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Abstract: This work represents a moving fuzzy sliding mode controller (SMC) to suppress
the wing-rock motion, a self-sustaining cycle oscillation caused by the nonlinear coupling
between the unsteady aerodynamic forces and the dynamic response of the aircraft. Based on
fuzzy systems, a moving algorithm is designed to estimate the unknown nonlinear dynamic
function of the system in the control topology. The fuzzy algorithm is formulated by taking
the width’s value, and based on Lyapunov theory, the membership function’s mean vector
is adapted online. Simulation results, for examples that include small and large initial
conditions, demonstrate the effectiveness of the proposed fuzzy sliding mode controller.
Key words: adaptive sliding mode control, moving fuzzy system, wing-rock motion

1. Introduction

To operate effectively at high angles of attack and inside slips, high-performance aircraft must
meet specific mission requirements. However, achieving track accuracy and maximum angle of
attack during operational maneuvers presents challenges, notably in addressing wing roll. This
phenomenon can befuddle pilots and severely hinder aircraft combat effectiveness, potentially
compromising safety during takeoff and landing. Predicting the frequency and amplitude of
limiting cycle oscillations and comprehending the dynamics of wing-rock motion (WRM) has
garnered significant attention. Various studies [1–6] have tackled these issues. A theoretical model
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for nonlinear rolling motion was developed using simple differential equations. Subsequently,
numerous control methods have been proposed, including adaptive control techniques, robust H∞
control, and output feedback linearization [7–12].

The authors in [13], provide a detailed description of methods for adaptive control design,
utilizing both classical and neural network-based approaches to effectively stabilize oscillatory
motion of Aircraft Wing Rock by adapting to uncertainties.

In [14], the concept of adaptive control for feedback linearizable systems is employed in
devising a control strategy for managing wing rock motion, with an extension of the technique to
incorporate tracking capabilities.

Although these methods give satisfactory results in terms of accuracy, they directly rely on
complex and uncertain mathematical models of wing rock motion. To overcome this issue related
to different non-linear systems, there exist many important works lie ahead including fuzzy set
theory [15–18]. Since it is a model-free design method [19, 20].

In the literature, several research studies have dealt with the robustness of controllers with
respect to the model uncertainties and external disturbance. In fact, in [21] a systematic move
blocking-based robust model predictive control for nonlinear systems due to the model uncertainties
and disturbances based on Takagi–Sugeno fuzzy models is provided. In [22], a data-driven-based
disturbance observer is presented. In [23], fuzzy slidingmode control for turbocharged diesel engine
is developed in order to reduce the effect of the external disturbance. In [24], a fuzzy-model-based
approach is developed to investigate the reinforcement learning-based optimization for nonlinear
Markov jump singularly perturbed systems.

This study introduces a dynamic fuzzy sliding mode controller (SMC) aimed at mitigating
wing-rock motion, a cyclic oscillation phenomenon resulting from the nonlinear interaction
between unsteady aerodynamic forces and the aircraft’s dynamic response. Utilizing fuzzy systems,
a dynamic algorithm is devised to estimate the unknown nonlinear dynamic function of the system
within the control framework. In fact, the parameters of the fuzzy logic systems were fixed arbitrary,
thus leading to many possibilities for FLSs. In this paper, the moving fuzzy approach is used on
the one hand to improve the quality of fuzzy approximation, and on the other hand when we do
not have a rigorous description of the evolution of the system to deduce the most appropriate
membership function. The aircraft wing sweep motion is described and modeled in Section 2 of
this paper. In Section 3, we introduce the mobile fuzzy logic system. To demonstrate the control
strategy’s efficacy, simulations results are presented in Section 4 presents simulation. In Section
5, a comparative study is presented to demonstrate the effectiveness of the proposed approach.
Finally, Section 6 summarizes the main work carried out in this paper.

2. Problem statement and dynamic model

To formulate the state equations of theWRM system, consider the following dynamic equations:

Ûx1 = x2,

Ûx2 = f (x1, x2) + u + d(t), (1)

where: u is the control input, x = [x1, x2] = [ϕ, Ûϕ] is the state vector, d(t) is the external bounded
disturbance where |d(t)| ≤ β, β ≥ 0.
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f (x1, x2) is an unknown bounded function defined as:

f (x1, x2) = −ω
2ϕ + µ1 Ûϕ + b2 Ûϕ

3 + µ2ϕ
2 Ûϕ + b2 Ûϕ

2ϕ , (2)

where: ω2 = −Ca1, µ1 = Ca2 − D, µ2 = Ca4, b1 = Ca3, b2 = Ca5 and C = ρU∞Sb/2Ixx is fixed
constant, C = 0.354.

Given in Table 1, aerodynamic parameters a1, . . . , a5 are nonlinear functions of the angle of
attack α.

A state vector is required to follow a desired trajectory xd = [xd1, Ûxd2]
T = [ϕd, Ûϕd]

T under the
constraint that all relevant signals must be bound by the input law.

Table 1. Aerodynamic parameters

α a1 a2 a3 a4 a5

15 –0.01026 –0.02117 –0.14181 0.99735 –0.83478
20 –0.05686 0.03254 0.07334 –0.05970 1.4681

3. Robust moving fuzzy controller design

3.1. Step 1: Approximation of f (x1, x2)

For an aircraft WRM system, the motion dynamic f (x1, x2) is perturbed or unknown. As
a result, putting the conventional sliding mode controller into action is challenging. To circumvent
this problem, a fuzzy logic system can be used. A moving fuzzy logic system will be developed in
this work. For this approach, not only the system parameter vectors are adjusted online (case of
fuzzy logic system) but also the width and the center vectors of the membership functions. All the
adaptive laws are deduced based on Lyapunov theory.

First, a short description of adaptive fuzzy logic (AFL) systems is provided in the following
section to help distinguish the proposed strategy from the adaptive fuzzy logic system. Second, we
demonstrated a system of moving fuzzy logic.

3.1.1. Fuzzy logic system (FLS) description
The four parts of an FLS are as follows: knowledge base, fuzzy inference engine that uses fuzzy

rules and defuzzifier. In the rest of the paper, an FLS as shown in Fig. 1, is incorporated in the
control law to estimate the dynamics of the wing-rock system independently of the attack angle α.

According to the universal approximation theorem, uniformly over a compact set, the FLS
may evenly and accurately estimate any nonlinear function [1, 16].

A mapping is carried out by a multi-input single-output (MISO) FLS from an input vector
x = [x1, x2, . . . xn]T ∈ Rn to an output variable z ∈ R.

With central average defuzzification, the output of the FLS is communicated as:

z = θT ξ(x), (3)

where: ξ = [ξ1, ξ2, . . . , ξN ]
T is a set of fuzzy basis functions, θT = [θ1, θ2 . . . , θN ] is a vector

grouping all consequent parameters.
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Fig. 1. Fuzzy logic system block diagram

ξk(x) is defined by:

ξk(x) =

n∏
i=1

µAk
i
(xi)

N∑
k=1

(
n∏
i=1

µAk
i
(xi)

) , (4)

where: uk
Al
i

(xi) is the membership function which represents the fuzzy meaning of the symbol Ak
i ,

i = 1, . . . , n, k = 1, . . . , N , N is the total number of rules.
Fuzzy logic system f̂ (x) approximates f (x) and it is obtained by:

f̂ (x) = θTf ξ(x), (5)

where: ξ(x) represents the fuzzy basis vector.
θ f is the corresponding adjustable parameter vector, where θ f is tuned on-line.
Adaptive law is used to adjust the vectors of the system parameters θ f :

Ûθ f = γ f sξ, (6)

where: γ f is the positive constant and s is the sliding surface, we will be detailed later.

3.1.2. Moving fuzzy logic systems description

The highlights of this approach consist of reducing the number of fuzzy rules used to
approximate the motion dynamic f (x1, x2) while guaranteeing a good approximation (a low fuzzy
approximation error).

The following can be used to rewrite the output of the fuzzy logic system with central average
defuzzification (3), [20, 23]:

z = θT ξ(x, σ, δ), (7)

where: ξ = [ξ1, ξ2, . . . , ξN ]
T is a set of fuzzy basis functions, θT = [θ1, θ2 . . . , θN ] is a vector

gathering every consequent parameters, δ and σ are width and center vectors of the membership
functions, respectively.
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ξ is defined in this case by:

ξk(x, σ, δ) =

n∏
i=1

µAk
i
(xi, σk, δk)

N∑
k=1

(
n∏
i=1

µAk
i
(xi, σk, δk)

) , (8)

where: µk
Ak
i

(xi) is the membership function that depicts the symbol’s fuzzy meaning Ak
i ,

k = 1, . . . , N , N is the total number of rules and, while δ, σ are the width and center vec-
tors of the membership functions.

Fuzzy logic system f̂ (x, σ, δ) approximate f (x1, x2) is obtained by:

f̂ (x, σ, δ) = θTf ξ(x, σ, δ), (9)

where: ξ(x, σ, δ) represents the fuzzy basis vector and θ f is the corresponding adjustable parameter
vector, θ f is tuned on-line.

The following adaptive laws are utilized to adjust the system parameter vectors θ f , σ and δ.

Ûθ f = γ f s (ξ − ξασ − ξδδ) , (10)
Ûσ = γσsξTσ(θ f ), (11)
Ûδ = γδsξTδ (θ f ), (12)

where: γ f , γσ and γδ are positive constants.

3.2. Step 2: Moving fuzzy SMC design
Tracking error vector is defined as:

e = [e1, Ûe1] = [e1, e2] , (13)

where: ei = xi − xid , i = 1, 2, xid are the desired reference trajectory of the outputs.
Sliding surface of the system (1) is given by:

s = k1e2 + k2e1, (14)

where: k1 and k2 are positive constants chosen such that all roots s2 + k1s + k2 = 0 are located in
the complex plane’s left side.

Considering time derivative of the sliding surface:

Ûs = k1 Ûe2 + k2 Ûe1,

Ûs = k1
[

f (x1, x2) + u − Ûxd2

]
+ k2e2, (15)

where: xd is the vector of desired trajectories.
The equation that follows provides the sliding mode control law:

u = ueq + usw, (16)
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where: ueq is the equivalent control law calculated by Ûs = 0 as:

ueq = − f (x1, x2) −
k2
k1

e2 + Ûxd2, (17)

and usw is the discontinuous control law defined by:

usw = τsign(s). (18)

The chattering phenomenon, which has the ability to excite high-frequency dynamics, is
caused by the existence of the signum function in the switching term in the traditional sliding
mode technique. To avoid this problem, in [25], the fuzzy disturbance observer is developed to
estimate the mismatched disturbance. In this paper an adaptive PI term is used. In fact, the integral
term when added to the proportional term accelerates the movement of the process towards the set
point and eliminates the residual steady-state error that occurs with a proportional term.

Adaptive PI term is defined as follows:

uPI(s) = ρ(s |ΘPI) = Θ
T
PIΨ(s), (19)

where: ΘTPI =
[
kp, ki

]T is the adaption gain vector and Ψ(s) =
[
s,

∫
sdt

]T are regressive vectors.
kp and ki are the control gains adjusted online from an adaptive law.
Combining the moving fuzzy logic system with the sliding mode controller and PI switching

law, the resulted control law becomes:

u = − f̂ (x, σ, δ) −
k2
k1

e2 + Ûxd2 − uPI(s), (20)

where the system function is presented by (9).
Moreover, the PI adaption gain vector is adjusted by the following adaptive law:

ÛΘPI = γPIsΨ(s), (21)

where γPI is a positive constant.
Theorem:
Consider a wing rock system defined as (1), and the system function f̂ (x) is given by (5),

adaptive fuzzy sliding mode control law (20), the uPI controller is defined as (19) and the parameters
vector θ f , α, δ and ΘPI are adjusted by adaptive laws (10), (11), (12), and (21) ensures the tracking
errors converge to zero asymptotically and that all the closed loop signals are bounded.

Proof:
First, let us define the following variables:

Θ
∗
PI = arg min

|θPI | ∈ΩPI
[sup |s | ∈Rn | |ρ(s |ΘPI) − ηsgn(s)| |], (22)

where: ηsgn(s) is the discontinuous term of the conventional sliding mode control with the signum
function “sign” such η > D and ΩPI denotes the set of the suitable bounds on ΘPI
and

Ωρ =
{
ΘPI ∈ R2 : | |ΘPI | | < Mρ

}
. (23)



Vol. 73 (2024) Moving-fuzzy sliding mode control of aircraft wing-rock motion 749

Denote:
WPI= ρ(s |Θ∗PI) − ηsgn(s). (24)

The approximation error WPI belongs to L2[0; t], ∀t ∈ [0,∞).
Define the optimal parameters vectors can be represented as:

θ∗f = arg min
|θ f | ∈Ω f

[sup |x | ∈Ωx
| f̂ (x, σ, δ) − f (x1, x2)|,

σ∗ = arg min
|α | ∈Ωα

[sup |x | ∈Ωx
| f̂ (x, σ, δ) − f (x1, x2)|,

δ∗ = arg min
|θβ | ∈Ωβ

[sup |x | ∈Ωx
| f̂ (x, σ, δ) − f (x1, x2)|,

where: Ω f , Ωσ , Ωδ denote the sets of suitable bounds on θ fσ, δ, respectively, and Ωx denotes the
set of the suitable bounds on x.

Assume that the constraint sets Ω f ,ΩσΩδ are specified as:

Ω f =
{
θ f :

����θ f ���� < Mf

}
,

Ωσ = {σ : | |σ | | < Mσ} ,

Ωδ = {δ : | |δ | | < Mδ} .

Consider the following Lyapunov function:

V =
1
2

s2 +
1

2γ f
θ̃Tf θ̃ f +

1
2γσ

σ̃T σ̃ +
1

2γδ
δ̃T δ̃ +

1
2γPI
Θ̃
T
PIΘ̃PI. (25)

If the time derivative of the Lyapunov function is negative, the system must be stable.

ÛV = s Ûs +
1
γ f
θ̃Tf
Ûθ f +

1
2γσ

σ̃T Ûσ +
1

2γδ
δ̃T Ûδ +

1
2γPI
Θ̃
T
PI
ÛΘPI. (26)

If we substitute (20) into (15), we obtain:

Ûs(x) = k1 [ f (x1, x2) − f (x, σ, δ)] − k1UPI + k1d(t). (27)

By adding and substituting ρ(s |Θ∗PI), (24) can be rewritten as:

Ûs(x) = k1 [ f (x1, x2) − f (x, σ, δ)] − k1Θ̃
T
PIΨ(s) − k1ηsgn(s) + k1(WPI + d(t)). (28)

If we consider the double Taylor expansion for system f (x, σ, δ) described as:

f (x, α, δ) − f (x1, x2) = θ̃
T
f [ξ − ξασ − ξδδ] + θ

T
f

[
ξασ̃ + ξδ δ̃

]
+ w f , (29)

where:

θ̃ f = θ f − θ
∗
f , σ̃ = σ − σ∗, δ̃ = δ − δ∗, ξ = ξ(x, σ, δ), ξα = ξα(x, σ, δ),

ξδ = ξδ(x, σ, δ), w f = θ̃
T
f [ξασ

∗ + ξδδ
∗] + [ f (x, σ∗, δ∗) − f (x1, x2)] .
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Now, Eq. (26) can be written as follows:

ÛV = k1

(
θ̃Tf [ξ − ξσσ − ξδδ] + θ

T
f [ξσσ̃ − ξδ δ̃] + w f − Θ̃

T
PIΨ(s) − ηsgn(s) +WPI

)
+

+ k1d(t) +
1
γ f
θ̃Tf
Ûθ f +

1
γσ

σ̃T Ûσ +
1
γδ
δ̃T Ûδ +

1
γPI PI

Θ̃
T ÛΘPI (30)

and Wmax = w f +WPI.

ÛV ≤ θ̃ f T (k1s[ξ − ξσσ − ξδδ +
1
γ f
Ûθ f ] + σ̃

T [−k1ξ
T
σθ f +

1
γσ
Ûσ] + δ̃T [−k1ξ

T
δ θ f +

1
γδ
Ûδ]+

+ Θ̃TPI[k1sΨ(s) −
1
γPI
ÛΘPI] + k1sD + k1sWmax − k1ηsgn(s). (31)

When the adaptation rules (10), (11), (12) and (21) are substituted in (31) we get:

ÛV < −k1η |s | + |s | (Wmax + D) ,
ÛV < −k1η |s | < 0 η > Wmax + D.

(32)

In addition, it can be demonstrated from (32) that the closed-loop system’s robustness and
semi-global asymptotic stability are guaranteed and tracking errors converge asymptotically
converge to zero It is assumed that all parameter vectors fall within the constraint sets to achieve
global stability. The adaptive laws (10), (11), (12) and (21) can be modified with the projection
algorithm (Guo, Luo and Bao, 2022) to ensure that the parameters are bound.

4. Simulation results

Using the following example, we validate the effectiveness of the moving fuzzy sliding mode
controller on the tracking control of an aircraft wing-rock motion.

Table 1 lists the delta wing’s aerodynamic properties for simulations at 15◦ and 25◦ angles of
attack.

Control parameters are selected as: γPI = 0.3, k1 = 1, k2 = 60, Mf = 10.
The selected reference trajectory vector is [φ (0) Ûφ (0)]T = [sin(t) cos(t)]T , the external

perturbation is d(t) = cos (10t).
We select membership functions that approximate the nonlinear function f (x1, x2).
A 22 potential combination should be found in order to cover the controllability zone.
The efficiency of the suggested control techniques is examined using two initial conditions for

the state vector: a small initial condition and a large one.
φ (0) = 103.14◦, Ûφ (0) = 57.3◦/s : large initial condition,
φ (0) = 11.46◦, Ûφ (0) = 2.865◦/s : small initial condition.

4.1. Case 1: a small initial condition

Figures 2 to 9 show the simulation results for the suggested controller.
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Fig. 2. Roll angle response

Fig. 3. Roll rate response
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Fig. 4. Tracking errors e1 evolution

Fig. 5. Tracking errors e2 evolution

The figures presenting the progression of tracking errors, rate angles, and roll angles are
Figs. 2, 3 and 5, respectively, indicating the robustness and the satisfactory performance of the
proposed control system in relation to the disturbance.
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Fig. 6. Sliding surface s evolution

Fig. 7. Control law u evolution

Figure 7 demonstrated that the control law does not exhibit chattering. The evolution of the
surface trajectory is shown in the Fig. 6. We notice that the system converges to zero and the
attractiveness of the sliding surface.
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Fig. 8. Fuzzy approximation error evolution

Fig. 9. θ f evolution

Good approximation of the nonlinear function f (x1, x2) is illustrated in Fig. 8. The convergence
of θ fi , i = 1, . . . , 4, and the behavior of adaptation parameters are presented in Fig. 9.
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4.2. Case 2: a large initial condition

Figures 10–17 present the simulation results under the proposed controller.

Fig. 10. Roll angle response φ (0) = 103.14◦, Ûφ (0) = 57.3◦/s

Fig. 11. Roll rate response φ (0) = 103.14◦, Ûφ (0) = 57.3◦/s
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Fig. 12. Tracking errors e1 φ (0) = 103.14◦, Ûφ (0) = 57.3◦/s evolution

Fig. 13. Tracking errors e2 φ (0) = 103.14◦, Ûφ (0) = 57.3◦/s evolution
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Fig. 14. Sliding surface s φ (0) = 103.14◦, Ûφ (0) = 57.3◦/s evolution

Fig. 15. Control law u φ (0) = 103.14◦, Ûφ (0) = 57.3◦/s evolution
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Fig. 16. θ f φ (0) = 103.14◦, Ûφ (0) = 57.3◦/s evolution

Fig. 17. Fuzzy approximation error φ (0) = 103.14◦, Ûφ (0) = 57.3◦/s evolution
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Figures 10 through 17 illustrate that the closed-loop responses are satisfactory, showcasing the
controller’s effective suppression and tracking capabilities across various initial conditions. The
results reveal shorter settling times and better bounded signals compared to those outlined in [26].
Additionally, the dynamic function estimation is achieved with only 2 memberships for both states.

5. Comparative study

To demonstrate the effectiveness of the proposed approach, a comparative study is summarized
in Table 2 and Table 3.

Table 2. Position case

ESAFIS [26] RBF [26] Proposed method
Convergence time 5 s 7 s 4 s
Signal bounded between 0 and 10 between (–40) and 40 between 0 and 0.2

Table 3. Velocity case

ESAFIS [26] RBF [26] Proposed method
Convergence time 3 s 8 s 1 s
Signal bounded between (–10) and 0 between (–80) and 80 between –0.7 and 0

After comparing the simulation results presented in Table 2 and Table 3, we confirm the
efficiency of the proposed algorithm.

To illustrate the effectiveness of the proposed approach we consider the tracking problem. The
selected reference trajectory vector is [φd φd]

T = [sin(t) cos(t)]T .
As shown in Figs. 18–19, under the normal sea conditions, the control method is robust and

can ensure the tracking performance.

Time(sec)
0 5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 18. Roll angle response
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Time (sec)
0 5 10 15 20 25 30

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 19. Roll rate response

6. Conclusions

An adaptive moving fuzzy sliding mode tracking control approach was proposed to suppress
wing rock phenomena and track the desired trajectories. In fact, nonlinear dynamics of the WRM
system were considered time-varying uncertainties in this study. The online adjustment of the
center and membership functions utilized to approximate the nonlinear dynamic function is our
main contribution. The simulation results for various initial conditions for aircraft wing-rock
motion show the efficacy of the suggested control approach. In future work, we are interested in
exploring the feasibility of an optimization problem to address the significant number of adjustable
parameters and compensate for the effects of fuzzy approximation errors.
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