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This study evaluated the combined sensitivity analysis of several room acoustic descriptors: reverberation
time (T30), center time (Ts), early decay time (EDT), definition (D50), clarity (C50), useful-to-detrimental
sound ratio (U50), and speech transmission index (STI); and also it assessed how these descriptors responded
jointly to different acoustic-structural factors. The first-order factors were background noise (A), acoustic ceil-
ing tile sound absorption coefficient (B), confinement (C), and occupancy (D), along with their interaction
effects. A novel method is proposed for this joint evaluation of sensitivity factors. This method involves in
situ measurements and an unreplicated 24 factorial design, which has been validated by ODEON software.
The significance of input factors is determined using artificial neural networks (ANN) and the modified profile
method (MPM), validated by multiple linear regression (MLR). Three significant correlation groups are iden-
tified at p < 0.05: group 1 (EDT, T30, Ts), group 2 (C50, D50), and group 3 (U50, STI). The ceiling material
sound absorption (B) is found to affect reverberation (groups 1 and 2), while background noise (A) impacts
STI and U50. A weak correlation is found between D50 and STI. These results are confirmed by the MLR and
MPM methods.
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1. Introduction

Classical approaches to acoustics are aimed at char-
acterizing optimal classroom design for speech intelli-
gibility based on reverberation time (RT) (Lochner,
Burger, 1960). In this context, other descriptors have
been developed to consider exogenous effects such as
background noise (BGN) to quantify the acoustic qual-
ity of rooms (Kang et al., 2023). As a result, the
speech transmission index (STI) was the leading ob-
jective descriptor designed to measure speech intelli-
gibility (SI), and one of the driving forces for the de-
velopment of STI was the recognition of the influence
of BGN on intelligibility (Houtgast et al., 1980). In
this work, SI was assessed using the STI descriptor.

Many other descriptors have been proposed to
quantify acoustic fields in classrooms; most of them are
based on sound propagation and its energy ratios by

applying the diffuse field theory. These descriptors are:
definition (D50), clarity (C50), center time (Ts), early
decay time (EDT), and useful-to-detrimental sound ra-
tio (U50). Additional descriptors, such as noise criteria
(NC) curves and signal-to-noise ratio (SNR), are cor-
related with strictly subjective aspects of speech and
sound perception (Bradley, 2011).

Many studies have sought to quantify the possible
correlations between these parameters and the STI.
For example, such studies included analyses of the re-
lationship between STI and SNR (Bradley et al.,
1999), STI and RT (Mikulski, Radosz, 2011; Ren-
nies et al., 2014), STI and energy descriptors (EDT,
Ts, C50, D50) (Sato et al., 2006; Ansay, Zannin,
2016), and STI and U50 (Bradley et al., 2003; Sato
et al., 2012; 2016; Choi, 2017a; 2017b).

However, most of these studies have focused on
quantifying the correlations between individual con-
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struction design factors and STI, often examining only
one aspect at a time. Furthermore, these studies have
generally found that STI levels were low, often failing
to meet the minimal threshold values of acoustic stan-
dards. Several studies have linked these low STI values
to high BGN, which may be due to factors such as low
sound absorption coefficients of ceiling panels, inad-
equate acoustic insulation, poor placement of sound-
diffusion panels, or unfavorable building façade condi-
tions (Visentin et al., 2018; Bistafa, Bradley, 2001;
Sala, Rantala, 2016; Secchi et al., 2017).

Therefore, the combined evaluation of acoustic de-
scriptors is essential to determine how they are corre-
lated and how room design and occupancy affect them.
This paper seeks to contribute to the body of knowl-
edge on this subject by quantitatively determining how
the STI, T30 (reverberation time), EDT, C50, D50,
Ts, and U50 respond jointly to the following factors:
(A) background noise, (B) ceiling sound absorption;
(C) confinement (if the room’s windows and doors are
open or closed), and (D) occupancy (if the room is or
is not occupied by people, i.e., an audience), and by
proposing a new method for this evaluation. An ex-
tensive comparison of results reported in the literature
was also carried out.

Artificial intelligence in the form of artificial neural
networks (ANNs) was used to ascertain the sensitivity
of construction and occupancy conditions on acoustic
parameters. This identification should lead to numer-
ous benefits, contributing to improve the development
of better classroom acoustic designs.

2. Materials and methods

2.1. In situ measurements

The speech transmission index measurements were
taken in five classrooms by the indirect STI method,
following the International Electrotechnical Com-
mission 60268-16 standard (IEC, 2011) procedures.
The BGN was measured for five minutes based on the
equivalent continuous sound level (Leq) in empty
rooms with closed doors and windows to reduce exter-
nal noise interference, using the B&K 2260 sound level
meter. The NC value was then calculated as specified
by American National Standard (ANSI, 2008).

The STI was measured using the following instru-
ments: DIRAC room acoustics software (B&K type
7841), version 5.0, installed on a Sony VAIO note-
book, Audio Interface ZE-0948 data acquisition board;
Behringer FBQ800 equalizer; Lab. Gruppen LAB 300
amplifier; B&K 4227 mouth simulator, and a B&K
2260 real-time sound analyzer as the receiver micro-
phone. According to IEC (2011) standard Sec. 7.2,
the signal spectrum at the output of the B&K 4227
mouth simulator was equalized using the maximum
length sequence (MLS) signal with a Pink + Blue filter.

The equalizer gains were then adjusted to the reference
operational speech level of 60 dB, with a tolerable er-
ror of ±1 dB, in the octave bands of 125 Hz and 8 kHz.

The descriptors T30, EDT, C50, D50, and Ts,
were measured according to International Organiza-
tion for Standardization [ISO] (2008), using the im-
pulse response method. The e-sweep signal generated
by DIRAC 5.0 software was used as an excitation
signal. A B&K 4296 dodecahedral sound source was
placed at a height of 1.5 m from the floor and more
than 1.2 m from the walls. Five measurements were
recorded with the receiver (B&K 2260 sound analyzer)
in different positions in each classroom.

2.2. Classroom simulations

In this paper, five university classrooms were stud-
ied in the Federal University of Paraná, located in
southern Brazil. Table 1 describes the maximum di-
mensions of the classrooms and their volumes. All
the measured data, ODEON virtual models, sound ab-
sorbing materials, and classroom photos are available
in the dataset reference provided by Do Nascimento
and Zannin (2023). ODEON software is widely used
worldwide for predicting room acoustics parameters,
for consulting, and for academic research. ODEON
uses the image source method combined with a modi-
fied ray tracing algorithm for acoustic simulations. In
this study, ODEON was used to simulate STI, T30,
EDT, C50, D50, Ts, and U50 values based on various
structural acoustic factors, such as A, B, C, and D.

Table 1. Dimensions of the measured classrooms.

Room Width
[m]

Length
[m]

Height
[m]

Volume
[m3]

1 12.40 13.40 2.75 358.11
2 10.00 8.70 2.95 236.06
3 11.14 7.57 3.91 355.16
4 11.50 5.53 4.20 289.27
5 13.99 13.99 5.84 1200.77

Classroom modeling and validation was performed
using ODEON v. 11 software (Rindel, 2012), which
specifies that acoustic descriptors must be simulated
in accordance with the guidelines (ISO, 2008; IEC,
2011) for in situ measurements. ISO (2008) establishes
that T30, EDT, C50, D50, and Ts must be measured
using an omnidirectional sound power level; hence,
the Omni.SO-8 sound source was selected from the
ODEON library. STI and U50 were simulated using
the BB93_NORMAL_NATURAL.SO-8 sound source
equalized at 60 dB. ODEON allowed for the weight-
ing of male and female speech spectra using the vir-
tual sound source, resulting in a total of three STI
measures: STImale, STIfemale, and the non-gender fil-
tered STI. A 20 cm× 20 cm calculation meshgrid was
placed at a height of 1.20 m from the floor, i.e., the
average height of the ears of listeners sitting in typi-
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a) Classroom 01 b) Classroom 02

c) Classroom 03 d) Classroom 04

e) Classroom 05

Fig. 1. Classrooms modeled using ODEON v. 11. The blue dots indicate the receiver positions,
while the sound source is situated in the typical teacher position at the front of the class.

cal chairs. Figure 1 depicts the virtual models of the
evaluated classrooms.

The receiver’s placement in the virtual classrooms
was chosen based on two criteria, to ensure full spa-
tial coverage to accurately capture the room impulse

response (RIR) and to mimic the listener’s perspec-
tive. The simulations were validated globally for each
room using the root mean squared percentage error
(RMSPE) – Eq. (1) – calculated between the measured
and simulated values for descriptors T30 and STI in
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their respective measurement positions in each class-
room:

RMSPE = 100%
¿
ÁÁÀ 1

n

n

∑
i=1

( ŷi − yi
yi

)
2

, (1)

where n is the number of evaluated points, and ŷi
and yi are the simulated (S) and measured (M) val-
ues, respectively, the mean percentage error (MPE) is

(100%/n)
n

∑
i=1

(ŷi − yi)/yi. Table 8 lists these errors for

each classroom and for the T30 and STI descriptors.
To assess the goodness-of-fit of the validation in

terms of simulated and measured values, the RMSPE
was used as the deviation metric, because it is directly
comparable to the just noticeable difference (JND) val-
ues, which were 5 % and 3 % for T30 and STI, re-
spectively. Studies by Bradley (2011) and Chris-
tensen et al. (2014) reported JND values more than
five-fold higher than those of the current study. There-
fore, a 10 % threshold for RMSPE was established as
the decision criterion for validation, corresponding to
3 JND for STI and 2 JND for T30.

Each classroom was then calibrated by interactively
fine-tuning the sound absorption coefficients of the var-
ious surface areas until the 10 % RMSPE threshold was
reached. Lastly, the calibration curve for the acoustic
model was built by line fitting of the measured versus
simulated data, and the Pearson correlation coefficient
was calculated. After experimentally validating a vir-
tual room design created with ODEON, new conditions
have been developed through the design of experiments
(DOE), and a joint analysis was made to determine
how the room acoustic parameters varied in these new
conditions.

2.3. Creation of training dataset

Montgomery (2012) described the DOE as
a method to determine how modifying certain control-
lable factors (inputs) affects the system’s response vari-
ables (outputs). The DOE expresses the relationships
between the controllable factors (x) and responses (y),
through a standard multilinear model, whose interac-
tions are given in Eq. (2):

y = β0 +
k

∑
j=1

βjxj +∑∑
i<j

βijxixj + ε, (2)

where β0 is the model’s linear intercept coefficient, βj is
the regressor coefficient of the main factors xj , βij rep-
resents the coefficients of the regressors for the effects
of the combinatorial interaction between the main fac-
tors xixj , and k is the number of factors. A 2k DOE
was applied in this work, with k = 4 controllable factors
and two levels, ranging from minimum (−1) to maxi-
mum (+1). The 2k factorial design with a range of −1
to +1 was chosen for its efficiency in screening factors

and its representation of the standardized effect, which
simplifies analysis and interpretation. Table 2 describes
the factors and their levels.

Table 2. DOE levels and factors.

Level
Controllable factors – natural scale

Noise
criteria

Ceiling
absorption

Confinement Occupancy

Lowest
value

15 0.10 Open Present

Highest
value

40 0.90 Closed Absent

Controllable factors – encoded scale
x1 x2 x3 x4

A B C D
Lowest
value

−1 −1 −1 −1
Highest
value

+1 +1 +1 +1

Within the context of the DOE (see Table 2), the
transition of variables from −1 to +1 in the encoded or
natural space has significant implications for multiple
linear regression (MLR) models. A positive shift from
−1 to +1 signifies an ascent towards the higher end of
the experimental range, indicating a positive influence
on the evaluated response variable. Conversely, a neg-
ative shift denotes a descent towards the lower range
of the response, suggesting a negative impact.

The simulations with ODEON software were used
to emulate classrooms and their respective acoustic pa-
rameters as a function of four controllable factors (see
Table 2). The combinatorial experimental conditions
were based on the factors called experimental runs,
which correspond to the design matrix lines xij listed
in Table 3.

The effect of room occupancy, i.e., audience, was
estimated by assigning sound absorption coefficients to
the equivalent absorption surface area of the audience
in ODEON classroom model, based on the literature
(see Table 4).

Specifically, for a full 24 factorial design, the equiv-
alent linear model with 3rd and 4th-order interactions
is shown in Eq. (3):

yk,ij =β0 + β1x1 + β2x2 + β3x3 + β4x4 + β12x1x2

+β13x1x3 + β14x1x4 + β23x2x3 + β24x2x4

+β34x3x4 + β123x1x2x3 + β124x1x2x4

+β134x1x3x4 + β234x1x2x3 + β1234x1x2x3x4, (3)
here, the room acoustics parameters are frequency-
dependent and are written in octave bands to ex-
press the response of a given parameter. Therefore,
a nested output (yk,ij) was used in each classroom. Let
k (= T30, EDT, C50, D50, Ts, STI) indicate the room
acoustic parameters, i (= 1 to 16) represent the exper-
imental runs, and j (= 63 Hz, 125 Hz, 250 Hz, 500 Hz,



E.O. Do Nascimento, P.H.T. Zannin – Combined Evaluation of Room Acoustic Descriptors. . . 5

Table 3. Design matrix used in simulations with ODEON software.

A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD
Run x1 x2 x3 x4 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4 x1x2x3 x1x2x4 x1x3x4 x1x2x3 x1x2x3x4

1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1
2 1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1
3 −1 1 −1 −1 −1 1 1 −1 −1 1 1 1 −1 1 −1
4 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1 1
5 −1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 1 −1
6 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 1
7 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 1
8 1 1 1 −1 1 1 −1 1 −1 −1 1 −1 −1 −1 −1
9 −1 −1 −1 1 1 1 −1 1 −1 −1 −1 1 1 1 −1

10 1 −1 −1 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1
11 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
12 1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 −1
13 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 1
14 1 −1 1 1 −1 1 1 −1 −1 1 −1 −1 1 −1 −1
15 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 −1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4. Sound absorption coefficient of materials used to emulate room occupancy.

Room Occupancy –
audience area

ODEON
number

Reference 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz

1, 2, 3, 5 Audience on heavily
upholstered seats

11007 Beranek,
Hidaka (1998) 0.72 0.80 0.86 0.89 0.90 0.90 0.90

4 Audience on wooden
chairs, 2/m2 11004 Meyer et al.

(1964) 0.24 0.40 0.78 0.98 0.96 0.87 0.87

1 kHz, 2 kHz, 4 kHz, and 8 kHz) indicate the octave
bands.

Consequently, to obtain the yi,kj output used to
train the ANNs in each classroom, 51 responses were
generated in each run, 48 corresponding to the descrip-
tors T3063 Hz−8 kHz, EDT63 Hz−8 kHz, C5063 Hz−8 kHz,
D5063 Hz−8 kHz, and Ts63 Hz−8 kHz in the octave bands
at 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz,
and 8 kHz, while the other three responses were
STImale, STIfemale, and the STI in nominal values.

2.4. Artificial neural networks

The fundamental objective of ANNs is to produce
generalizations through a training process (Russell,
Norvig, 1996). Generalization refers to estimates for
patterns not used in training. Training occurs when
the weights of the connections of an ANN’s neurons
are adjusted to minimize a loss function. Hence, an
ANN is a set of nested functions, with regard to,
Yn = WnXn−1, that have undergone nonlinear point-
wise transformations, resulting in a generalized model,
Xn = Φ (Yn), where Wn is the weight matrix of layer
n, and Xn−1 represents the input patterns for a pre-
vious layer n − 1. The generalized multilayer model is
expanded, as shown in Eq. (4):

Yn = Φn[WnΦn−1[Wn−1Φn−2 [⋯Φ1[W1X]]]]. (4)

The nonlinear transformations performed by Φ are
called activation functions. As proposed by LeCun
et al. (1998), the weight update rule depends on a loss
function that, for a pattern (p) compares the ground
truth value (Dp) with the neural networks’ output
model, given M (Xn,W )P , using the residual error
metric, as shown in Eq. (5):

EP = 1

2
(Dp −M (Xn,W )P )

2
, (5)

where EP is the residual sum of squares about the
M (Xn,W )P , which is the ANN output value esti-
mated as a function of the weight matrices (W ),
and the input patterns (Xn). Accordingly, neural net-
work training can be interpreted as an optimization
paradigm, in which the weights are adjusted as the
loss function is minimized. Notably, in regression prob-
lems, a widely used loss function is the mean square
error (MSE) shown in Eq. (6):

MSEtrain =
1

P

P

∑
p=1

EP , (6)

where P stands for the total number of samples. More-
over, the weight update rule can be applied using var-
ious approaches, such as the gradient-based learning
paradigm, e.g., the stochastic gradient descent, given
in Eq. (7):

W (t) =W (t − 1) − η ∂E
∂W

. (7)
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In this work, the error backpropagation learning al-
gorithm was employed to update the weight matrices.
Equations (8)–(10) portray the generic approach to
backpropagation learning, which is interpreted as the
automatic differentiation in the reverse mode (Baydin
et al., 2017):

∂EP

∂Yn
= Φ′ (Yn)

∂EP

∂Xn
, (8)

∂EP

∂Wn
= Xn−1

∂EP

∂Yn
, (9)

∂EP

∂Xn−1
= WT

n

∂EP

∂Yn
. (10)

In this work, ANNs were applied as universal func-
tional approximators to map the relationship between
inputs and outputs described in Subsec. 2.2.

2.4.1. Input and target pre-processing

The ANN model’s input-output training pairs were
based on the DOE method described in Table 3, which
served not only to create an optimal experimental de-
sign but also as an augmentation method. According
to the DOE runs, augmentation refers to the virtual
response values for the acoustic parameters obtained
through ODEON software.

Firstly, an ANN was trained individually for each
acoustic parameter. Although the same input matrix
was used in all the ANN models, only the output vari-
able varied according to the evaluated acoustic param-
eters. As a result, a single training sample consisted
of a 15-input feature vector and a scalar output. The
input feature vector was derived from the DOE model
inputs, A, B, C, D, AB, AC, AD, BC, BD, CD, ABC,
ABD, ACD, BCD, and ABCD, and the scalar tar-
get corresponded to the reduced single band acous-

a) Overall training set

Run A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD Yi,j* 

1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 yi,k 

2 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 y2,k 

3 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 y3,k 

4 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 y4,k 

5 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 y5,k 

6 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 y6,k 

7 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 y7,k 

8 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 y8,k 

9 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1 y9,k 

10 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 y10,k 

11 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 y11,k 

12 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 y12,k 

13 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 y13,k 

14 1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 y14,k 

15 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 y15,k 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 y16,k 

 

Run A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD Yi,j* 

1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 yi,k 

2 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 y2,k 

3 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 y3,k 

4 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 y4,k 

5 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 y5,k 

6 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 y6,k 

7 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 y7,k 

8 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 y8,k 

9 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1 y9,k 

10 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 y10,k 

11 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 y11,k 

12 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 y12,k 

13 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 y13,k 

14 1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 y14,k 

15 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 y15,k 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 y16,k 
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Input-output matrix

Input set (X): 15x16 (Matrix normalized between -1 and +1)

(15 features for the total sample with 16 rooms)

Target set (d): 1x16 (Vector Y normalized between -1 and +1)

(16 responses for each descriptor, considering the 16 simulated rooms)

Other pairs of input and output submitted to training

Input vector (x), composed of the effects A,

B, C, D and interactions.

Non-normalized network target - d

Normalized network target - y

b) Single input and output sample

A training sample or single input-output pair

Input: 15x1 (15 features for 1 room)

Target: 1x1 (1 response for each descriptor) 

Hidden layers

Input Layer

Output Layer

Fig. 2. Attribution of the input/output relationship in training the network.

tic parameter. The Y16,8 octave band output matrix
was dimensionally reduced to the Y16,1 octave single
band vector encoded in the first principal subspace,
using principal component analysis – PCA (Jolliffe,
Cadima, 2016). Thus, the entire training set for one
classroom was composed of an X16,15 input matrix and
a Y16,1 output vector.

The PCA worked by deflating redundant informa-
tion through multicollinearity reduction, using eigen-
vector information as a threshold measure. For ex-
ample, for an Xm×n dataset, where m is the num-
ber of observations of n variables, the PCA diagonal-
izes X through its variance-covariance matrix, given
as S = (1/N − 1)XXT, where N is the number of ob-
servations, n = 1,2, ...,N . The eigendecomposition of S
results in Suk = λkuk, thus determining the eigenvec-
tors uk and their eigenvalues λk. The sorted eigenvalue
λk informs the cumulative explained variance in the
original X dataset (Jolliffe, 2011).

Secondly, Russell and Norvig (1996) recommend
applying the min-max scaling range −1 to 1, in the
training dataset. The input data set was then assigned
as the design matrix, which was already in a scaled
form; hence, only the target variables underwent scal-
ing through Eq. (11):

yij = a +
(dij −min(dij))(b − a)
max(dij) −min(dij)

, (11)

where yij is the j scaled target feature, i.e., j (= T30,
EDT, C50, D50, Ts, STI), i = 1,2, ...,16 is the i-th
sample of the j feature, simulated dij stands for the
non-scaled feature, and a and b correspond to −1 and
+1, which represent the transformed range.

The hyperbolic tangent activation function, which
has the same image range as min-max scaling, was em-
ployed here. Figure 2 shows the assignment of a train-
ing sample, with the input, x1,15 (vector), and output
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y1,1 (scalar) in the ANN and its relationship with the
DOE for a classroom.

The algorithm described in Fig. 2 was used for each
of the five classrooms where measurements were taken,
and 16 virtual rooms were generated corresponding to
the curves (runs). Thus, a total of 80 virtual classrooms
were created using ODEON software. As mentioned
earlier, the X16,15 matrix was then adopted as the ANN
input, while the target for subsequent ANN training
was the YPCA16.6 vector. Lastly, the ANN was trained
with an input composed of 15 features, which were the
main factors A, B, C, D and their respective 2nd order
(AB, AC, AD, BC, CD), 3rd order (ABC, ABD, ACD,
BCD) and 4th order (ABCD) interactions, and only
one scalar as output.

Regarding the training dataset, a correlation ma-
trix was evaluated in two ways: (a) by intra-correla-
tions between the responses for the same descriptor,
in the octave bands, and (b) the intercorrelations be-
tween the different descriptors T30, Ts, EDT, D50,
U50, and STI in their octave bands.

2.4.2. Artificial neural network topological structures

The multilayer perceptron (MLP) architecture was
utilized to train the ANN. The architecture of a net-
work determines how artificial neurons are arranged
and how signals flow between them (LeCun et al.,
2015). The term network topology indicates the num-
ber of neurons contained in these hidden layers. The
ANN model was employed as a regression problem for
multidimensional function approximation, leveraging
the universal approximation theorem. This approach
enabled the sensitivity analysis of the effects of con-
trollable factors on the ANN models, as described in
Subsec. 2.5. Table 5 outlines the design of the ANN
applied in this study.

ANNs are subject to overfitting, which occurs when
they approximate the training data too closely, caus-
ing them to lose their ability to generalize. Therefore,
early stopping and holdout were employed to reduce
the possibility of overfitting, according to the heuristics
proposed by Piotrowski and Napiorkowski (2013).

Table 5. Configurations of the neural network design.

Architecture MLP
Number of inputs/number of outputs 15/1

Topology 1 MLP 15-5-5-1
Topology 2 MLP 15-10-10-1
Topology 3 MLP 15-15-15-1
Topology 4 MLP 15-20-20-1
Topology 5 MLP 15-30-30-1
Topology 6 MLP 15-35-35-1

Training algorithm Error backpropagation, optimized by Levenberg–Marquardt
Activation functions in hidden layers Hyperbolic tangent function
Activation function in the output layer Linear function

Having trained the ANN, the network inference
phase began, after the synaptic weights had already
been adjusted. Thus, the inference of a network con-
sisted of applying its input values (X) and calculating
its estimated output (y). The quality of ANN train-
ing was evaluated by comparing the target (d) and the
estimated neural network (y), using Pearson’s R2 cor-
relation coefficient and the MSE as performance met-
rics. Lastly, an ANN was trained for each of the out-
puts T30PCA, EDTPCA, C50PCA, D50PCA, TsPCA, and
STIPCA.

The optimized response from the 50 independent
training sessions of the neural network, called the aver-
age equivalent network, was calculated for each topol-
ogy. All the computational implementations were de-
veloped in MATLAB R○.

2.5. Artificial neural networks input variable
sensitivity

In this work, the modified profile method (MPM)
(Gevrey et al., 2003; Do Nascimento, Oliveira,
2016) was applied to determine the relative significance
of the input variables. The MPM calculates the signif-
icance of the ANN input variables, using the angular
coefficient of the linear regression of the profile curve.
Hence, the significance rating for the 15-input vector,
A, B, C, D, AB, AC, AD, BC, BD, CD, ABC, ABD,
ACD, BCD, and ABCD was calculated as the average
of the effects in the five evaluated classrooms. Based on
the non-replicated DOE, the significance of the MPM
effects was estimated by transforming the angular co-
efficients into the z-score.

Multiple linear regression (MLR) was used to bench-
mark the MPM results. MLR was applied directly into
the design matrix to compare the sensitivity of each
input variable in the output. The sensitivity was taken
as the regressor values shown in Eq. (2). The regres-
sors were estimated using the least squares method,
which yields the following equation, β̂ = (XTX)−1 y,
where X is the design matrix shown in Table 3, XT is
the transpose design matrix, (⋅)−1 is the inverse ma-
trix operator, y is the output variable under analysis,
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y (= T30, EDT, C50, D50, Ts, STI), one output at
a time. The estimated model is ŷ =X β̂, and the resid-
ual values are e = y − ŷ. The quality of the regression
was evaluated using the sum of residual squares, given
as SSr = yTy− β̂TXTy and through Pearson’s squared
linear correlation coefficient (R2), usually known as the
determination coefficient.

3. Results and discussion

Figure 3 shows the values of the measured de-
scriptors. As can be seen, the hypothesis proposed
by Montgomery (2012), who recommended that the
DOE should be carried out in the most differenti-
ated conditions possible, was met since the descriptors
showed high statistical variability.
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Fig. 3. Mean STI, T30, EDT, D50, and Ts values measured
in the classrooms.

Table 6 lists the measured background noise levels
and the respective NC of the classrooms. The NC was

Table 6. Background noise level [dB] measured in the classrooms and noise criteria (NC) rating.

Room 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz NC
1 34.5 30.0 23.2 21.4 21.1 19.6 17.0 23
2 48.3 38.6 32.2 32.0 29.9 23.0 19.5 35
3 48.0 41.0 40.2 38.9 30.0 25.3 24.9 30
4 48.9 42.6 34.6 28.9 25.1 21.9 21.4 32
5 50.4 44.9 36.6 31.9 29.3 22.8 18.0 34

Table 7. Mean measured SNR values.

Room
SNR, mean ± standard deviation

125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz
1 18.61± 4.62 25.61± 1.75 22.39± 0.68 19.22± 3.44 11.83± 2.43 8.11± 2.95 −3.61± 2.66
2 21.28± 2.67 20.48± 0.92 19.48± 0.59 17.44± 1.23 10.96± 1.59 6.04± 1.51 −9.32± 2.21
3 15.94± 3.73 20.19± 2.64 19.13± 3.01 18.31± 3.34 13.63± 3.03 10.13± 2.50 −1.44± 1.93
4 8.00± 3.28 16.17± 3.69 20.67± 3.26 23.17± 2.66 21.33± 2.77 20.83± 1.64 15.92± 1.62
5 14.09± 2.43 22.55± 3.08 21.91± 2.30 19.36± 1.80 11.09± 2.02 9.27± 1.85 −2.82± 1.83

used as an input for ODEON software, as indicated in
Fig. 2.

Table 7 lists the average measured values of SNR
in the octave bands. The STI values for each classroom
were calculated according to the IEC (2011) standard
Annex M: adjustments to measured STI and STIPA
results for simulation of occupancy noise and differ-
ent speech levels. The BGN level is listed in Table 6,
and the input sound source signal level was equal-
ized at Leq 60 dB, as described in Sec. 2. The cor-
responding mean STI values measured in classrooms
1 up to 5 were 0.70± 0.06, 0.63± 0.02, 0.56± 0.02,
0.58± 0.02, and 0.53± 0.03, respectively.

According to Subsec. 2.2, the classroom simulations
were validated by comparing the most significant per-
cent error values through the calibration curve and the
R2 value, as shown in Fig. 4.

Table 8 describes the generalization of the proce-
dure highlighted in Fig. 4 to calculate validation errors
pertaining to the other evaluated classrooms.

Using the validated virtual classroom models, new
simulations were generated corresponding to the con-
ditions illustrated in Fig. 2, which comprised the 15
combinations between factors A, B, C, and D. Figure 5
illustrates the distribution of the responses of descrip-
tors T30, EDT, Ts, D50, U50, and STI as a function of
each DOE run, using the results of the classroom two
as an example.

More than 95 % of the variance was explained solely
by the first principal component through the PCA
method, as was also the case in the other classrooms.
All the multi-band information contained in Fig. 5 was
therefore condensed in Fig. 6.

Figure 7 shows the correlation matrix for the de-
scriptors EDT, T30, Ts, D50, C50, U50, and STI ob-
tained after applying the PCA.

As can be seen, Fig. 7 and Table 9 indicate the
correlations and significance between the groups. Thus,
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Table 8. Forecast accuracy validation metrics for ODEON acoustic model via MPE, RMSPE and correlation.

Room Estimation
type

STI T30 [s]
Mean RMSPE, r2 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz Mean RMSPE, r2

1
Measured 0.70

7.14 %, 0.47
0.78 0.64 0.45 0.37 0.44 0.46 0.46 0.51

6.03 %; 0.96
Simulated 0.72 0.75 0.62 0.42 0.40 0.43 0.47 0.41 0.50

MPE 1.33 % – 4.03 % 2.67 % 7.18 % 7.02 % 3.04 % 1.73 % 10.87 % – –

2
Measured 0.63

3.99 %, 0.80
0.97 0.82 0.62 0.49 0.47 0.46 0.39 0.60

5.77 %; 0.96
Simulated 0.64 0.89 0.81 0.66 0.50 0.45 0.43 0.36 0.59

MPE 2.00 % – 8.22 % 0.67 % 7.27 % 1.21 % 4.00 % 5.81 % 7.81 % – –

3
Measured 0.56

5.03 %, 0.57
0.71 0.83 0.92 1.02 1.02 0.92 0.81 0.89

6.35 %; 0.91
Simulated 0.54 0.77 0.81 0.89 0.95 0.98 0.84 0.74 0.85

MPE 3.48 % – 8.33 % 2.90 % 3.13 % 6.61 % 3.52 % 8.48 % 8.14 % – –

4
Measured 0.58

3.88 %; 0.32
2.62 2.08 1.58 1.08 1.07 1.06 0.86 1.29

4.91 %; 0.99
Simulated 0.59 2.68 1.99 1.60 1.01 0.99 1.03 0.80 1.24

MPE 0.43 % – 2.43 % 4.42 % 1.54 % 6.12 % 7.34 % 2.63 % 6.52 % – –

5
Measured 0.53

6.63 %; 0.77
2.60 2.11 1.31 1.01 1.01 0.95 0.77 1.39

4.19 %; 0.99
Simulated 0.55 2.54 2.10 1.22 0.98 0.98 0.88 0.78 1.35

MPE 5.01 % – 2.13 % 0.50 % 6.71 % 3.09 % 2.91 % 7.29 % 1.38 % – –

0 . 3

0 . 6

0 . 9

1 . 2

0 . 4

0 . 8

1 . 2

3 0

6 0

9 0

0 . 4

0 . 6

0 . 8

1 . 0

- 3 0

- 1 5

0

1 5

0 . 2

0 . 4

0 . 6

0 . 8

1 6
1 5

1 4

1 3

1 2

1 1 7

6

5

4

3
2

1 0 9 8

1a )  T 3 0 1 6
1 5

1 4

1 3

1 2

1 1 7

6

5

4

3
2

b )  E D T

1 0 9 8

1 1 6
1 5

1 4

1 3

1 2

1 1 7

6

5

4

3
2

c )  T s

1 0 9 8

1

1 6
1 5

1 4

1 3

1 2

1 1 7

6

5

4

3
2d )  D 5 0

 6 3  H z       1 2 5  H z     2 5 0  H z     5 0 0  H z
 1 0 0 0  H z   2 0 0 0  H z   4 0 0 0  H z   8 0 0 0  H z

1 0 9 8

1 1 6
1 5

1 4

1 3

1 2

1 1 7

6

5

4

3
2

e )  U 5 0

 6 3  H z       1 2 5  H z     2 5 0  H z     5 0 0  H z
 1 0 0 0  H z   2 0 0 0  H z   4 0 0 0  H z   8 0 0 0  H z

1 0 9 8

1 1 6
1 5

1 4

1 3

1 2

1 1 7

6

5

4

3
2f )  S T I

1 0 9 8

1

 S T I   S T I  m a l e   S T I  F e m a l e

Fig. 5. Simulation of descriptors for each run for classroom 2.



10 Archives of Acoustics – Online First September 26, 2024

- 2

- 1

0

1

21 6
1 5

1 4

1 3

1 2

1 1 7

6

5

4

3
21

1 0 9 8
 E D T   T 3 0   T s   D 5 0   U 5 0   S T I

Fig. 6. Dimensional reduction of the acoustic descriptors.

-1.0

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51

EDT T30 Ts D50 C50 U50 STI

Pe
ar

so
n 

co
rre

la
tio

n 
co

effi
ci

en
t [

PC
C

]

Fig. 7. Correlation matrix plot between all the acoustic descriptors.

Table 9. Correlations between the evaluated descriptors and their significance.

EDT [s] T30 [s] Ts [ms] D50 C50 [dB] U50 [dB] STI
EDT [s] 1
T30 [s] 0.947∗ 1
Ts [ms] 0.996∗ 0.948∗ 1
D50 −0.963∗ −0.902∗ −0.965∗ 1

C50 [dB] −0.914∗ −0.863∗ −0.912∗ 0.977∗ 1
U50 [dB] −0.273∗ −0.254∗ −0.266∗ 0.267∗ 0.257∗ 1

STI −0.281∗ −0.252∗ −0.278∗ 0.269∗ 0.256∗ 0.975∗ 1
Note: a 2-tailed test of significance is used; *correlation is significant at the 0.05 level.



E.O. Do Nascimento, P.H.T. Zannin – Combined Evaluation of Room Acoustic Descriptors. . . 11

upon analyzing the correlation matrix, three groups
were observed, identified by the dark blue samples, i.e.,
the 1st (EDT, T30, and Ts), the 2nd (C50 and D50),
and the 3rd (U50 and STI).

In the benchmarking literature, Tang (2008) made
a joint evaluation of the speech-related acoustic de-
scriptors using regression models. The author reported
the following correlations:

STI (D50) r2 = 0.893 (+); STI (C80) r2 = 0.916 (+);

STI (Ts) r2 = 0.907 (−); STI (RT) r2 = 0.903 (−).

For comparison, the following correlations were ex-
tracted from Table 9:

STI (D50) r2 = 0.269 (+); STI (C50) r2 = 0.256 (+);

STI (Ts) r2 = 0.278 (−); STI (RT) r2 = 0.252 (−).

Thus, it can be inferred that the effects followed the
same vein.

Additionally, a literature review by Minelli et al.
(2022) found that the acoustic descriptors are signif-
icantly affected by the occupation condition of built
environments (factor D), i.e., unoccupied or occupied.
This finding is in line with ours, which indicated that
the entire acoustic response was altered in various ways
by a combined change in construction factors (A, B, C,
and D).

Likewise, Croce et al. (2023) and Choi (2020)
independently established relationships between STI,
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Fig. 8. Comparison of the significance rating in the classrooms.

U50, and RT and assessed the influence of construc-
tion factors. Choi (2020) determined that, quan-
titatively, C50(125–4 kHz) is more strongly corre-
lated with U50(125–4 kHz) r2 = 0.824 than with
STI (0.627). Hence, the results of linear regression in-
dicated that C50, specifically, plays a more significant
role in increasing r2 values of both U50 and STI, out-
weighing the impact of the background noise compo-
nent (factor A). This conclusion can be seen in the
last two rows of Table 10, where the encoded effects
on U50 and STI were the same (−)A, (+)B, (−)AB,
and (+)D, and as proxy, the correlation STI(U50)
was 0.975 (+), while the other correlations were lower:
C50(U50) 0.257 (+), C50(STI) 0.269 (+).

The r2 between U50(125–4 kHz) and C50(125–4 kHz)
is 0.824, while that between STI and C50(125–4 kHz)
is 0.627. This indicates that the correlation between
STI and C50 is not much stronger, which resembles the
result described in Table 9, i.e., C50(STI) 0.269 (+). In
an extended discussion about the role of early reflec-
tions on C50 and their implications for speech intelligi-
bility, Prodi et al. (2022) reported the same findings.
This was highlighted in the current work by the MPM,
which separated C50 and D50 from the STI and U50
group.

Graphically, to assess the significance rating, Fig. 8
illustrates the effects of A, B, C, and D, and their re-
spective interactions in the classrooms on the evalu-
ated descriptors, using the MPM.

In Fig. 8, note the spatial uniformity of the sig-
nificance rating, which is why the discussion was gener-
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Table 10. Comparison of the absolute effects on the descriptors: MPM versus MLR.

Group Parameter
Rating and effects
1 2 3 4

1

EDT [s]
Coded effect (−)B (+)C (+)BD (−)D

MPM magnitude 2.902 1.242 1.212 1.202
MLR magnitude 2.963 1.348 1.133 1.222

T30 [s]
Coded effect (−)B (+)BD (−)D (+)C

MPM magnitude 2.728 1.210 1.076 0.834
MLR magnitude 2.858 1.492 1.175 1.155

Ts [ms]
Coded effect (−)B (+)BD (−)D (+)C

MPM magnitude 2.944 1.236 1.146 1.134
MLR magnitude 2.968 1.365 1.221 1.084

2 D50
Coded effect (+)B (−)C (−)BD (+)D

MPM magnitude 3.096 1.096 1.074 1.044
MLR magnitude 3.168 1.076 1.048 1.046

3

U50 [dB]
Coded effect (−)A (+)B (−)AB (+)D

MPM magnitude 2.906 1.288 0.754 0.704
MLR magnitude 3.347 0.910 0.598 0.582

STI
Coded effect (−)A (+)B (+)D (−)AB

MPM magnitude 3.072 0.996 0.632 0.582
MLR magnitude 3.340 0.904 0.631 0.565

alized. Moreover, it was found that the groups in the
effect analysis were the same as those in the correlation
analysis. Table 10 quantifies the significance ratings of
the impact shown in Fig. 8. The four main effects in
each group are highlighted with a (+) sign, indicating
an increase in the descriptor, while the (−) sign indi-
cates a decrease in the descriptor as the effect varies
from −1 to +1.

As can be seen in Table 10, the acoustic parameters
were given the same rating by both MPM and MLR,
matching the construction design factors. Likewise, it
was found that the rating was identical for each acous-
tic parameter, confirming that the MPM showed ex-
cellent convergence when benchmarked with the MLR.

In the first group (EDT, T30, and Ts), the most
important factors were: (−)B, (+)BD, (−)D, and (+)C.
The increase in absorption (B) from −1 to +1, implied
a decrease in EDT, T30, and Ts. The same finding was
reported by Beranek (2006).

The second group (C50, D50) responded, in terms
of magnitude, as (+)B, (−)C, (−)BD, and (+)D. The
increase in absorption (B), from −1 to +1 implied an
increase in D50. Similarly, a positive correlation was
found between D50 and both U50 and STI, and these
results are promising, since D50 is strongly associated
with STI (Bradley et al., 2003; Croce et al., 2023;
Choi, 2020). It should be noted that the higher the
D50, the greater the intelligibility, according to the re-
lationship described by Bradley et al. (2003).

In the third group (U50 and STI), the first effect
with the highest impact on intelligibility was back-
ground noise (A). In contrast, the second most sig-
nificant effect was sound absorption (B). As a re-
sult, the increase in background noise from −1 to +1

caused a decrease in STI, while sound absorption alone
did not exert a significant effect. Thus, the importance
ratio of effect A on B was approximately three-fold.
The factor A explained most of the variation in STI.
A similar finding has been reported in several studies
(Bistafa, Bradley, 2000; Rennies et al., 2014; Sato
et al., 2012; Leccese et al., 2018).

It is essential to note that while this work provided
a comprehensive understanding of the relationships be-
tween various acoustic descriptors and building design,
there is room for improvement to enhance the consis-
tency and reliability of results. Firstly, the study fo-
cused on a specific set of factors (A, B, C, and D)
and their influence on acoustic parameters, potentially
overlooking other variables that could contribute to the
acoustic environment. Moreover, some limitations of
this work must be recognized, including the potential
for unaccounted variables or interactions that could in-
fluence the acoustic descriptors, as well as reliance on
specific models and methods (MPM and MLR) that
may not detect all the nuances of the acoustic en-
vironment. To improve the reliability of the results,
further studies involving larger sample sizes or differ-
ent types of classrooms would be advisable to vali-
date the findings. Furthermore, incorporating more ad-
vanced modeling techniques or considering additional
variables, such as room geometry or occupants’ po-
sitions, could provide a more comprehensive picture
of the relationships between acoustic descriptors and
building design factors. Lastly, the study’s reliance on
correlational analyses means that other unmeasured
variables could potentially lead to confusion about the
observed relationships, underscoring the need for ad-
ditional research to explore these relationships.
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4. Conclusions

In conclusion, this work involved an in-depth com-
parison of acoustic parameters using both MPM and
MLR methods, revealing a high degree of convergence
between the two methods. This analysis, guided and
benchmarked by a review of the literature, provides
a comprehensive understanding of the complex re-
lationships between various acoustic descriptors and
building design.

The correlation analyses of U50, STI, and C50, as
discussed in the context of (Choi, 2020) and validated
in the current study, elucidate the intricate interac-
tion between these predictors of speech intelligibility.
The observed predominance of C50 in influencing both
U50 and STI values, as described in Table 10, sup-
ports Choi’s (2020) quantitative findings, and under-
scores the pivotal role of room acoustic parameters in
enhancing speech intelligibility.

As for the significance of controllable factors, it
was concluded that the sound absorption, the fac-
tor (B), interferes more strongly in reverberation-
related descriptors (groups 1 and 2), while the back-
ground noise, the factor (A), strongly interferes with
the STI. The factor (C) was the one that interfered the
least with the acoustic descriptors in general. More-
over, it was shown that D50 responds to the acoustic
conditions of the classroom in the same way as EDT,
Ts, and T30 do. The only difference is that RT de-
creases and D50 increases in response to an increased
classroom sound absorption. Surprisingly, the com-
bined 3rd and 4th order interactions had negligible ef-
fects in the classrooms of this study.
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