are proposed for early identification of stator inter- 
turn short circuit failure (ISCF) and demagnetization failure (DF) occurring in PMSMs under multiple operating conditions. The 
proposed methods use three phase current signals recorded from the experimental study under multiple operating conditions of 
the  motor  as  input  data. In  the  proposed  methods, both  feature  extraction  and  classification  are  executed  within  a  unified 
framework. The experimental outcomes obtained demonstrate that the proposed methods are able to identify a total of six unique 
motor conditions, including three ISCF variations and two DF variations, with high accuracy. The LSTM and GRU approaches 
predicted  the  identification  of  failures  with  98.23%  and  98.72%  accuracy,  respectively. Compared  to  existing  methods,  the 
success of the proposed approaches is satisfactory. In addition, LSTM and GRU-based failure identification methods are also

compared in detail for accuracy, precision, sensitivity, specificity and training time in this study.
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1. INTRODUCTION 

Electric vehicles (EVs) are of great importance for a 

sustainable future and environmental protection. Carbon 

emissions and air pollution caused by traditional fossil fueled 

vehicles cause serious environmental problems worldwide. 

EVs minimize these problems thanks to their zero emission 

operation. In addition, EVs, which attract attention with their 

energy efficiency and low operating costs, increase energy 

security by reducing dependence on fossil fuels. In this 

context, Permanent Magnet Synchronous Motor (PMSM) 

technology used in electric vehicles maximizes vehicle 

performance and energy savings by offering high efficiency 

and power density. PMSMs also stand out as the ideal power 

transmission system of electric vehicles with their low noise 

levels and long-lasting structures. As EVs become more 

widely adopted, the role of PMSMs in these vehicles becomes 

increasingly important. Advanced failure identification 

systems in PMSMs ensure early identification and resolution 

of potential issues, contributing to the reliability and 

efficiency of EVs. This capability not only enhances driver 

confidence but also supports the broader acceptance of EVs as 

a dependable mode of transportation [1]. PMSMs are widely 

used as basic electrical machines in renewable energy 

production, railway systems and many other industries, apart 

from electric vehicles, due to their precise torque control, high 

speed operation and high power density [2]. Several failures 

in electric motors may arise despite continuous monitoring of 

the motor. Failures in PMSMs can result in reduced motor 

efficiency and associated system performance, reduced 

industrial production and potential safety hazards. Therefore, 

it is essential to diagnose or monitor the condition of PMSMs. 

The main components of the PMSM, the stator and rotor, 

specify the reliability and performance of the whole motor 

associated system. Inter-turn short-circuit failure (ISCF) and 

permanent magnet (PM) demagnetization failure (DF) are 

prevalent serious failures in the stator windings and rotor of 

PMSMs, respectively. These failures are mainly because of 

manufacturing deficiencies as well as thermal, mechanical, 

electrical and other environmental influences [3]. 

The rotor irreversible demagnetization is a serious problem 

that distorts the motor properties and reduces the output torque 

of PMSMs. The main reason for this failure is the condition 
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related to its operation. The electric current generates a 

reverse magnetic field that resists the residual induction of the 

permanent magnets in normal operation of the PMSMs. 

Because of this repeated operating condition, permanent 

magnets can undergo either partial demagnetization, affecting 

only part of the pole, or uniform demagnetization, affecting 

the entire pole. The permanent magnet can also be 

demagnetized by high temperatures [4]. Turn short-circuit 

commonly happen because of damage to the stator winding 

insulation, which is caused by electrical, thermal, and severe 

mechanical stresses that motors endure during operation, 

typically in challenging environmental conditions. Other 

factors that may speed up the deterioration of the stator 

winding insulation and lead to a short circuit include 

chemicals that could quicken the ageing of the insulation, field 

weakening, operation at loads in excess of the rated values, 

and high voltage oscillations of the inverters driving the 

motors [5]. The ISCF results in a high-amplitude current 

flowing through a short circuit turns, causing local 

overheating of the stator winding, which can potentially cause 

significant damage to the motor and require it to be removed 

from service [6]. In order to prevent unforeseen downtimes in 

processes involving these motors due to operational 

interruptions, it is vital to consistently monitor the condition 

of the stator winding and identify and classify any damage at 

the earliest opportunity [5]. Early identification of failures 

allows for the appropriate scheduling of motor maintenance, 

resulting in lower repair expenses, reduced delays, and 

minimized production losses. Furthermore, it is crucial for 

sustainability and environmental issues because it decreases 

the creation of extra waste. 

Given the previously noted risks from insufficient 

implementation of diagnostic methods and the increasing 

prevalence of PMSMs, it appears essential to diagnose their 

faults. In recent years, both university researchers and 

industry professionals have shown significant interest in it. To 

fulfil these demands, the improvement of such methods forces 

to search for innovative solutions and the possibility of using 

the latest technologies. Choosing and using suitable artificial 

intelligence (AI) methods and signal processing techniques 

can enable the creation of fully automated systems for real-

time motor condition monitoring. 

There are two primary approaches for identifying and 

classifying motor failures: the traditional method and the AI-

based technique. Traditional methods use signal processing 

algorithms. Wavelet transform (WT), discrete wavelet 

transform (DWT) [7], Fast Fourier transform (FFT) [8], 

higher order transforms, and Hilbert-Huang transform (HHF) 

[9] are some of these methods. Traditional methods use 

signals such as axial flux, torque, vibration, current, voltage 

obtained from the motor as input variables to extract failure 

symptoms that can be used in failure identification. The most 

commonly used of these signals are the stator three phase 

currents [10]. Harmonics of the phase current spectrum, only 

3rd harmonic [11], 5th and 7th harmonics [12] and only 9th 

harmonic [9]  were used as ISCF identification indicators. In 

Ref. [13], it was proposed that the frequency band detail 

coefficients obtained by applying DWT to stator phase 

currents can be employed in turn short-circuit failure 

identification. Manala et al. [14] suggested the failure 

indicator derived from the reactive power excess for turn 

failure identification.  In Ref. [8], torque's the 2nd and 4th 

harmonic components were proposed as ISCF symptoms for 

ISCF identification. HHT [15], DWT and CWT [16] methods 

were proposed for the identification of demagnetization 

failure in PMSM. Delgado et al. [17] proposed the Vold-

Kalman filter for the identification of partial demagnetization 

failure in PMSM. Mustafa et al. [18] investigated the effect of 

demagnetization failure on PMSM by finite element 

technique. Eker and Özsoy [19] investigated the effects of 

demagnetization failure on PMSM performance and 

efficiency. Ko et al. [20] proposed the 8th harmonic of the 

stator current as the fault indicator for the detection of 

demagnetization failure in PMSM.  However, these traditional 

fault identification methods have a several constraints. The 

computational complexity of both Fourier and wavelet 

transforms is notably high, significantly constraining their 

practical use in real-time signal processing. In addition, the 

Fourier transform and matched filters are more appropriate for 

failure identification when systems operate under steady-state 

conditions. However, in real-life applications of industrial 

machines, including PMSMs, they often operate under 

transient or dynamic state conditions. Failures can also occur 

during non-steady states, requiring diagnostic methods that 

are applicable and versatile enough to identify failures over a 

variety of operating conditions. These obstacles highlight the 

significance of investigating AI-driven failure identification 

techniques that can overcome the shortcomings of traditional 

methods while also performing well under dynamic, real-

time, and various operating conditions [21], [22]. 

The AI-driven approaches extract and analyze information 

from past fault data [23]–[25]. AI-based failure identification 

methods use signal processing algorithms and machine 

learning approaches in a hybrid manner [26]. Signal 

processing algorithms are applied to motor signals to obtain 

failure features. These features are then used as input data in 

machine learning methods to identify and classify the failure. 

Pietrzak and Wolkiewics [27] proposed a hybrid approach 

combining continuous wavelet transform (CWT) and 

convolution neural networks (CNNs) for the identification of 

turn short-circuit failure. In the proposed approach, scalogram 

images obtained by applying CWT to current signals were 

employed as the input data of CNN. In Ref. [28], the 2nd and 

4th harmonic components of the torque obtained from the FFT 

analysis of the torque signal were used as input data in support 

vector machines (SVM), artificial neural networks (ANNs), k-

nearest neighbour  (KNN) methods to identify and classify the 

turn short circuit failure. Skowron [29] proposed the transfer 

learning method for inter-turn fault identification in PMSM. 

Haddad et al. [30] proposed AdaBoost method based on 

vibration and vibration-current data combination for stator 

fault diagnosis in PMSM. In the proposed method, the use of 

features based on vibration and current data combination has 

achieved more successful fault prediction results than the use 
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of features based only on vibration. Shih and et al. [31] 

suggested SVM and data-driven CNN approaches for the 

identification of ISCF in PMSM. But, the proposed methods 

were implemented for one speed and two load cases and the 

low severity of ISCF identified in the study was 5%. In Ref. 

[32], gradient boosting classifier was proposed for the 

identification of turn short circuit failure in PMSM. Statistical 

features obtained from current and vibration signals were 

employed as input features of the suggested classifier and the 

study was performed for a single speed condition. The turn 

short-circuit failure identification success of the proposed 

method was 95%. In Ref. [33], the one-dimensional local 

binary patterns (1D-LBP) approach was suggested for feature 

extraction from current and voltage signals for identification 

of turn short-circuit failure in PMSM. The features obtained 

from 1D-LBP were used in the KNN algorithm and the turn 

failure identification success was 90%. While this approach 

can identify turn short-circuit across various operating 

conditions, the generated histogram lacks the capability to 

differentiate between distinct fault types. Lee et al. [34] 

proposed a recurrent neural networks (RNNs) approach for 

the identification of turn short-circuit failure in PMSM. Motor 

speed and three phase current were employed as input data for 

the suggested method. But the study was fulfilled for two 

different operating speeds. Kao et al. [35] suggested a hybrid 

approach combining wavelet packet transform (WPT) and 

1D-CNN for the identification of bearing and 

demagnetization failures in PMSM. In the proposed approach, 

WPT was used for feature extraction from three-phase current 

and CNN was used as a classifier. In Ref. [36], CNN method 

was proposed for the identification of demagnetization failure 

in PMSM. The input data of the CNN classifier was the 

images obtained by applying CWT to three phase current 

signals. The lowest level of demagnetization failure identified 

in the proposed approach was12.5%. Youn et al. [37] 

proposed a hybrid approach combining FFT and SVM for the 

identification of turn short-circuit and demagnetization 

failures in PMSM. The FFT was applied to the three-phase 

back electromotive force voltages and the fault harmonics 

obtained were used as the input data of the SVM classifier for 

failure identification. However, the proposed approach was 

applied for two different speed cases. 

Although existing studies on fault diagnosis with deep 

learning and classical machine learning methods have shown 

significant success, works on early failure identification under 

multiple operating conditions of the motor remain limited. 

Another shortcoming of the existing methods is that they are 

used for the detection of uniform faults. An important 

scientific challenge in the field of diagnostics research is to 

develop methods that could identify failures at an early stage. 

In light of these constraints, this paper suggests innovative 

fault diagnosis models specifically crafted to tackle and 

alleviate these bottlenecks, marking a significant 

advancement towards more efficient and resilient PMSM 

failure identification methods. The LSTM and GRU models 

have been used to diagnose faults in induction [38]–[42]and 

brushless DC motors [43]. However, LSTM and GRU 

methods have not been utilized to identify demagnetization 

and inter-turn short-circuit failures in PMSMs, distinguishing 

the type of failure, and determining the severity of the failure. 

Therefore, novel identification of fault methods based on the 

developed LSTM and GRU are proposed for early detection 

of ISCFs and DFs in PMSM under different operating 

conditions. The following outlines the contributions of this 

paper: 

 This paper seeks to enhance the dependability and 

sustainability of industrial processes by emphasizing the 

potential of innovative GRU and LSTM models for 

effective identification and classification of failures in 

PMSM. 

 The proposed failure identification methods were 

performed for six different fault states, including three 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Overview of the proposed methods 
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different ISCF states (2%, 12.5%, 25%) and two different 

DF (5%, 10%) states and under different operating 

conditions of the motor (8 various speed states and 6 

various loading states).   

 With the proposed novel fault detection methods based on 

LSTM and GRU, it is possible to effectively detect ISCFs 

(2%) and DFs (5%) in PMSM at the initial stage, classify 

the fault type and determine the fault severity with high 

accuracy. 

 By reducing repair expenses and extending equipment 

lifespan, the proposed models' efficiency and accuracy 

can offer cost savings for industries. 

The flowchart of the failure identification approaches offered 

in this paper is given in Fig. 1.  

 

2. EXPERIMENTAL SETUP AND DATA ACQUISITION 

For diagnosing purposes the ISCF and DF occurring in the 

PMSM, a total of 5 identical motors, three motors with 2%, 

12.5%, 25% ISCF and two motors with 5% and 10% DF, were 

manufactured at the FEMSAN electric motor factory. The turn 

fault was created in the motor’s single phase. There are 280 

turns in each phase of the motors. 6 turns for 2% ISCF, 35 

turns for 12.5% ISCF and 70 turns for 25% ISCF are short 

circuited. Through terminal connection, the motors were used 

for both healthy and faulty conditions. In the factory 

environment, motors with 5% and 10% demagnetization 

faults were produced. In order to create this fault in a 

controlled manner, the permanent magnets in the rotor were 

baked at high temperature for a certain period of time, 

resulting in a deliberate weakening of the magnetic properties 

of the magnets. Thus, the magnetic field strength of the 

magnets was reduced at the desired rate.  While ISCF motors 

were manufactured to operate in both healthy and faulty 

states, DF motors were manufactured to operate only in faulty 

states. Table 1 lists the properties of the PMSMs employed in 

the experimental investigation. 

The experimental setup consists of a voltage source inverter 

drive, a DC eddy current brake, a data acquisition board, a 

torque meter, and voltage and current sensors (see Fig.2). The 

DC eddy current brake was utilized to load the motor at the 

required ratios. The eddy brake and the tested motor were 

effectively integrated to minimize the impact of vibration on 

the motor signals. To operate the motor at the desired 

rotational speed, the FEMSAN servo driver unit was utilized. 

With the NI 6341-USB DAQ data acquisition card, 

information from current, voltage and moment sensors is 

collected and transferred to the computer. The DAQ card has 

8 analogue inputs and 2 analogue outputs. In the experimental 

set, 7 analogue inputs of the DAQ card were used, three inputs 

for three phase current, three inputs for three phase voltage 

and one input for moment data. The data collected by the 

DAQ card was recorded with its analogue output in the 

interface program written in LabVIEW on the computer. With 

the experimental setup, the current, voltage and torque signals 

of the motor were recorded at the desired speed and loading. 

The motor data were measured at 10 kHz sampling frequency 

through sensors connected to the DAQ board and recorded to 

the computer using the LABVIEW software.  

For each PMSM, three-phase current data was acquired at 0%, 

25%, 50%, 75%, 100% and 110% load and at 800, 1000, 1200, 

1400, 1600, 1800, 2000 and 2200 rpm. Three-phase current 

data was collected under 48 different scenarios, comprising 

six varying load states and eight distinct speed states. For 

motors with ISCF, the current data was recorded for 48 

different cases for both healthy and faulty conditions, whereas 

for motors with DF, current data was recorded for 48 different 

cases only for the faulty condition. Three phase current data 

were recorded for 1 s at a sampling frequency of 10 kHz for 

each case. The number of data points of the current recorded 

for each case is 10000.  Table 2 shows the number of samples 

TABLE 1. Parameters of the motors utilized in the experimental 

kit 

Rated torque 3 Nm 

Number of turns / per phase 280 

Rated power 1 kW 

Phase Winding Resistance 7.6 Ω 

Coil Inductance 7.16 mH 

Number of poles 8 

Maximum Speed 3000 rpm 

Inertia torque 0.0001854 kgm2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Experimental setup 

 

 

 

TABLE 1 Specifications of test motors 

Number of turns / per phase 280 

Rated power 1 kW 

Rated torque 3 Nm 

Number of poles 8 

Coil Inductance 7.16 mH 

Phase Winding Resistance 7.6 Ω 

Inertia torque 0.0001854 kgm2  

Maximum Speed 3000 rpm 

 

 
TABLE 2. Number of samples recorded from each motor 

2% ISCF PMSM 12.5% ISCF PMSM 25% ISCF PMSM 5% DF PMSM 10% DF PMSM 
Total number of 

samples 

Healthy Faulty Healthy Faulty Healthy Faulty Faulty Faulty - 

48 48 48 48 48 48 48 48 384 
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of motor signals recorded in the healthy, ISCF and DF states 

of the PMSM. 

Since deep learning methods work with large data sets, the 

current data recorded for each state was segmented and 0.1 s 

segments were created (see Fig. 3). This means that the 

number of data points in each segment will be 1000. The total 

number of samples for a case of three-phase current data 

obtained from the motor increases from 48 to 480. Since the 

signals of three different short-circuit faulty PMSMs are 

recorded in both faulty and healthy states, the total number of 

samples of the PMSM in healthy state is 3x480=1440. The 

total number of samples for each of the 2% ISCF, 12,5% 

ISCF, 25% ISCF, 5% DF and 10% DF cases is 480. The total 

number of samples of three phase current data of PMSM for 

each case is given in Table 3. After randomly mixing the data 

set in Matlab environment, 30% of the data set was utilized as 

test data, 10% as validation data and 60% as training data. 

3. DEEP LEARNING METHODS FOR FAULT DETECTION  

Deep learning, which uses multi-layer neural networks, is a 

branch of machine learning (hence the term "deep"). These 

networks excel at extracting intricate patterns from vast 

datasets, rendering them suitable for tasks such as speech 

recognition and image, as well as natural language processing, 

and, more recently, fault detection in motors [44]. The use of 

deep learning in motor fault detection represents a significant 

advancement over traditional methods. Using neural 

networks' capabilities to analyze complex data, industries can 

achieve more reliable and efficient maintenance processes, 

ultimately leading to increased productivity and reduced 

operational costs [39]. However, successful implementation 

requires careful consideration of data acquisition, model 

selection, and computational resources. In this paper, novel 

GRU and LSTM approaches are used for the identification of 

failures, diagnosis of failure type and severity in PMSM. 

3.1. Long Short-Term Memory (LSTM) 

LSTM, a variant of Recurrent Neural Network (RNN), finds 

extensive application in handling sequential data, such as time 

series or natural language. LSTMs were introduced to handled 

the issue of vanishing/exploding gradients that traditional 

RNNs suffer from when dealing with long-term dependencies. 

The key to LSTMs is their unique cell state and gating 

mechanism [39]. An LSTM cell comprises of a cell state and 

three types of gates - a forget gate (𝑓𝑡 ) an input gate ( 𝑖𝑡), and 

an output gate ( 𝑜𝑡), as shown in Fig.4. The movement of 

information entering and exiting the cell state are controlled 

by these gates. The forget gate decides which information 

from the earlier cell state should be retained or eliminated. 

From the present input and prior concealed condition, fresh 

data to be preserved in the existing cell's status is regulated by 

the entry portal. How much of the current cell state is used for 

the final output is determined by the output gate. This gating 

mechanism enables LSTMs to choose what information to 

retain or discard across lengthy sequences, helping to address 

the vanishing gradient problem. The cell state acts like a 

conveyor belt, transferring relevant information across the 

entire sequence chain. LSTMs are able to effectively capture 

long-range dependencies, which traditional RNNs struggle 

with it [43], [45], [46].  

LSTMs have proven to be highly effective for various 

sequential data modeling tasks, such as time series 

forecasting, speech recognition, machine translation, and 

natural language processing. They have become a staple 

component in many state-of-the-art deep learning 

architectures for handling sequential data. In recent years, the 

LSTM model has been widely utilized in failure identification 

of induction [38]–[42] and brushless DC motors [43], [47] and 

has achieved successful results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Three phase current segmentation 

TABLE 3. Number of samples for each class of the 3-phase 
current dataset 

Classes Healthy  %2 

ISCF 

%12,5 

ISCF 

%25 

ISCF 

%5 

DF 

%10 

DF 

Total 

samples 

Number 

of 

samples 

1440 480 480 480 480 480 3840 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. The LSTM's basic structure 
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3.2. Gated Recurrent Unit (GRU) 

GRUs are an alternative kind of gated RNN, introduced as a 

simpler alternative to LSTMs. Like LSTMs, GRUs are 

developed to solve the disappearing gradient issue of 

traditional RNNs when dealing with long sequences. The key 

components of a GRU are the candidate hidden state, update 

gate, and the reset gate, as shown in Fig.5. The reset gate 

dictates the extent to which the previous memory is erased and 

refreshed based on the new input. The update gate regulates 

the extent to which information from both the preceding 

hidden state and the current input contributes to the 

calculation of the new hidden state [45]. Specifically, the 

GRU merges the forget and input gates found in LSTM into a 

unified update gate. It combines the cell state and hidden state 

vectors into a unified fully-gated hidden state vector. This 

makes the GRU model simpler and more efficient than the 

LSTM. The reset gate allows the GRU to drop information 

from the previous hidden state, while the update gate 

determines how much of the new hidden state comes from the 

previous one. This gating mechanism helps GRUs better track 

long-range dependencies in subsequent data [48]. 

3.3. Design of LSTM and GRU for fault detection 

In this paper, two different deep networks were developed and 

assessed as illustrated in Fig. 6. There are three recurring 

layers in the architecture of each of these models. The models 

offered are composed of Model I (a three-layer LSTM) and 

Model II (a three-layer GRU). Adding too many layers 

overcomplicates networks and can lead to overfitting. Thus, 

the study presented only a three-layer network. Fully 

connected layer with softmax activation function is connected 

to the hidden layer in these designed models. The parameters 

used to train the designed GRU and LSTM models are given 

in Table 4. The same training parameters and the same 

architectural structures were employed to compare the 

classification success of the GRU and LSTM approaches. The 

classification layer computes the cross-entropy loss, which is 

then used in the optimization process to adjust the network 

weights. Adam is selected as the optimizer. The learning rate 

is set to 0.001. 

4. RESULTS AND DISCUSSION 

The designed GRU and LSTM approaches were utilized to 

diagnose the type and severity of the failures. 30% of the 

dataset was employed for testing, 10% for validating and 60% 

for training.  The models were created in Matlab environment. 

The entire study was executed on a computer with an Intel ® 

Core ™ i7-6500U CPU @ 2.50 GHz and 16 GB of RAM. 

Accuracy and loss value graphs of the training progress of the 

proposed models are given in Figure 7. Graphs of training 

accuracy and loss give insights into the model's progression 

throughout the training period. A steady rise in the accuracy 

graph and a consistent drop in the loss graph during training 

suggest that the approach is undergoing stable training. 

During training, it's crucial for the gap between the validation 

and training accuracy curves to narrow, leading to their 

convergence. This indicates that the model is not overfitting 

and is generalizing effectively. It's evident that the models do 

not exhibit overfitting when analyzing the training progress 

graphs of LSTM and GRU in Figure 7. In this way, it is 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. LSTM and GRU models 

 

 

 

 

 

 

 

 

 

 

Fig.5. The GRU's basic structure 

 

 

 

 

TABLE 4. LSTM and GRU's training options 

Optimizer Adam 

Minibatch size 32 

Validation frequency 497 iterations 

Number of epochs 300 

Learning Rate 0.001 
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possible to say that the models carry out the learning process 

over the training data set. The outcomes from the training 

progress of the GRU and LSTM approaches are introduced in 

Table 5. Table 5 shows that the GRU approach outperformed 

the LSTM approach in terms of training accuracy, loss value 

and training time. 

The trained GRU and LSTM approaches were evaluated for 

the diagnostic success of fault type and severity in PMSM 

using test data. The confusion matrix illustrating the 

classification outcomes of the GRU and LSTM approaches for 

the motor test data is given in Fig. 8.  In the confusion matrix, 

labels 0, 1, 2, 3, 4, 5 correspond to healthy, 2% ISCF, 12.5% 

ISCF, 25% ISCF, 5% DF and 10% DF classes of the motor 

respectively. Standard metrics are commonly used to assess a 

model's performance in detail through confusion matrices. 

Based on the confusion matrix, these metrics rely on rates 

such as false positives (FP), true negatives (TN), true positives 

(TP), and false negatives (FN). Below are the corresponding 

formulas for each metric: 

Precision measures the proportion of true positives among all 

positive estimates. It indicates how accurately the approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7. a) LSTM training progress b) GRU training progress 

 

 

 

 

 

 

 

 

 

 

TABLE 5. Results of training progression of LSTM and GRU models 

 LSTM GRU 

Training accuracy 98.88% 100% 

Training loss value 0.0523 0.0399 

Validation accuracy 93.49% 94.79% 

Validation loss value 0.2034 0.1401 

Elapsed time 137 min 20 sec 85 min 12 sec 
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diagnose positive instances [49]. The computation is 

illustrated in Eq. (1): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
𝑥100                                          (1) 

Sensitivity represents the percentage of accurately identified 

observations within a specific class relative to the total 

number of observations in that class. It shows the classifier's 

ability to accurately recognize data that genuinely pertains to 

the positive category [49]. The formula can be found in Eq. 

(2). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
𝑥100                                       (2) 

Specificity measures the proportion of correctly predicted 

negative class data by the classifier [49]. The evaluation can 

be conducted using Eq. (3): 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
𝑥100                                       (3) 

F1-score stands as another frequently employed metric in 

evaluating model effectiveness. Eq. (4) calculates this metric 

by combining precision and recall values through a weighted 

average [49]. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
(𝑟𝑒𝑐𝑎𝑙𝑙)𝑥(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)𝑥2

(𝑟𝑒𝑐𝑎𝑙𝑙)+(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
                           (4) 

Accuracy measures the proportion of accurately classified 

data within the model's test set, calculated from the training 

data. This calculation is defined by Eq. (5) [49]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
𝑥100                              (5) 

Table 6 summarizes the performance metrics obtained from 

the distributions derived from the confusion matrices. As seen 

in Table 6, the LSTM and GRU models predicted the 

diagnosis of ISCF and DF in PMSM with an average accuracy 

of over 98%. In terms of specificity, sensitivity, precision, F1-

score and accuracy metrics, the GRU model performed better 

than the LSTM model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8. a) LSTM and b) GRU confusion matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 6. Overall performance metrics of LSTM and GRU models 

Class 

Label 

LSTM GRU 

 Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-score 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-score 

(%) 

Accuracy 

(%) 

0 95.00 92.79 97.08 93.88 95.48 96.49 95.81 97.92 96.15 97.13 

1 89.66 94.20 98.52 91.87 98.00 89.86 89.86 98.62 89.86 97.57 

2 100 98.71 100 99.35 99.83 99.35 98.71 99.90 99.03 99.74 

3 98.57 100 99.80 99.28 99.83 100 100 100 100 100 

4 94.89 90.91 99.30 92.86 98.26 96.40 93.71 99.50 95.04 98.78 

5 89.68 95.21 98.41 92.36 98.00 94.16 99.32 99.10 96.67 99.13 

Average 

Accuracy 
94.63 95.30 98.85 94.93 98.23 96.04 96.23 99.17 96.12 98.72 
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4.1. Comparison of the findings from this paper with 

those reported in the existing literature 

The comparison of the outcomes of the methods suggested in 

this paper with the works in the literature is given in Table 7. 

Youn and et al. [37] in order to detect DF and ISCF in PMSM 

and classify faults, fault-dependent varying harmonics were 

detected by applying FFT to back electromotive force 

(BEMF) voltages. Principal component analysis (PCA) was 

employed to convert the dimensions of the harmonics into two 

dimensions. Using the features obtained as a result of this 

process in the SVM algorithm, the classification of faults was 

predicted with an accuracy of 92.5% for 300 rpm and 97.5% 

for 500 rpm. However, the study was not evaluated for more 

than one speed state at the same time [37]. In Ref. [2], the 

classification of DF and ISCF was predicted with 97.5% 

accuracy using CNN hybrid with local feature extraction 

method with self-attention mechanism. However, the study 

did not take into account the different severity of DF and 

ISCF. Yan and Hu [50], used a hybrid multi-scale residual 

dilated (MD)-CNN and bidirectional (Bi)-LSTM method for 

fault diagnosis in PMSM. The features obtained from the 

signals with the MD-CNN method were used in the BiLSTM 

algorithm for failure identification. Using three phase current, 

vibration, and the fused of vibration and three phase current 

signals, the fault diagnosis was predicted with 92.81%, 

72.81% and 98.63% accuracy, respectively. The lowest 

severities of ISCF and DF detected in the proposed study are 

4.6% and 20%, respectively [50]. The fault classification 

accuracy rates of the LSTM and GRU methods proposed in 

this paper are 98.23% and 98.72%, respectively. Compared 

with similar studies in Table 7, the suggested GRU and LSTM 

based fault diagnosis performance is satisfactory. The 

algorithms of the suggested GRU and LSTM based fault 

diagnosis approaches are not complex compared to similar 

works in Table 7. In the suggested LSTM and GRU 

approaches, the process of extracting features and classifying 

them was carried out within a unified learning framework and 

only the raw three-phase current signal was used as the input 

signal. 

5. CONCLUSION 

In this study, novel LSTM and GRU based failure 

identification approaches are suggested for the identification 

and classification of turn and demagnetization failures in 

PMSMs under multiple operating conditions. The failure 

detection and failure type classification using LSTM and 

GRU methods were predicted with over 98% accuracy. The 

classification success of the proposed methods is satisfactory 

when compared with similar studies in the literature. It is 

possible to detect the turn failure and the demagnetization 

failure in the PMSM at the initial stage with the proposed 

methods. The lowest ISCF and DF severities detected in this 

study were 2% and 5%, respectively. When the LSTM and 

GRU methods were compared in terms of classification 

success, F1 score, precision, sensitivity, specificity and 

training time, the GRU method performed better. 

With the proposed methods of fault diagnosis, it will be 

possible to diagnose the faults that can occur in the PMSMs 

that are used in the industry at an early stage. In this way, 

stoppage of production in the industry, loss of time, and 

human injuries are prevented and continuity in production is 

ensured. The proposed new diagnostic methods can also 

prevent electric vehicles from staying on the road. The 

proposed diagnostic methods can be used in future studies to 

detect other faults, eccentricity, bearing faults occurring in 

PMSM. 

The application of the proposed methods to real systems in 

industrial and electric vehicle applications is possible by 

continuous monitoring of stator phase currents with current 

sensors integrated into the motors. These collected data are 

analyzed using the proposed deep learning algorithms and 

faults are detected automatically. Thus, potential failures in 

electric vehicles or industrial motor systems can be detected 

early, optimizing safety, efficiency and maintenance costs. 
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