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Abstract. Pedestrian trajectory prediction provides crucial data support for the development of smart cities. Existing pedestrian trajectory pre- 
diction methods often overlook the different types of pedestrian interactions and the micro-level spatial-temporal relationships when handling 
the interaction information in spatial dimension and temporal dimension. The model employs a spatial-temporal attention-based fusion graph 
convolutional framework to predict future pedestrian trajectories. For the different types of local and global relationships between pedestrians, 
it first employs spatial-temporal attention mechanisms to capture dependencies in pedestrian sequence data, obtaining the social interactions of 
pedestrians in spatial contexts and the movement trends of pedestrians over time. Subsequently, a fusion graph convolutional module merges 
the temporal weight matrix and the spatial weight matrix into a spatial-temporal fusion feature map. Finally, a decoder section utilizes Time- 
Stacked Convolutional Neural Networks to predict future trajectories. The final validation on the ETH and UCY datasets yielded experimental 
results with an Average Displacement Error(ADE) of 0.34 and an Final Displacement Error(FDE) of 0.55. The visualization results further 
demonstrated the rationality of the model.

Key words: pedestrian trajectory prediction; micro-level spatial-temporal relationship; spatial-temporal attention; fusion graph convolution;
Time-Stacked Convolutional Neural Network

1. INTRODUCTION

Pedestrian trajectory prediction essentially involves analyz-
ing and extracting historical trajectory features of pedestri-
ans, and then predicting their future movement directions and
paths. Pedestrian trajectory prediction is crucial in many fields.
For example, accurately predicting pedestrian movements in
traffic forecasting can improve traffic efficiency and reduce
congestion[1][2]. In smart city design, optimizing city layout
can be achieved by predicting pedestrian movement trajecto-
ries. Additionally, in security monitoring [3], real-time predic-
tion of pedestrian behavior can help promptly detect abnormal
behavior or potential safety risks. Therefore, trajectory pre-
diction can advance the development of smart cities, making
this research highly significant for practical applications and
of great academic value.

The challenge of pedestrian trajectory prediction lies in
simultaneously capturing both pedestrian-pedestrian interac-
tions and pedestrian-environment interactions. Before making
predictions, it is essential to comprehensively analyze the re-
lationship between time points and spatial positions.As shown
in Fig. 1, there is a correlation between the pedestrian’s cur-
rent time point and position, which necessitates assessing the
influencing factors within the spatial-temporal context. This
increases the complexity of pedestrian trajectory prediction.

Early trajectory prediction methods based on mathematical
and physical principles [4][5][6], including Gaussian process
regression and kinematic methods, typically focused on short-
term predictions of individual trajectories, overlooking pedes-
trian interactions. Subsequently, researchers turned to deep
learning techniques for modeling human trajectories, primarily
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Fig. 1. Pedestrian interaction diagram

using recurrent neural networks[7], long short-term memory
networks, and convolutional neural networks [8][9][10][11].
Later, researchers proposed utilizing pooling to gather poten-
tial states of pedestrians in the current scene[12]. Many schol-
ars also employed generative adversarial networks to address
challenges in behavior inference and uncertainties in future
choices[13][14][15]. Early models mostly relied on recur-
rent structures, which suffered from low training efficiency
and high costs[16]. Many models utilizing aggregation lay-
ers have been insufficient in intuitively representing physi-
cal features among pedestrians. The subsequent article uses
graphs to simulate pedestrian movement scenarios[17], which
is more fitting for describing pedestrian scenarios than aggre-
gation, but lacks sufficient representation of social aspects. To
better leverage graph representations, scholars proposed the
Social-STGCNN model[18], which modeled pedestrian scenes
as spatial-temporal graphs replacing aggregation layers and
used kernel functions to define influences among pedestrians.
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The following model builds upon this by using graph attention
mechanisms to calculate the weights representing the mutual
influence between pedestrians[19], yet accurately representing
local and global relationships among pedestrians remains a sig-
nificant challenge.

In the early trajectory prediction, only the interactions
among local pedestrians were considered, while ignoring the
motion trends of pedestrians in the distance. The later ap-
proach established a holistic model, employing the same mech-
anism for pedestrians in both spatial and temporal dimensions.
However, it failed to fully consider the micro-level changes
of individual pedestrians across different dimensions and did
not extract interaction weights at multiple levels; Trajectory in-
formation between spatial and temporal is often strongly con-
nected; therefore, after obtaining interaction information, we
need to analyze pedestrian interactions under the fusion of
spatial and temporal; when the model uses Temporal Convo-
lutional Network(TCN) for prediction, there may be cases of
insufficient feature extraction; Therefore, this paper proposes
the following improvements:

1.After modeling pedestrian trajectories as trajectory
graphs, the spatial-temporal attention mechanism applies a
convolution operation to compute the weight information of
pedestrians across different dimensions. The model dynami-
cally updates the weight information matrix, enabling it to ex-
plore micro-level interactions between pedestrians from multi-
ple perspectives.

2. The fusion graph convolution module is used to integrate
spatial and temporal features, providing a more comprehensive
understanding of the spatial-temporal structure and dynamic
changes in the data. This generates more effective interaction
feature representations, thereby enhancing the model’s ability
to understand and represent spatial-temporal data.

3. The decoder utilizes a Time-Stacked Convolutional Neu-
ral Network (TSCNN) to recognize and learn long-term depen-
dencies within trajectory data. This enables the model to delve
more deeply into learning detailed pedestrian trajectory feature
representations and making predictions.

2. RELATED WORK

2.1. Pedestrian interaction model

The earliest model of crowd interaction was proposed by Hel-
bing et al. known as the Social Force Model[20], which rep-
resents the attraction and repulsion between pedestrians us-
ing Langevin equations. After decades of refinement, exper-
iments in some studies have validated that such models are
not sufficiently accurate in representing real-world crowd in-
teractions. Subsequent models such as discrete choice mod-
els [21] and continuous dynamics models [22], which inte-
grate mathematical and physical principles, also suffer from
insufficient accuracy in trajectory prediction.The integration
of deep learning methods with trajectory prediction has im-
proved accuracy[23]. Alahi et al. encode pedestrian in-
teractions as "social" descriptors[24], while Xu et al. use
spatial affinity to represent weights between pedestrians[25].
The Behavior-CNN model employs CNNs to model crowd

interactions. Zhang et al. simulate neighbors’ current in-
tentions using an iteratively updated refinement module [26].
Mohamed et al. utilize kernel functions to extract pedes-
trian relationships in graph representations. Many studies
have shown that graph attention mechanisms can better en-
code trajectory data, effectively aggregating features of neigh-
boring nodes[27][28]. The AST-GNN model utilizes atten-
tion mechanisms to extract agent interactions within spatial-
temporal graphs. Subsequent studies have employed self-
attention mechanisms to calculate the temporal and spatial in-
teractions among pedestrians[29][30][31]. However, existing
models still fail to adaptively consider different-dimensional
interactions between pedestrians. To better utilize attention
mechanisms in computing interaction matrices, this model em-
ploys spatial-temporal attention mechanisms to learn the tem-
poral and spatial relationship weights between nodes. This al-
lows the model to adapt better to different tasks and data distri-
butions, reducing overfitting to specific attention weights. This
mechanism flexibly and dynamically extracts information from
different dimensions, enhancing understanding of pedestrian
behavior in complex environments.

2.2. Graph network in trajectory prediction

In trajectory prediction tasks, the model needs to analyze se-
quential data in both spatial and temporal dimensions. Se-
quences can be represented using a graph structure with nodes
and edges, where nodes correspond to pedestrians and edges
represent interactions between pedestrians. Huang et al. uti-
lized attention mechanisms to extract spatial interactions and
employed an LSTM model to capture temporal dimension
information[32]. However, different modeling approaches im-
pose limitations on the model’s ability to handle different di-
mensions. Subsequent research has adopted a spatial-temporal
graph frameworks for trajectory modeling[33], simulating in-
teractions between pedestrians in the spatial dimension and
modeling each pedestrian’s historical trajectory in the tempo-
ral dimension, as seen in action recognition [34], traffic predic-
tion [35], etc. However, these models do not consider the joint
relationships between temporal and spatial dimensions. Our
model addresses this by incorporating a fusion module within
the spatial-temporal graph framework to analyze the micro-
scopic connections between temporal and spatial dimensions.
Additionally, it employs a Time-Stacked Convolutional Neu-
ral Network for specific step-length trajectory predictions, thus
enhancing its application in complex and dynamic real-world
scenarios.

3. PROBLEM FORMULATION

Given the historical observed trajectory positions of N
pedestrians from the initial time to time To as trn

o =
{Pn

t = (Xn
t ,Y

n
t ) |t ∈ {1, . . . ,To}}, the model needs to predict

the position trn
p =

{
P̂n

t =
(
X̂n

t , Ŷ
n
t
)
|t ∈

{
1, . . . ,Tp

}}
at time Tp,

the predicted position (X̂n
t , Ŷ

n
t ) represents the probability dis-

tribution random variable of pedestrian N’s coordinates at time
t. Assuming observed positions follow a bivariate Gaussian
distribution Pn

t ∼ N (µn
t ,σ

n
t ,ρ

n
t ), the predicted pedestrian tra-
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Fig. 2. Spatial-Temporal attention-based fusion graph convolutional model framework diagram

jectories also adhere to this distribution P̂n
t ∼ N (µ̂n

t , σ̂
n
t , ρ̂

n
t ).

To achieve minimization of the negative log-likelihood loss
function for this model:

Ln(W) =−
Tp

∑
t=1

log(P(pn
t | µ̂

n
t , σ̂

n
t , ρ̂

n
t )) (1)

Where µ̂n
t denotes the mean,σ̂n

t denotes the variance,ρ̂n
t de-

notes the correlation of the distribution, and W represents the
learned network parameters.

4. ARCHITECTURE OVERVIEW

The paper introduces the STAFGCN model, which employs
an encoder-decoder architecture as depicted in Fig. 2. The en-
coder consists of two key modules: (1) the spatial-temporal
attention module, which extracts interaction weights of pedes-
trians through spatial-temporal attention mechanisms, encom-
passing temporal motion trends and spatial social interactions;
(2) the fusion graph convolution module, which utilizes fu-
sion graph convolution to capture the spatial-temporal corre-
lations within pedestrians’ complex interactions. The decoder
utilizes a Time-Stacked Convolutional Neural Network, focus-
ing on predicting long-term future trajectories. Thus, the over-
all structure of the model is made more complete, enabling it
to predict pedestrian movement trajectories with greater accu-
racy.

4.1. Graph representation of pedestrian trajectories
Due to the sparsity of raw trajectories and the advantageous
ability of graph structures to capture complex correlations in
sequential information, therefore, pedestrian trajectory data is
transformed into graph structures for representation. The orig-
inal data consists of the coordinate positions of N pedestrians
observed in the scene over the past To time steps, The size of
the input tensor is represented as (N ×To ×2).
1.Spatial graph representation

First, the input pedestrian position information is con-
structed into a set of spatial graphs Gs = (Vs,Es), represent-

ing the relationships and states among pedestrians at time t.
The nodes are denoted as Vs =

{
vi

s|∀i ∈ {1, . . . ,N}
}

, where
vi

s represents the position information (xi
t ,y

i
t) at time t. Es

represents the edge set information of the graph, denoted
as Es =

{
ei j

s |∀i, j ∈ {1, . . . ,N}
}

. If there is interaction be-

tween two edges, then ei j
s = 1; otherwise, ei j

s = 0. Then, the
spatial-temporal attention mechanism is utilized to obtain the
weighted adjacency matrix of the nodes.
2.Temporal graph representation

Modeling pedestrians along the temporal dimension, con-
structing the temporal graph Gt for the n-th pedestrian.
Using the temporal graph Gt = (Vt ,Et), pedestrians’ rela-
tive positions at different time steps are represented. Vt =
{vt

i|∀i ∈ {1, . . . ,To}} denotes the node information of pedes-
trian positions, where (xt

i ,y
t
i) signifies the coordinates of

pedestrian n at time t. The edge set information of the tempo-
ral graph is denoted as Et =

{
et

i j|∀i, j ∈ {1, . . . ,To}
}

, while et
i j

indicates the interactions between pedestrians at time t. Subse-
quently, through spatial-temporal attention mechanisms, more
accurate correlations between nodes are captured, providing
the model with more precise input features.

4.2. Spatial-temporal attention

The model employs a spatial-temporal attention mechanism to
perform feature extraction on the graph structure. Due to the
various factors affecting pedestrian movement direction, it’s
necessary to analyze the diversity of pedestrian motion pat-
terns. This mechanism can model temporal and spatial depen-
dencies from different perspectives, without relying on a fixed
weighted adjacency matrix, thereby improving the model’s ca-
pability to adapt to diverse types of data. The structure is de-
picted in Fig. 3.

Performing spatial-temporal attention mechanisms on dif-
ferent graph representations, compute the motion trends in the
temporal dimension and the social interactions in the spatial di-
mension. Traditional attention models utilize linear mappings
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Fig. 3. Spatial-temporal attention architecture diagram

to generate discrete input vectors. However, spatial-temporal
attention employs convolutional operations to generate learn-
able parameters Q and K, producing local evolutionary fea-
tures. Here, spatial attention and temporal attention are used
in parallel to compute pedestrian interaction weights along the
temporal and spatial dimensions, respectively. The calculation
process of attention coefficients between pedestrians is as fol-
lows:

E = ϕ (G,W1) (2)

Q = conv(E,W2) (3)

K = conv(E,W3) (4)

Where G represents the input temporal or spatial graph
representation, combined with dynamically changing weight
matrix W, we compute the corresponding spatial dimension
queries Qs and keys Ks, as well as temporal dimension Qt and
Kt .

as =
exp(S(Ks,Qs))

∑ j exp(S(Ks,Qs))
(5)

at =
exp(S(Kt ,Qt))

∑ j exp(S(Kt ,Qt))
(6)

Where S (·) denotes the function that computes correlations,j
denotes all neighboring nodes, as is the normalized spatial
attention coefficients, and at is the temporal attention coeffi-
cients. The attention coefficients at different time points are
concatenated to form the temporal adjacency matrix At , and
use this method to obtain the spatial adjacency matrix As for
different pedestrians’ attention coefficients, , with information
propagation and feature updates conducted simultaneously in
both spatial and temporal dimensions.

4.3. Fusion graph convolution module
This module consists of two operations. First, perform a fusion
operation on the temporal features and spatial features to ob-
tain different fusion matrices. In the next step, the obtained fu-

sion feature matrices are input into a graph convolutional neu-
ral network to generate a spatial-temporal fusion convolutional
matrix. The specific operations are shown in Fig. 4.
1.Feature fusion

Using the concept of global attention mechanisms, perform
feature extraction and fusion operations on temporal and spa-
tial adjacency matrices. First, input weighted adjacency ma-
trices of different dimensions, apply pooling operations to the
spatial weighted adjacency matrix to extract features, and then
use an activation function to generate the spatial weight matrix.

Asp = Sigmoid(Maxpooling(As) ·Wm +Avgpooling(As) ·Wa))
(7)

Where Asp is the obtained spatial weight matrix, Wm and Wa
are the weight during the pooling operation.

The corresponding temporal weighted adjacency matrix is
multiplied element-wise with the self-connected spatial weight
matrix to obtain the spatial-temporal fusion matrix, while the
temporal-spatial fusion matrix is derived by performing a dot
product between the spatial weighted adjacency matrix and the
self-connected temporal feature matrix.

As−t = At ⊙ (Asp + I) (8)

Where As−t is the spatial-temporal fusion matrix obtained
after the dot product ⊙.

The spatial weighted adjacency matrix is then concatenated
with the spatial-temporal fusion matrix, followed by a softmax
operation to produce the spatial-temporal fusion aware matrix.

Rs−t = so f tmax(cat(As,As−t)) (9)

Where Rs−t is the spatial-temporal fusion perception matrix.
The temporal adjacency matrix At undergoes similar fusion
convolution operations to sequentially produce the temporal
feature matrix Ate , the temporal-spatial fusion matrix At−s ,
and the temporal-spatial fusion aware matrix Rt−s.
2.Graph convolutional network

The above-generated fusion aware matrix and the feature
map are input into the two-layer graph convolutional network
to produce the spatial-temporal fusion convolution matrix, as
illustrated in Eq. (10).

FST = δ (Rt−sδ (Rs−tGsWs)Wt)+δ (Rs−tδ (Rt−sGtWt)Ws)
(10)

Where Fst represents the spatial-temporal fusion convolu-
tional matrix of pedestrians, δ denotes the corresponding ac-
tivation function, Gs is the spatial graph representation, Gt in-
dicates the temporal graph, and Ws and Wt are trainable lin-
ear transformation matrices.The output of graph convolution
operations are summed together to obtain the output features,
which are the spatial-temporal fusion convolutional matrix.

4.4. Time-Stacked Convolutional Neural Network
In the decoder, a Time-Stacked Convolutional Neural Network
is used to predict future trajectories. The spatial-temporal fu-
sion convolutional matrix generated by the encoder serves as
the input to the decoder. Future trajectories are generated
through a series of feature transformations and time-stacked
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Fig. 4. Fusion graph convolutional structure diagram

Fig. 5. Time-Stacked Convolutional Network architecture diagram

convolution operations. To fully leverage the trajectory fea-
tures extracted at each TCN layer and capture feature informa-
tion at different temporal scales, the features are first input into
the initial TCN layer, where they are mapped from 8 dimen-
sions to 12 dimensions. The features are then passed to the
subsequent TCN layers to extract trajectory features, and the
features learned by the three TCN layers below are stacked to-
gether. Finally, they are input into the final TCN layer for more
precise feature extraction and prediction. By learning from his-
torical time series data, the network generates position features
P̂n

t that adhere to a bivariate Gaussian distribution. The fea-
tures consist of predicted means and covariance matrices. The
network architecture is shown in Fig. 5.

The network performs multiple layers of TCN to extract fea-
tures, The concatenation of features allows the network to bet-

ter focus on significant regions and more relevant neighbor-
ing pedestrians. Compared to previous methods, the network
settings aggregated by TSCNN are more conducive to param-
eter optimization and relationship extraction, enhancing the
model’s gradient propagation capability and improving deep
learning efficiency.

5. EXPERIMENTS AND RESULTS ANALYSIS

The model is implemented on the PyTorch framework, utiliz-
ing Adam as the optimizer. Training is configured for 300
epochs, with a batch size of 128 per epoch. The initial learning
rate is set to 0.01, with a decay of 0.001 every 100 steps.

5.1. Datasets

ETH[37] and UCY[38] datasets are derived from real street
surveillance videos, containing Overhead View and 2D po-
sitions of each pedestrian. The ETH dataset comprises two
scenes: ETH and HOTEL. The ETH dataset captures pedes-
trian trajectories from the top floor of the ETH central building,
overlooking pedestrian pathways, while the HOTEL dataset
records pedestrian trajectories from the fourth floor of a hotel,
also overlooking pedestrian pathways. The UCY dataset in-
cludes UNIV, ZARA1, and ZARA2. The UNIV dataset depicts
scenes from a road within a university campus. ZARA1 and
ZARA2 datasets capture pedestrian movements passing by the
entrance of ZARA clothing stores. During training and evalua-
tion, similar to other baseline methods, the model employs the
preceding 8 frames as observation data to predict pedestrian
trajectory information for the subsequent 12 frames.

5.2. Evaluation metrics

The performance of the model is assessed using two trajectory
error metrics: Average Displacement Error (ADE) and Final
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Table 1. Comparison of trajectory prediction results on ADE/FDE metrics, where ADE and FDE evaluation metrics are measured in meters and
world coordinates

Model ETH HOTEL UNIV ZARA1 ZARA2 AVG

Social-LSTM[12] 1.33/2.94 0.39/0.72 0.82/1.59 0.62/1.21 0.77/1.48 0.79/1.59
SR-LSTM [26] 0.63/1.25 0.37/0.74 0.51/1.10 0.41/0.90 0.32/0.70 0.45/0.94
S-GAN-P[13] 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
PIF[36] 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00
STGAT[32] 0.68/1.29 0.68/1.40 0.57/1.29 0.29/0.60 0.37/0.75 0.52/1.07
Social-STGCNN[18] 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
AST-GNN[19] 0.66/1.02 0.37/0.61 0.46/0.83 0.32/0.52 0.28/0.45 0.42/0.69
SGCN[29] 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65
STIGCN[30] 0.58/0.96 0.30/0.44 0.38/0.67 0.28/0.47 0.23/0.42 0.35/0.59
RDGCN[31] 0.58/0.94 0.30/0.45 0.35/0.65 0.28/0.48 0.25/0.44 0.35/0.59
STAFGCN(ours) 0.56/0.89 0.31/0.45 0.37/0.62 0.26/0.40 0.22/0.41 0.34/0.55

Displacement Error (FDE). ADE determines the mean distance
between each predicted position and the corresponding ground
truth position, reflecting the model’s average performance over
the entire prediction sequence. FDE represents the distance
between the predicted final position and the actual final po-
sition, with a particular emphasis on evaluating the model’s
accuracy in predicting the endpoint of the trajectory. By inte-
grating ADE and FDE, a thorough assessment of the model’s
effectiveness can be achieved. The computation methods are
shown in Eq. (11) and Eq. (12):

ADE =

∑
n∈N

∑
t∈Tp

∥ p̂n
t − pn

t ∥2

N ×Tp
(11)

FDE =

∑
n∈N

∥ p̂n
t − pn

t ∥2

N
, t = Tp (12)

5.3. Quantitative Analysis

Table 1 presents the comparative analysis results of errors, in-
dicating that our model demonstrates better performance when
compared with various traditional and advanced models, This
suggests that our model exhibits higher efficiency and accuracy
in handling spatial-temporal interaction information. Regard-
ing the ADE metric, the error outperforms that of the previous
best-performing baseline model, showing a 3% improvement.
In terms of the FDE metric, the model also shows a significant
reduction in error, with a 15% improvement in accuracy com-
pared to the SGCN, outperforming the RDGCN model by 7%,
and achieving a 17% improvement in prediction accuracy on
the ZARA1 dataset. The results demonstrate that our model
achieves the best performance on most datasets. Although it
performs slightly lower than other models on some datasets,
our model exhibits a higher level of performance in pedestrian
trajectory prediction across the majority of datasets. This fur-
ther proves the effectiveness of the model’s predictions, even
in densely populated pedestrian movement scenarios, where it
maintains high prediction accuracy.

5.4. Ablation study

These experiments systematically remove or modify parts of
the model to evaluate the impact of different components on
the overall performance.
1.The effectiveness of each module

The experiment validates the contribution of different mod-
ules in improving the model’s performance. (1) STA represents
the model that uses spatial-temporal attention to capture pedes-
trian interactions; (2) FGCN is the model that incorporates a
fusion graph convolution module; (3) TSCNN is the model
that utilizes a Time-Stacked Convolutional Neural Network for
prediction. Table 2 results indicate that each module enhances
the prediction accuracy to varying degrees. After incorporating
spatial-temporal attention, the model more accurately captures
pedestrian interactions across different dimensions, resulting
in errors smaller than those of the original model, with a par-
ticularly noticeable improvement in final displacement error.
Fusion of temporal and spatial dimensions improves predic-
tion accuracy by 3% and 9%, making predictions more aligned
with actual trajectories. In the encoder, TSCNN further en-
hances prediction accuracy. By simultaneously considering
various types of pedestrian interactions, the model more ac-
curately captures the relative importance among pedestrians,
adapts to diverse interaction scenarios.
2.The effectiveness of fusion graph convolution

The experiment investigates the impact of fusion graph con-
volution on model performance. (1) Base refers to the model
without the fusion graph convolution module; (2) S-T uses
only the spatial-temporal fusion aware matrix in graph con-
volution for interaction modeling; (3) T-S denotes modeling
pedestrian trajectories using only the temporal-spatial fusion
feature. From Table 3, it can be seen that the modeling ap-
proach is related to the performance of the model. Utilizing
spatial features to enhance spatial-temporal interaction model-
ing improves the model’s ability to extract trajectory features
that vary with space, modeling pedestrian social trends has led
to a 3% improvement in ADE. Incorporating temporal features
assists in modeling temporal- spatial interactions, allowing the
model to focus on changes in pedestrian movement, and mod-
eling movement trends has reduced the FDE error by 3%. This
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Table 2. Ablation study of different modules on the model’s performance in ADE/FDE metrics

STA FGC TSCNN ETH HOTEL UNIV ZARA1 ZARA2 AVG

0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65
✓ 0.60/0.99 0.34/0.49 0.39/0.71 0.27/0.46 0.22/0.42 0.36/0.61

✓ 0.59/0.94 0.33/0.47 0.37/0.64 0.29/0.49 0.22/0.43 0.36/0.59
✓ 0.61/1.01 0.33/0.52 0.38/0.69 0.28/0.47 0.23/0.43 0.37/0.62

✓ ✓ ✓ 0.56/0.89 0.31/0.45 0.37/0.62 0.26/0.40 0.22/0.41 0.34/0.55

Table 3. The impact of spatial-temporal fusion operations on model performance in ADE/FDE metrics

Model ETH HOTEL UNIV ZARA1 ZARA2 AVG

Base 0.58/0.99 0.30/0.45 0.38/0.68 0.28/0.47 0.24/0.43 0.36/0.60
S-T 0.58/0.96 0.31/0.47 0.37/0.64 0.27/0.45 0.23/0.43 0.35/0.59
T-S 0.57/0.93 0.32/0.47 0.38/0.62 0.26/0.44 0.22/0.42 0.35/0.58
STAFGCN 0.56/0.89 0.31/0.45 0.37/0.62 0.26/0.40 0.22/0.41 0.34/0.55

model employs a combination of both fusion modeling meth-
ods simultaneously to fully extract the complex relationships
within the graph structure, enhancing the diversity of pedes-
trian interactions. This results in a 6% improvement in ADE
and an 8% improvement in FDE. It indicates that fusion graph
convolution enables a deeper and multi-faceted exploration of
pedestrian interaction relationships, thereby achieving better
prediction results.
3.The effectiveness of the TSCNN architecture

The experiment investigates the impact of TCN structure on
model performance. Shallow networks struggle to capture sub-
tle changes in trajectories effectively, especially when extract-
ing pedestrian interaction information in high-density scenes.
However, an excessive number of layers can lead to overfitting,
as the increase in layers also results in increased errors, lead-
ing to significant bias in the prediction results. Previous model
data suggests that a five-layer TCN yields favorable predic-
tion results, but simply using networks sequentially may im-
pact the effectiveness of information extraction. (1) TSCNN1-
4 uses the first TCN layer to process dimensions, sequentially
employing four TCN layers to extract features and generate
predicted trajectories; (2) TSCNN1-2-2 uses the first layer to
process dimensions, stacks the output features from the second
and third layers, and then feeds these features into the last two
TCN layers; (3) TSCNN1-3-1 uses the first layer to process
dimensions, stacks the output features from the middle three
layers, and then inputs them into the final layer. As shown in
Table 4, stacking the output features from three layers can bet-
ter reduce prediction errors. Compared to the network struc-
ture without stacked TCN, it reduces ADE by 3% and FDE
by 8%, and also outperforms the two-layer stacked network
structure. Extracting trajectory information at different levels
significantly enhances the model’s ability to extract features,
thereby improving prediction accuracy.

5.5. Model performance comparison

Table 5 provides a comparison of our model with other base-
line models regarding parameter count and inference time,
it can be seen that these model performance is significantly

Fig. 6. Visualization of trajectory distribution

improved after overcoming the limitations of recurrent archi-
tecture and aggregation methods. The inclusion of spatial-
temporal attention and fusion graph convolution modules in
this model will incur some increase in computational work-
load and inference time. However, the parallel computation
feature of the spatial-temporal attention mechanism results in
an increase in inference time only due to the calculation of ad-
ditional parameters, without significant time cost. The main
increase in inference time occurs when fusing features. This
indicates that while the model increases in complexity to en-
hance computational precision, it does not incur an excessive
increase in time cost.

5.6. Visualization results

To demonstrate visually the practical performance improve-
ments of the model enhancements, experiments utilized visu-
alization to depict the predicted scenarios at the same moment
in time.

Figure 6 shows the visualized trajectory distributions of dif-
ferent models. Each region represents the distribution range
of the predicted trajectory mean for an individual pedestrian,
with darker colors indicating a higher probability of the tra-
jectory occurring at that location. The first column depicts a
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Table 4. The impact of the TSCNN structure on the model’s performance in ADE/FDE metrics

Model ETH HOTEL UNIV ZARA1 ZARA2 AVG

TSCNN1-4 0.57/0.94 0.32/0.48 0.38/0.68 0.27/0.47 0.22/0.42 0.35/0.60
TSCNN1-2-2 0.58/0.95 0.31/0.47 0.37/0.65 0.27/0.43 0.22/0.42 0.35/0.58
TSCNN1-3-1 0.56/0.89 0.31/0.45 0.37/0.62 0.26/0.40 0.22/0.41 0.34/0.55

Table 5. Model Performance comparison

Model Inference time(s) Parameters count

SR-LSTM[26] 0.1758 64.9K
PIF[36] 0.1145 360.3K
Social-STGCNN[18] 0.0020 7.6K
SGCN[29] 0.0040 25.3K
STAFGCN(ours) 0.0045 29.7K

Fig. 7. Visualization of real-world scenarios

scenario with two parallel pedestrians, where our model ex-
hibits minimal deviation and overlap in the trajectory distribu-
tion, resulting in a relatively accurate overall prediction effect.
The second column features pedestrians walking towards each
other, with the STAFGCN model generating the most reason-
able avoidance behavior in this scenario. The third column il-
lustrates a scenario with multiple interacting pedestrians. Our
model’s trajectory distribution closely matches the real-world
scenario, while the SGCN model produces an overly sparse
distribution. The STIGCN model, influenced by interaction
perception, shows overlapping trajectory distributions, result-
ing in redundant avoidance behaviors. These results demon-
strate the feasibility of the model’s predictions across various
contexts, showing that trajectory distributions are more accu-
rate when dealing with complex interactions.

Figure 7 demonstrates the performance of three models in
real-world scenarios. The first row shows a scenario with two
pedestrians walking towards each other at an intersection. It

can be observed that our model predicts the endpoints closest
to the actual trajectories on a micro level, whereas the other
two models exhibit inaccuracies in either speed or direction.
The second row presents the results of predicting the trajec-
tories of two pedestrians walking one behind the other, with
a less influential pedestrian diagonally ahead. It can be seen
that the models exhibit varying degrees of avoidance behav-
ior, with our model achieving the smallest average displace-
ment error. The third row depicts a scenario involving mul-
tiple interacting pedestrians, where two pedestrians walking
together towards a store encounter pedestrians walking in the
opposite direction. While SGCN and Social-STGCNN per-
form well in predicting individual pedestrian trajectories, our
model’s overall predicted trajectory is the closest to the real tra-
jectory. This indicates that our model excels in capturing the
micro-level spatial-temporal interactions between pedestrians,
allowing for more accurate predictions of pedestrians’ spatial-
temporal movement trends. These results further validate the
effectiveness and rationality of the model improvements.

6. CONCLUSION

This paper presents a pedestrian trajectory prediction model
using a spatial-temporal attention-based fusion graph convo-
lution network. To more accurately extract interaction rela-
tionships, the model employs a seq2seq framework. In the en-
coder, spatial-temporal attention is first used to analyze var-
ious types of microscopic relationships between pedestrians
and their environment in both temporal and spatial dimen-
sions, and then employs a fusion graph convolution module
to extract spatial-temporal correlation information. In the de-
coder, TSCNN is utilized for a more comprehensive analysis
and prediction of trajectories. The model underwent extensive
experimental validation on multiple real-world pedestrian tra-
jectory datasets, yielding superior results compared to other
mainstream algorithms, with a 3% improvement in ADE and
a 7% improvement in FDE. Visualizations comparing different
models further confirm the effectiveness of the model improve-
ments. In future research, we will further address the limita-
tions of multi-modal interactions between pedestrians and var-
ious types of vehicles, and employ mathematical methods to
enhance the safety decisions of our models. We hope to apply
the model to complex urban traffic scenarios involving multi-
ple pedestrians and vehicles, aiming to enhance its practicality
and reliability.
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