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In this article, compliance optimization with the steepest descent method of the
hand drill bits shapes for metal drilling is presented. The analysis of stress, displace-
ments and compliance of the solid with random shape can be performed using the
finite element method. In the case of a high number of optimization iterations, each
analysis needs automatic modifications of geometry, mesh and boundary conditions.
The Open CASCADE library can be used in the fast and automatic construction of
modified models. It allows for fast reanalysis for each derivative of the objective func-
tion in the optimization process. The motivation of this research is to fill the gap in the
literature on drilling technology. Most of the contemporary research is devoted to the
oil and gas industry, while optimization of the hand drill bits used in metal drilling is
rare. Compliance optimization allows us to find the shape which guarantees a greater
stiffness for the specified loading conditions and a given amount of material. Although
the obtained compliance was low, further experimental research would be needed to
apply new solutions in drilling practice. This will involve the construction of the drill
bit tips and the development of a heat treatment process.

1. Introduction

The large shear of modern drilling science concentrates on the analysis and
design of the PDC drill bits used in the oil and gas industry [1–6]. The main
concerns of the ground drilling companies are vibrations [2], [7–10] and buckling
of the string [3], wear of the PDC drill [6], friction [11] and friction excited
vibrations [2]. High interest is devoted to medical applications of bone drilling
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[12] and the main concern here is thermal effects. Less scientific interest is devoted
to wood drilling [13].

In the drilling science branch, various methods are used to investigate studied
phenomena. The finite element method is often used in the modeling of wear [14],
or torsional vibrations of the drill strings [7]. In [15] finite element method has been
used for the solution of the cross-sectional entities of the hand drill bit. Various
theoretical models have been proposed in [10, 16, 17] and the drilling parameters
measurements appear in article [18] devoted to drill bits engineering.

Compared to the number of researches related to the oil and gas industry,
there are very few works nowadays concerning machining drill bits and the ones
used in hand drills for metal drilling. An interesting experimental study has been
presented in [19], where the infrared sensor has been used for the detection of the
drill bit damage. This work is devoted to the hand drills and there is an interesting
conclusion that the damage of the drill bit occurs right after the wear of the cutting
edges. The finite element method in the study of hand drill bits vibrations was
used in [15] however these studies were performed in the 1980s. In [17] (1980s)
holographic measurements of the natural frequencies of the hand drill bits were
performed. The author of [18] presented measurements of the torque during the
concrete sample drilling with a hand drill. In [14], the authors studied concrete
drilling with hand drills using the finite element method.

It is worth noting, that the optimization subject in the research devoted to
the drill bits concerns parameters of the drilling process or management of the
laboratory machining stages. Few works concern optimization of the drill bit point
angle using design of experiments [20] or the optimization performed with the use
of an experimental stand (Taguchi method with measurement of cutting speed, feed
rates and temperature [21]).

The topic of drill bits shape optimization using the finite element method is rare.
Topology optimization is most often used to reduce the material of the optimized
model. The most common applications of this kind of optimization are bridges
and supporting structures of the machines. The optimization of the drill bit helix
grove would be challenging using this method. The shape optimization (using the
Hadamard shape derivatives) would be more suitable for this task. Authors of [22]
presented software for 2D optimization and stated that in shape optimization it is
difficult to scale the numerical algorithm which optimizes specified structure. When
the time step is too small, the optimization process is too slow to be completed.
With the step too large, the optimization algorithm is unstable.

Although shape optimization could be very promising when applied to the
drill bits, it is difficult to implement a 3D algorithm which will meet the numerical
requirements. It could be challenging to define 3D constraints, which would prevent
the emergence of designs with improper chip removal or conserve point angle and
cutting edge shapes.



Hand drill shape optimization using Open CASCADE library and the steepest descent . . . 377

Drill bit shape can be optimized using basic gradient optimization algorithms
like the steepest descent method. The weakest chain link of this optimization
method is reanalysis with drill bit shape modification, which should be automated.
The reanalysis methods are used in truss structures [23], while it is difficult to
use them in the optimization of models with solid bodies. The Open CASCADE
(Computer Aided Software for Computer Aided Design and Engineering) library
allows for calling the Python programming language script, which constructs the
STEP (Standard for the Exchange of Product Data) file with the geometry of the
drill bit. The geometry can be generated based on parameters passed to the Python
programming language script (radius of the drill bit shank, radius of the helix grove,
overall twist angle, which can be defined in the form of the helix angle, number of
drill bit sections, length of the shank, length of the drill bit etc.).

In this article, the Open CASCADE library has been used to construct drill bit
geometry with the steepest descent method implemented in Matlab. Optimization
has been performed for various initial shapes of the drill bit, used in hand drills. The
optimized drill bit is designed for metal drilling, with the exception that the shape
of the tip has been modified to allow the automatic application of the twisting,
bending and compression von Neumann boundary conditions. The modification of
the tip should not significantly influence the optimization process as far as the wear
and chip removal phenomena are not considered.

The optimization process was performed for various load cases. The torsional
with compression or the bending with compression loads were applied during
optimization. As mentioned above, the application of the Dirichlet and Neumann
boundary conditions in the finite element analysis is automatic. The buckling of
the drill bit (shank and body) is not considered in the optimization process. It
needs additional finite element method linear buckling analysis performed after
each static-stress analysis, which could be applied in further development of the
software presented in this article. The application of the additional buckling analysis
needs improvement in the optimization algorithms, which involve the application
of the penalty function method in the case when FoS (the factor of stability) is lower
than the critical value. The Matlab PDE (Partial Differential Equations) module
does not allow for the dedicated buckling analysis. Instead, normal modes analysis
can be performed with the solution of the eigenvalues. This approach needs the
construction of a new geometry with applied loads included in the additional masses
or modification of the system mass matrix. The buckling analysis is important in
the design of the drill bits, therefore verification analysis of the optimal shapes has
been performed in the Autodesk Inventor Nastran software, which is presented in
Section 9.

The compliance optimization is one of the most often applied structural opti-
mizations in the engineering constructions. Compliance is expressed in the energy
units [J=Nm] and the physical interpretation of this entity is the internal work done
by the elastic construction under the applied forces. The shape with the lowest
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compliance is the stiffest one. The displacements of such a construction are the
lowest for the analyzed load case. Compliance optimization is applied in the civil
engineering structures or supporting structures of the machines when the maxi-
mum strength is needed with the lowest amount of material applied in construction.
The search for the stiffest drill bit is beneficial because it reveals the most optimal
shape for the given amount of material. The optimal drill bit will carry the greatest
possible amount of load for the specified conditions.

2. Structure of the optimization framework

Two main modules [24] were used in the optimization of the drill bit. The first
module is implemented in Python and uses the Open CASCADE library for the
construction of the parametrized geometry. The second module is implemented
in Matlab and uses the steepest descent method for optimization. The Python
script is called from the Matlab algorithm to construct geometry for the specified
dimensional parameters when it is needed.

The optimization algorithm is presented in Fig. 1. The optimization aim is to
minimize compliance of the drill bit with box constraints of the argument vector
and maximum drill bit volume constraint, which uses the penalty function method.

Fig. 1. The drill bit optimization algorithm
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At the beginning of the algorithm, the starting point is defined. The argument
vector contains three variables: the radius of the shank (𝑟𝑑), the radius of the first
helix grove (𝑟ℎ𝑔1) and the second helix grove (𝑟ℎ𝑔2). After the initialization of the
starting point, the geometry of the drill bit is constructed. The Python script which
builds the geometry is called using the system command from the Matlab script.
The construction of the geometry is described in Section 3. The optimized drill bit
contains a shank, the drill bit body with two helix groves and a modified tip for easier
application of the boundary conditions. When the initial geometry is constructed,
Dirichlet and von Neumann boundary conditions are applied automatically, using
the Matlab functions, which search for the geometry faces nearest to the specified
point (Listing 4 and 5, Appendix B).

In the analyses performed in this article, two loading scenarios were considered.
In the first scenario, the bending forces with compression forces are applied, and in
the second scenario the torsional moment as the pair of forces and the compression
forces are applied at the point of the drill bit.

After the initial analysis, the optimization algorithm computes the next iteration
of the steepest descent method:

𝑥𝑖+1 = 𝑥𝑖 − 𝛼 · ∇ 𝑓 (𝑥𝑖), (1)

where:𝑥𝑖+1 – argument vector at the next iteration, 𝑥𝑖 – argument vector at the pre-
vious iteration, 𝛼 – scaling coefficient, ∇ 𝑓 (𝑥𝑖) – gradient of the objective function
in the previous iteration.

To find the next value of the argument vector, the gradient of the objective
function should be solved. For three arguments of the objective function, there are
three partial derivatives, which are solved using the difference quotient (2), which
is close to the partial derivative for small values of the Δ𝑥. For each direction, the
Δ𝑥 = 10−6 m.

𝜕 𝑓 (𝑥)
𝜕𝑥

=
𝑓 (𝑥 + Δ𝑥) − 𝑓 (𝑥)

Δ𝑥
. (2)

To solve eq. (2), the modified geometry for each difference quotient should be
constructed. This issue influences significantly analysis time when other optimiza-
tion algorithms using second derivatives are considered. However, sometimes it is
possible to approximate the Hessian and shorten the analysis time.

The computation of the next step in the steepest descent method requires the
penalty function method. If the box constraints for the objective function arguments
are violated, or the maximum volume of the drill bit is exceeded, the value of
the quadratic penalty function is added to the objective function. The value of
the penalty function is adjusted by the scaling coefficient to fit the smoothing
requirements for the objective function.

After each step of the steepest descent method, the optimization algorithm
checks if the maximum number of iterations is reached. The first experiments with
the optimization algorithm used only maximum iterations stopping criteria. This
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approach led to the oscillation of the objective function value. It was caused by
an improperly scaled step coefficient 𝛼 (see eq. (1)), which was kept constant in
the steepest descent method. The optimization algorithm step was too long in the
gradient direction and the value of the objective function could rise instead of the
expected decrease in its value. The modification of the algorithm was introduced,
which consisted in decreasing the step coefficient in the case of the objective
function value rise. After the step decrease, the geometry construction and the
static analysis in the current iteration are renewed until the drill bit compliance
starts decreasing. If the value of the step is lower than 1·10−13, then the optimization
algorithm stops its execution and the assumption is made that the local minimum
is reached.

3. Constructing geometry with Open CASCADE Python programming
language script

The Open CASCADE [25] is the programming technology used for the design
of CAD Systems [26–28]. One of the components of this library is a large set of
functions used in the construction of the STEP files, which contain the geometry of
the analyzed part. The STEP file format is widely used in the finite element analysis
software and it can be applied in Matlab scripts using partial differential equations
(PDE module). The PDE module solves physical problems in finite element meshes.
The list of modules used in the Python script, which constructs drill bit geometry
for the optimization algorithm is given in Appendix A. The OCC.Core is the core
Open CASCADE library. The drill bit consists of three parts. The first is the drill
bit shank, which is constructed in the form of a cylinder, the second is the drill bit
body with two helical groves, which emerges after extrusion with the rotation of
the drill bit cross-section, and the third is the tip of the drill bit. The shank cylinder
is constructed using the function BRepPrimAPI_MakeCylinder, which receives the
radius and the height of the cylinder as arguments.

Building the cross-section of the drill bit body requires the construction of
three circles. Each circle requires the definition of the center point (gp_Pnt func-
tion), the direction of the axis (gp_Dir function) and the axis normal to the circle
plane (gp_Ax2 function). Each circle is constructed using gp_Circ function, which
requires a circle radius as an argument. To design the cross-section of the drill bit
body, the Boolean operation on the defined circles should be applied. The Boolean
cut operation (BRepAlgoAPI_Cut) can be performed on the face structures. There-
fore, the three circle geometries should be rebuilt in the form of edges, then based
on the edges, the wires should be defined, and the last one can be used to build
three circular faces. Edges, wires and faces are the names of the standard geometric
structures used in the Open CASCADE library.

Construction of the shank and the circular faces is presented in the form of
Python code examples in Listing 1 and 2 (Appendix B).
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In Listing 1, the radius of the shank is read from the output file, created by the
optimization algorithm. The file pointer is moved to the last line, which is being
read using the function re.findall from the regular expressions module “re”. The
regular expression "[−+]?\d ∗ \.\d + |\d+" reads all floating point numbers from
the last line of the file, which contains three radiuses (arguments of the objective
function). The first argument (radius of the shank) and the height of the shank
are substituted to the function BRepPrimApi_MakeCylinder, as it was mentioned
before. The last line of the file always contains radiuses (the arguments of the
objective function) from the last iteration of the steepest descent method.

In Listing 2, the component stages of the construction of the circular faces
are presented. The basic functions for the definition of the center point, direction
and axis are used first. Then the circular geometries are designed. In the next
steps, these geometries are turned into faces using gradual transformation through
the edge and wire forms. The last step is the Boolean operation, subtracting two
eccentric circular faces from the center one. The eccentric circles, which subtract
the material from the helix groves are localized at the distance 0.00625 m from
the center of the shank circle. The exemplary resulting cross-section of the drill
bit body is presented in Fig. 2. The geometry constructed by the Open CASCADE
script is shown in Fig. 3. The cross-sectional geometry was simplified relative to
the real metal drill bit cross-section, which contains additional details like margin.
The simplification was applied to eliminate automatic mesh generation issues. The
three radiuses presented in Fig. 2 are elements of the objective function argument
vector 𝑟 = [𝑟𝑑 , 𝑟ℎ𝑔1, 𝑟ℎ𝑔2].

Fig. 2. Drill bit body cross-section. The radius of the drill bit shank is 𝑟𝑑
and the radiuses of the helical groves are 𝑟ℎ𝑔1 and 𝑟ℎ𝑔2
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Fig. 3. Solid geometry of the drill bit used in the optimization process. The surfaces for the
application of von Neumann boundary conditions are A and B. It can be normal to surface pair of
bending forces or the pair of forces which generate a torsional moment, where one of the forces

should be applied on the other side of the drill bit tip. The inclined surfaces at the tip are used for the
application of the compression forces

4. Setting the environment for the Open CASCADE Python script

Automatic geometry construction using Open CASCADE needs the environ-
ment variable PATH set up before it is successfully applied in Matlab. The Open
CASCADE library needs setting up the resources responsible for searching the
Python libraries and modules. This is realized by setting up Anaconda, the Data
Science platform, which contains the Python package manager conda. The script,
which modifies the PATH system environment variable by adding specific paths to
it is presented in Listing 3 (Appendix B) [29]. The fileparts function returns the
base path of the pyExec variable. The function getenv returns the PATH system en-
vironment variable, strsplit splits this variable to the components separated by the
semicolon, the fullfile function creates new paths and the function unique returns
the elements which are not duplicated.

The script presented in Listing 3 should be called in Matlab before calling
the Open CASCADE script using system command. In the other case, the Python
interpreter can return errors due to the problems with finding the proper modules
and libraries.

5. Application of the boundary conditions

The third part of the designed drill bit is the tip, which is simplified compared
to the real drill bit for metal drilling. In such drill bits, the tip is conical and it
contains cutting edges, which are raised above the conical surface. The drill bit tip
was constructed from quads and triangles with extrusion operation and connected to
the drill bit body through Boolean operations. The modified tip contains quad faces,
which are easy for automatic search and application of the boundary conditions
(Fig. 4).
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Fig. 4. The boundary conditions in the static analysis of the drill bit:
bending (a), compression (b) and twisting (c)

As mentioned before, in this article, two variants of load are considered:
bending with compression and twisting with compression (Fig. 4c). Let us assume
that OZ axis is the longitudinal axis of the drill bit. The zero of the OZ axis is placed
between the shank and the drill bit body. The shank is placed at the positive part
of the OZ axis and the drill bit body is placed at the negative part of the OZ axis.
The Matlab function nearestFace is used for the automatic search of the geometry
face nearest to the specified point. The bottom of the shank is the face nearest to
the (0,0,0.045) point and the Dirichlet fixed boundary conditions are applied at this
place.

The compression load (von Neumann boundary condition) is placed on the
face nearest to the (0, 𝑟𝑑 · 10−3/2, −0.108) point and on the face nearest to the
(0, −𝑟𝑑 · 10−3/2, −0.108) point, where 𝑟𝑑 is the radius of the shank. The twisting
torque is applied by placing two colinear forces at the opposite sides of the drill bit
tip. The points (−0.0025, 𝑟𝑑 · 10−3/2, −0.103) and (0.0025, −𝑟𝑑 · 10−3/2, −0.103)
are nearest to the quad faces of the drill bit tip geometry, where the twisting pair
of forces are applied (Fig. 4c). The collinear forces, which exert torque on the drill
bit are applied in the OX axis direction in the form of surface traction in [N/m2].
The application of the boundary conditions (the torque and the compression force)
in the Matlab optimization script is presented in Listing 4 (Appendix B).
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The boundary conditions of bending are applied to the similar quads of the
twisting load. The difference is that both quads are localized at the same side of the
drill bit tip and the bending forces have similar directions. The bending boundary
conditions application is shown in Listing 5 (Appendix B).

It is worth noticing that the geometry from the Open CASCADE script is
designed in [mm]. After reading the STEP file in Matlab, the geometry dimensions
are expressed in [m] and the surface tractions in the structuralBoundaryLoad func-
tion should be expressed in [N/m2]. The coordinates for the function nearestFace
should also be given in [m].

After application of the Dirichlet and von Neumann conditions, the finite
element mesh is generated and the structural static analysis is performed.

6. Estimation of the load torque

In one of the variants of the optimization process, the load torque is applied
at the tip of the drill bit. The theoretical model is then constructed. Contrary to
the optimization, it assumes that the tip of the drill bit has a conical shape due to
chip formation, which is also a source of friction. The purpose of the model is the
estimation of the torque arising due to friction in the metal drilling process. The
torque component due to friction can be found from eq. (5) (see below). The shape
of the point of the 3D drill bit geometry model is shown in Fig. 5. Fig. 6 shows
the infinitesimal area used in the integration of the conical surface. In the drill bits
used in the metal drilling, the conical surface is additionally inclined, which allows
the cutting edges to come in contact with the machined material.

Fig. 5. The conical point of the drill bit. The point
angle was assumed to be 120◦. The shape is similar to
the real drill bits used in hand drills for metal drilling

Fig. 6. Infinitesimal area d𝐴 of the drill bit
contact surface used in the estimation of

the load torque

The torque computations require the solution of a double integral. The in-
finitesimal area (Fig. 6) used in the double integral is given as:

d𝐴 = 𝜌d𝜙d𝜌, (3)
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where: d𝜙 – infinitesimal angle, 𝜌 – position of the d𝐴 infinitesimal area, d𝜌 –
infinitesimal radial length of the infinitesimal area. The infinitesimal torque is:

d𝑀 = d𝑇𝜌 = 𝑝2𝜋𝜌d𝜌𝜇𝜌, (4)

where: d𝑇 – infinitesimal force acting on the infinitesimal d𝐴 area, 2𝜋𝜌 – length
of the ring, 𝜇 – friction coefficient. The torque value is solved using the double
integral:

𝑀 =

𝑎∫
0

2𝜋∫
0

𝜇
𝑁 cos(30◦)

0.5𝜋𝑎𝑑
𝜌2 d𝜙d𝜌, (5)

where: 𝑀 – load torque, 𝑎 – slant height of the cone, 𝑑 – diameter of the drill bit,
𝑁 – compression force. The value of the torque 𝑀 was solved for the data specified
in Table 1.

Table 1. Data used in the solution of the load torque

Entity symbol Description Value

𝑁 compression force 200 N

𝑎 slant height of the cone 0.00461 m

𝑑 diameter of the drill bit 0.008 m

𝜇 kinetic friction coefficient (dry, clean steel on steel) 0.42

𝑀 Solved load torque 0.26 Nm

The obtained load torque 𝑀 ≈ 0.26 Nm. It is a small value compared to
the maximum torque of the popular hand drilling tools, which is 19 Nm. The
optimization was performed with a load torque of 20 Nm in the variant with a
twisting and compression load of 200 N. In the optimization with bending, the
bending force is 200 N and the compression force is also 200 N.

7. The finite element model and the solution of the compliance

The finite element PDE (Partial Differential Equations) model is created to
solve the displacements of the drill bit. It is set up for the structural, static-solid
analysis. The definition is presented in Listing 6 (Appendix B). The steel material
properties (Young’s modulus and Poisson’s ratio) are assigned to the model.

The objective function return value is the compliance. It can be solved based
on the displacements and the stiffness matrix:

𝐶 = 𝑢𝑇K𝑢, (6)

where: 𝐶 – compliance,𝑢 – displacements vector, K – stiffness matrix. The so-
lution of compliance after the static analysis is finished is presented in Listing 7
(Appendix B).
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The function assembleFEMatrices, presented in Listing 7, returns matrices
used in the finite element analysis and stores them in the FEM structure. The K
matrix of the structure FEM is the full stiffness matrix. The result variable contains
the results of the static analysis.

The result.Displacement.uN contains displacement of the N-th direction, where
N can be 𝑥, 𝑦 or 𝑧 (the directions of the Cartesian coordinate system in which static
finite element analysis was performed). After the transposition of the uall displace-
ments vector, the compliance is solved according to eq. (6). In the optimization
process, the compliance (the internal energy of the drill bit loaded by the external
forces) is minimized. The optimal drill bit has the lowest compliance. It should be
also mentioned that the steepest descent method searches for the local minimum
of the objective function, hence the optimization result may depend on the initial
argument vector.

The penalty function adds the square of the constraint violation to the compli-
ance calculated by the objective function. To verify the volume of the drill bit, this
volume is determined based only on the radiuses of the shank and helix groves.
The method of volume solution in the penalty function is shown in Listing 8
(Appendix B).

8. Results of the analysis

Application of the steepest descent method finds local minima of the objective
function. Therefore it is important to perform optimization from the various starting
points. The important issue in the application of the simple gradient optimization
algorithms is the scaling of the step modification coefficients and the penalty
function. In the steepest descent method, the step scaling coefficient can be too
small (high analysis time is needed to find the minimum) or too high (the method
will generate too large increments, which could lead the iteration process to the
localization, where the value of the objective function increases).

The first attempts were made with stopping criteria set as the maximum func-
tion iterations. The stopping criterion, which stops the algorithm due to small
changes in the argument vector, was excluded from the optimization algorithm.
As a result, the compliance of the drill bit oscillated in the consecutive itera-
tions.

The optimization algorithm of the steepest descent method was modified to
accept an iteration only if the objective function value decreased as it was mentioned
in Section 2.

The results of the optimization for the twisting and compression loads are
presented in Figs. 7 and 8 and for the bending and compression in Figs. 9 and 10.
The compliance is expressed in the energy units [J=Nm].
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Fig. 7. Optimization for the twisting and compression loads for the starting point
𝑟 = [0.0039, 0.0056, 0.0056] [m]

Fig. 8. Optimization for the twisting and compression loads for the starting point
𝑟 = [0.006, 0.0023, 0.0054] [m]



388 Roman KRÓL

Fig. 9. Optimization for the bending with compression load for the starting point
𝑟 = [0.0033, 0.006, 0.0061] [m]

Fig. 10. Optimization for the bending with compression load for the starting point
𝑟 = [0.006, 0.0033, 0.0034] [m]
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9. Verification of the results with the finite element linear buckling
analysis

After the optimization, the finite element linear buckling analysis in the Au-
todesk Inventor Nastran has been performed. The results of the analysis are FoS
and the buckling modes. In the optimal shapes, the diameter of the drill bits exceeds
0.014 m. The analysis showed that all shapes have high FoS values, which means
that loss of stability will occur when the load case is 33.3-36.3 or 84.5–95.9 times
higher relative to applied one in the load case with twisting and compression or
with bending and compression, respectively. In the metal drilling practice, it is
difficult to break the drill with a diameter of 0.008 m or higher, while breaking
the drill bits with diameters lower than 0.004 m often happens. Optimization of
compliance guarantees that the shape obtained with the specified amount of ma-
terial will be the stiffest one. The displacements in the optimal solution will be
the smallest and it will be more difficult to break the tool. Despite the minimum
compliance, the optimal shape can lose stability, especially in the analyses where
the material limit is low. Linear buckling analysis is important for verification of
stability of the optimal shapes. Unfortunately, performing linear buckling analysis
using theoretical methods is laborious because of the helical shape of the drill bit
body. Finite element analysis is much faster to perform, while the Euler equation
for the simplified case can be used to estimate the result. The buckling modes with
the FoS coefficients for the optimal results are presented in Fig. 11.

10. Discussion of results

Finding a proper configuration of the optimization process needs many at-
tempts. Analyses are time-consuming (single analysis duration lasts from one to
several hours) and the process of software corrections is also long-lasting. First
attempts bounded the optimization algorithm only with the number of iterations,
which led to oscillating compliance in the consecutive steps. Significant influence
on the oscillations of the results had the method of boundary conditions applica-
tion. In one of the first optimization attempts, a twisting pair of forces was applied
to the side surfaces of the groves. The faces of the groves were found as the faces
nearest to the points lying on the axis crossing the center of the shank circle in
the section lying in the drill bit tip. This approach caused changes in the twisting
moment due to different force pair distances in consecutive iterations. The grove
radiuses changed their values and the distance between the forces in the twisting
pair oscillated. The application of the simplified drill bit tip solved this problem.
The geometry of the tip has a variable width, dependent on the shank radius, there-
fore the force arm should be corrected in each iteration. It is more straightforward
in a case of a simplified drill bit tip, because it is predictable, which faces will be
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Fig. 11. The top view and the side view of buckling modes with FoS for the optimal results from
Section 8. The final argument vector containing radiuses of the shank and helix groves is given in r.

The red mesh presents undeformed shape, the green arrows show the force vectors

found in the search of the nearest face operation performed during the application
of the boundary conditions.

In the four optimization processes presented in Figs. 7–10, all optimizations
stopped near the maximum volume constraint, which was set to 20 · 10−6 m3. In
general, when the load case with twisting and compression is considered, one of
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the helix groves tends to have a large radius and the other one is twice as small
as the first one. The amount of analyses presented here is too small for general
conclusions. However, a crescent shape with only one large helix grove would
have the compliance smaller than traditional, symmetrical shapes of the hand drill
bits for metal drilling. When both helix groves have large radiuses, there is a small
amount of material between the arches of the groves, which decreases the reliability
of the drill bit. The crescent shape would be stiffer and more reliable for the twisting
load case.

For the bending with compression load case, the difference in the helix groves
radiuses is smaller. The ratio of these radiuses for the twisting and compression
load cases is 1.74 and 2.22, respectively, while for the bending with compression,
it is 1.31 and 1.32.

Although it is obvious that when the bending loading is considered, the cross-
sectional moment of inertia depends on the square distance from the center of
mass, it is much more difficult to describe the emergence of the crescent shapes
for optimization under the twisting load. When the drill bit undergoes bending, the
helix groves distances from the center of mass tend to be equal. Under the twisting
load, the moment of inertia for twisting is equal to the polar moment of inertia
only for circular shapes. The solution for the twisting angle or the twisting stiffness
becomes very complicated for the random cross-sectional shapes. In most cases,
the cross-sectional deplanation should be taken into account.

The optimal shapes are the locally best solutions when compliance is consid-
ered. To develop new drill bit shapes used in hand drills, more physical phenomena
should be considered. The eccentricity of the mass in the crescent shapes can lead
to a rise in centrifugal force. The drill bit tip should be designed with proper cutting
edges and experimental studies should be performed, which will show if the chip
removal is correctly designed in new shapes.

The linear buckling analysis showed that loss of stability will occur when the
loads are approximately 30 times or 80 times greater than those assumed in the
optimization process. The FoS would be much smaller for the analyses with the
lower volume constraint. Therefore, for the optimization of the small diameters of
drill bits, it would be practical to include the penalty function for the FoS in the
additional normal modes analysis with eigenvalues calculation.

11. Conclusions

Summing up the results, the application of the Open CASCADE library al-
lows for gradient optimization of the milling tools. The optimization processes
are very time-consuming. However in simple structures, like drill bits, a single
personal computer can perform an optimization process in several hours. This ar-
ticle presents possibilities for compliance optimization. The final product of drill
bits needs further laboratory testing, which includes measurements of the cutting
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resistance, chip removal and thermal treatment experiments to improve the en-
durance of the cutting edges. The topic of strength analysis with finite element
method is rare in the literature on hand drill bits engineering. A high percentage
of articles in drilling science are devoted to the experiments or studies of PDC
drills in the oil and gas industry. The improvements of the hand drill bits for
metal in the private company sector include modification of the tip, while there
is a lack of works with studies of mechanical properties of the overall drill bit
shape including helix groves. Application of the crescent cross-sections can be
beneficial, especially in drill bits with small diameters. It would significantly in-
crease strength and decrease compliance while improving the fatigue life of the
drill bits.

The high value of FoS for the bending loads and more than twice smaller
values for the twisting loads indicate that twisting is a much more dangerous
loading case for drill bits stability. It is also confirmed by the static analysis. In
civil engineering, constructions are designed to avoid twisting load cases because
these are more dangerous than bending and compression. When the drill bit locks
in the opening, the twisting action of the hand drill motor leads to the breaking of
the tool. To improve the strength of the small diameter drill bits it is beneficial to
increase the effective cross-section by applying the crescent shapes.

It is beneficial to perform optimization for multiple load cases. In this kind of
analysis, the values of the objective functions for various loads (bending, compres-
sion, twisting) can be added to each other, possibly considering weighting factors.
In this article, the optimization was performed for the separate load cases to com-
pare the results for various loads. The results show that it is sufficient to consider
only twisting load, because it is most important in the strength analysis of the drill
bits. The results for the bending load are almost symmetric. In the optimal shapes
presented in Figs. 7 and 8, the compliance for the twisting load case is ≈ 0.41 J
and ≈ 0.42 J, respectively, while for Figs. 9 and 10, where bending optimization is
presented, it is ≈ 0.17 J and ≈ 0.16 J. To apply multiple load case optimization in
further research, the objective functions which calculate compliance for each load
case should be prepared and added. The gradient of the objective function should
also include these modifications. However, the resulting optimal shapes probably
would be significantly influenced by the twisting component, while bending would
have a smaller impact.
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Appendix A
Python libraries used in drill bit geometry construction

Python module name Python function Description
math contains mathematical constants (𝜋)

numpy contains the function linspace()
re regular expressions used in reading

text file data from the optimization
algorithm

OCC.Core.BRepPrimAPI BRepPrimAPI_MakeCylinder draw the cylinder (used in the con-
struction of the drill bit shank ge-
ometry)

OCC.Core.gp gp_Pnt point definition
gp_Dir direction definition (used in extru-

sion)
gp_Circ Circle definition (used in drill bit

cross-section construction)
gp_Ax3, gp_Ax2, gp_Ax1 axis definition (used in extrusion)

gp_Trsf Transformation definition (used in
extrusion and needs a set of
gp_Pnt, gp_Dir, gp_Ax1, gp_Ax2
and gp_Ax3 definitions)

OCC.Core.BRepBuilderAPI BRepBuilderAPI_MakeFace builds face from edges
BRepBuilderAPI_MakeEdge builds edge from wires
BRepBuilderAPI_MakeWire builds wire
BRepBuilderAPI_Transform executes transformation of the

cross-section built as face
OCC.Core.BRepAlgoAPI BRepAlgoApi_Fuse Boolean operations on cross-

sectional circles or the shank and
drill bit solids (fuse and cut)

BRepAlgoApi_Cut

OCC.Core.BRepOffsetAPI BRepOffsetAPI_ThruSections used in the extrusion of the drill bit
through the transformed and rotated
cross-sections to create solid geom-
etry

OCC.Core.TopoDS topods needed in topology explorer, to con-
struct cross-section from edges

OCC.Core.TopExp TopExp_Explorer topology explorer used in construc-
tion of the wires

OCC.Core.TopAbs TopAbs_EDGE needed in topology explorer in def-
inition of the edge

OCC.Core.STEPControl STEPControl_Writer used to create the writer, which
saves the solid geometry to the
STEP file

STEPControl_AsIs used in the STEP writer
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Appendix B

Listing 1. Construction of the drill bit shank geometry (programming language: Python)
with open(radius_path) as myfile_radius:

for line_radius in myfile_radius:
pass

lastline_radius=line_radius

radiuses_floatsstr=re.findall(r"[-+]?\d*\.\d+|\d+",lastline_radius)

myradiuses=[]
for radfs in radiuses_floatsstr:

myradiuses.append(float(radfs))

center_radius=myradiuses[0]
height=40.0

cylinder = BRepPrimAPI_MakeCylinder(center_radius, height).Shape()

Listing 2. Construction of the drill bit body cross-section geometry (programming language:
Python)
p1=gp_Pnt(0.0, 0.0, 0.0)
p2=gp_Pnt(6.25, 0.0, 0.0)
p3=gp_Pnt(-6.25, 0.0, 0.0)
dir1=gp_Dir(0,0,1)
dir2=gp_Dir(0,0,1)
dir3=gp_Dir(0,0,1)
ax1=gp_Ax2(p1,dir1)
ax2=gp_Ax2(p2,dir2)
ax3=gp_Ax2(p3,dir3)
myCirc=gp_Circ(ax1, myradiuses[0])
myCirc1=gp_Circ(ax2, myradiuses[1])
myCirc2=gp_Circ(ax3, myradiuses[2])

edge=BRepBuilderAPI_MakeEdge(myCirc).Edge()
edge1=BRepBuilderAPI_MakeEdge(myCirc1).Edge()
edge2=BRepBuilderAPI_MakeEdge(myCirc2).Edge()

wire=BRepBuilderAPI_MakeWire()
wire1=BRepBuilderAPI_MakeWire()
wire2=BRepBuilderAPI_MakeWire()

wire.Add(edge)
wire1.Add(edge1)
wire2.Add(edge2)

body_base_face=BRepBuilderAPI_MakeFace(wire.Wire()).Face()
body_base1_face=BRepBuilderAPI_MakeFace(wire1.Wire()).Face()
body_base2_face=BRepBuilderAPI_MakeFace(wire2.Wire()).Face()
Cut1 = BRepAlgoAPI_Cut(body_base_face, body_base1_face).Shape()
bodydrill = BRepAlgoAPI_Cut(Cut1, body_base2_face).Shape()
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Listing 3. Setting the Anaconda environment [29] in Matlab (programming language:
Matlab)

pyExec = ’C:\Users\user_name\.conda\envs\pyoccenv\python.exe’;
pyRoot = fileparts(pyExec);
p = getenv(’PATH’);
p = strsplit(p, ’;’);
addToPath = {

pyRoot
fullfile(pyRoot, ’Library’, ’mingw-w64’, ’bin’)
fullfile(pyRoot, ’Library’, ’usr’, ’bin’)
fullfile(pyRoot, ’Library’, ’bin’)
fullfile(pyRoot, ’Scripts’)
fullfile(pyRoot, ’bin’)

};
p = [addToPath(:); p(:)];
p = unique(p, ’stable’);
p = strjoin(p, ’;’);
setenv(’PATH’, p);

Listing. 4. Application of the boundary conditions of twisting and compression. The surface
traction is given in [N/m2] (programming language: Matlab)

faceDC = nearestFace(model.Geometry, [0 0 45e-3]);
faceNC_n1 = nearestFace(model.Geometry, [0 x(1)/2.0 -108e-3]);
faceNC_n2 = nearestFace(model.Geometry, [0 -x(1)/2.0 -108e-3]);
faceNC_t1= nearestFace(model.Geometry,[-2.5e-3,x(1)/2.0,-103e-3]);
faceNC_t2= nearestFace(model.Geometry,[2.5e-3,-x(1)/2.0,-103e-3]);
structuralBC(model,"Face",faceDC,"Constraint","fixed");
structuralBoundaryLoad(model, ...

"Face",faceNC_n1, ...
"SurfaceTraction",[0;0;100/(sqrt(0.003∧2+x(1)∧2)*0.003)]);

structuralBoundaryLoad(model, ...
"Face",faceNC_n2, ...
"SurfaceTraction",[0;0;100/(sqrt(0.003∧2+x(1)∧2)*0.003)]);

structuralBoundaryLoad(model, ...
"Face",faceNC_t1, ...
"SurfaceTraction",[(20/x(1))/(x(1)*0.005);0;0]);

structuralBoundaryLoad(model, ...
"Face",faceNC_t2, ...
"SurfaceTraction",[(-20/x(1))/(x(1)*0.005);0;0]);

Listing 5. Application of the boundary conditions of bending and compression. The surface
traction is given in [N/m2] (programming language: Matlab)

faceDC = nearestFace(model.Geometry, [0 0 45e-3]);
faceNC_b1= nearestFace(model.Geometry,[2.5e-3,x(1)/2.0,-103e-3]);
faceNC_b2= nearestFace(model.Geometry,[2.5e-3,-x(1)/2.0,-103e-3]);
faceNC_n1 = nearestFace(model.Geometry, [0 x(1)/2.0 -108e-3]);
faceNC_n2 = nearestFace(model.Geometry, [0 -x(1)/2.0 -108e-3]);
structuralBC(model,"Face",faceDC,"Constraint","fixed");
structuralBoundaryLoad(model, ...

"Face",faceNC_n1, ...
"SurfaceTraction",[0;0;100/(sqrt(0.003∧2+x(1)∧2)*0.003)]);
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structuralBoundaryLoad(model, ...
"Face",faceNC_n2, ...
"SurfaceTraction",[0;0;100/(sqrt(0.003∧2+x(1)∧2)*0.003)]);

structuralBoundaryLoad(model, ...
"Face",faceNC_b1, ...
"SurfaceTraction",[-100/(x(1)*0.005);0;0]);

structuralBoundaryLoad(model, ...
"Face",faceNC_b2, ...
"SurfaceTraction",[-100/(x(1)*0.005);0;0]);

Listing 6. Definition of the PDE finite element model with the material properties for steel
(programming language: Matlab)

model=createpde("structural","static-solid");
model.Geometry=importGeometry(model, geompathstr);

structuralProperties(model,"YoungsModulus",200E9, ...
"PoissonsRatio",0.3);

Listing. 7. Solution of the compliance of the drill bit (programming language: Matlab)

generateMesh(model, Hmax=5e-3);
result=solve(model);
FEM = assembleFEMatrices(model);
Kmtx=FEM.K;
sizeu=length(result.Displacement.ux);
uall=zeros(sizeu*3,1);
uall(1:sizeu)=result.Displacement.ux;
uall(sizeu+1:2*sizeu)=result.Displacement.uy;
uall(2*sizeu+1:3*sizeu)=result.Displacement.uz;
compliance=uall’*Kmtx*uall;

Listing 8. The penalty function, which solves volume of the drill bit geometry based on
radiuses (programming language: Matlab)

function y=drill_penalty(x)
VolumeMax=20000;
r1=x(1);
r2=x(2);
d=6.25;
A=pi*x(1)*x(1);
A1=r1∧2*acos((d∧2+r1∧2-r2∧2)/(2*d*r1))+...

r2∧2*acos((d∧2+r2∧2-r1∧2)/(2*d*r2))-...
0.5*sqrt((-d+r1+r2)*(d+r1-r2)*(d-r1+r2)*(d+r1+r2));

r2=x(3);
A2=r1∧2*acos((d∧2+r1∧2-r2∧2)/(2*d*r1))+...

r2∧2*acos((d∧2+r2∧2-r1∧2)/(2*d*r2))-...
0.5*sqrt((-d+r1+r2)*(d+r1-r2)*(d-r1+r2)*(d+r1+r2));

Area=A-A1-A2;
Volume=A*40+Area*100;
y=0;
if (Volume>VolumeMax)

y=y+((Volume-VolumeMax)*1e-2)∧2;
end



Hand drill shape optimization using Open CASCADE library and the steepest descent . . . 397

if (x(1)+x(2)<6.4)
y=y+(6.4-(x(1)+x(2)))∧2;

end
if (x(1)+x(3)<6.4)

y=y+(6.4-(x(1)+x(3)))∧2;
end
if (x(2)>6.1)

y=y+(x(2)-6.1)∧2;
end
if (x(3)>6.1)

y=y+(x(3)-6.1)∧2;
end

end
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