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Vehicle engine vibration signals acquired using MEMS sensors are crucial in the diagnosis of engine mal-
functions, notably misfires due to unwanted signals and external noises in the recorded vibration dataset. In
this study, the ADXL1002 accelerometer interfaced with the Beaglebone Black microcontroller is employed to
capture vibration signals emitted by the vehicle engine across various operational states, including unloaded,
loaded, and misfire conditions at 1500 RPMs, 2500 RPMs, and 3000 RPMs. In conjunction with the acquisi-
tion of this raw vibration data, frequency-domain signal processing techniques are employed to meticulously
analyze and diagnose the distinct signatures of misfire occurrences across various engine speeds and loads.
These techniques encompass the fast Fourier transform (FFT), envelope spectrum (ES), and empirical mode
decomposition (EMD), each tailored to discern and characterize the nuanced vibration patterns associated
with misfire events at different operational conditions.
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1. Introduction

Misfire, a persistent issue in vehicle engines, dis-
rupts the harmonious sequence of combustion. Its
prevalence is striking, causing substantial hurdles in
engine performance and reliability, as highlighted
in the research conducted by Hmida et al. (2021). This
fault, defined by the inability of a cylinder to ignite
its air-fuel mixture correctly, extends its impact across
multiple domains. Recognizing and remedying misfires
is of paramount importance in automotive engineer-
ing. Naveen Venkatesh et al. (2022) underscore the
criticality of accurate detection and timely resolution
of this issue. Essentially, mitigating misfires is not just
about fixing a glitch; it is about preserving the effi-
ciency and ecological integrity of vehicle engines.

Various contemporary techniques have emerged as
effective means to pinpoint engine misfire faults, show-

casing the innovative strides in this field. For instance,
one approach capitalizes on the ionic current (I.C.) pre-
sented at spark plug electrodes, leveraging them as sen-
sors to detect misfiring cylinders. Studies referenced by
Wang et al. (2022) and Kumano et al. (2020) delve
into this method, illustrating how monitoring changes
in ionic current during engine operation offers insights
into discerning misfiring events.

Another notable method involves monitoring the
exhaust gas temperature at a reduced sampling rate.
Tamura et al. (2011) shed light on this technique, em-
phasizing its utility in detecting misfires within inter-
nal combustion engines. By scrutinizing irregular tem-
perature fluctuations in the exhaust gas, this approach
identifies deviations that serve as reliable indicators of
misfiring occurrences.

Meanwhile, exploring the combustion characteris-
tics and misfire mechanisms in passive pre-chamber
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direct-injection gasoline engines presents a specialized
avenue. Zhou et al. (2023) contributed to this area,
focusing on understanding the intricate combustion
behavior and misfire processes unique to engines em-
ploying passive pre-chamber technology for gasoline di-
rect injection. This method delves into the specificities
of how these engines operate and experience misfire
events, offering insights crucial for their optimization.

Moreover, a holistic approach to misfire detection
in aircraft engines involves integrating both linear sig-
nal analysis for pattern recognition and non-linear
methods. The study highlighted by Syta et al. (2021)
underscores this comprehensive strategy, demonstrat-
ing how combining diverse analytical techniques en-
sures a robust and multifaceted approach to identify-
ing misfire incidents.

However, vibration signals offer an easy measur-
able method without affecting engine function (Hmida
et al., 2021; Sharma et al., 2014). The examination of
vehicle engine vibrations serves as a profound gate-
way to deciphering the inner workings of an internal
combustion engine. These vibrations intricate in their
composition, encapsulate a wealth of data pertaining
dynamical performance of the engine (Sharma et al.,
2014; Du et al., 2021). The scrutiny of these vibration
signals holds immeasurable significance as a diagnos-
tic tool, particularly in isolating specific engine misfires
(Hmida et al., 2021; Sharma et al., 2014). The major-
ity of research has focused on utilizing various sensors
like accelerometers, acoustic sensors, and knock sen-
sors to measure vibration signals (Firmino et al., 2021;
Tao et al., 2019), yielding satisfactory outcomes and
broad implementation in monitoring machinery condi-
tions like pumps, ball bearings, and gearboxes (Ahsan,
Bismor, 2022; Ahsan et al., 2023). Nevertheless, these
methods encounter challenges in assessing specific con-
ditions of vehicle engines due to the nonstationary na-
ture of the measured signals when conventional analy-
sis techniques are applied.

A diverse array of sensors contributes to the com-
prehensive analysis of engine vibrations (Bismor,
2019). Comparative studies in the literature have ex-
amined a piezoelectric acceleration sensor specifically
designed for engine and transmission vibration mea-
surement against commercially produced accelerome-
ter signals (Bismor, 2019; Gül et al., 2021). Existing
literature consistently demonstrates that engine vibra-
tion intensity correlates with increased engine speed
and load variations (Yaşar et al., 2019).

The renowned piezoelectric sensors boast remark-
able sensitivity in detecting high-frequency vibrations,
efficiently translating mechanical impulses into elec-
trical signals. Conversely, MEMS sensors, particularly
accelerometers, stand out for their adaptability and
precision in registering vibrations across various axes
(Li et al., 2020; Ahsan, Bismor, 2023). Despite higher
noise levels compared to piezoelectric sensors, the

compact size, affordability, and expansive capacity of
MEMS sensors to measure a broad spectrum of vibra-
tion frequencies make them particularly suited for the
intricate demands of engine monitoring and diagnostic
purposes. These attributes collectively render MEMS
sensors highly adept for addressing the multifaceted
needs of engine analysis and diagnostics.

MEMS sensors, despite their versatility, encounter
two prominent challenges in the realm of engine vi-
bration analysis (Bismor, 2019). Firstly, the vibra-
tion signals obtained through MEMS sensors often ex-
hibit higher levels of noise compared to their piezo-
electric counterparts. This discrepancy in noise levels
stems from several factors rooted in the construction
and operating principles of MEMS sensors. The minia-
turized size of MEMS sensors, while advantageous for
their widespread applicability and cost-effectiveness,
can also make them more susceptible to environmen-
tal interferences and internal noise generated within
the sensor itself. Additionally, the fabrication process
and material composition of MEMS sensors may in-
troduce inherent noise that affects the accuracy of vi-
bration signal acquisition. Literature and academic re-
search underscore the significance of addressing these
noise factors in MEMS sensors to enhance their per-
formance and reliability in capturing vibration data
accurately (Rossi et al., 2023). Secondly, MEMS sen-
sors necessitate meticulous calibration to ensure syn-
chronization between the reference frequency and the
recorded frequency of vibration signals (Ahsan, Bis-
mor, 2023). Achieving this synchronization is critical
for precise analysis and interpretation of the acquired
data.

The research endeavors in this study encompass
a comprehensive analysis of engine vibrations us-
ing the MEMS sensor technology, specifically focus-
ing on the ADXL1002 accelerometer paired with the
Beaglebone Black microcontroller. The ADXL1002 ac-
celerometer interfaced with the BeagleBone Black aims
to minimize costs compared to pricier piezoelectric sen-
sors while ensuring efficient data acquisition and analy-
sis. This cost-effective approach enhances access to re-
liable vibration data crucial for accurately detecting
misfires at diverse engine operating speeds. A criti-
cal precursor to this investigation involves the calibra-
tion of the ADXL1002 accelerometer with the Beagle-
bone Black setup. Calibration procedures were meticu-
lously conducted utilizing the vibrator and signal gen-
erator to ensure accuracy and reliability in capturing
vibration data. Detailed insights into this calibration
process are extensively documented in the conference
paper (Ahsan, Bismor, 2023), providing a founda-
tion for the subsequent experimentation and analy-
sis conducted in this research. The primary objective
is to capture vibration signals emitted by the vehi-
cle engine across various operational states, includ-
ing unloaded, loaded, and misfire conditions at dif-
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ferent RPMs. In conjunction with the acquisition of
this raw vibration data, frequency-domain signal pro-
cessing techniques are employed to meticulously an-
alyze and diagnose the distinct signatures of misfire
occurrences across varying engine speeds and loads.
These techniques encompass the fast Fourier transform
(FFT), envelope spectrum (ES), and empirical mode
decomposition (EMD), each tailored to discern and
characterize the nuanced vibration patterns associated
with misfires at different operational conditions. This
multifaceted approach aims to enhance the diagnos-
tic capabilities for detecting and differentiating misfire
events, contributing to a more robust understanding of
engine performance under diverse circumstances.

2. Materials and methods

This section delineates the developed prototype
of the ADXL1002 accelerometer interfaced with the
Beaglebone Black and the meticulous calibration pro-
cess undertaken to ensure its accuracy and reliabil-
ity in capturing vibration data. Additionally, it de-
tails the methodology employed in recording vibra-
tion data from the vehicle engine across diverse oper-
ational conditions, encompassing normal, loaded, and
misfire scenarios at various RPMs, and the acquired
data is presented. This section also encompasses an
in-depth description of the different signal processing
techniques utilized for diagnosing misfire conditions,
outlining the specific methodologies employed in the
analysis of the acquired vibration data.

2.1. Calibration of ADXL1002 accelerometer

The ADXL1002 is a high-performance accelerom-
eter that measures acceleration in a single in-plane
axis. It has an analog output that is proportional
to the supply voltage and a linear frequency re-
sponse range from DC to 11 kHz. It also has a low
noise density of 25 µg/

√
Hz and a high resonant fre-

quency of 21 kHz, which make it suitable for vibra-
tion and shock sensing applications. The ADXL1002
has a self-test function, a sensitivity stability of 5 %
over temperature, and a low cross axis sensitivity of
±1 %. It operates from a single supply and has a low
power consumption of 1.0 mA. It also has a standby
mode that reduces power consumption and allows
fast recovery. The ADXL1002 can withstand temper-
atures from −40 ○C to +125 ○C and comes in a small
5 mm× 5 mm× 1.80 mm LFCSP package. It is RoHS
compliant and meets the environmental standards for
electronic devices (Analog Devices, n.d.).

The calibration protocol for the ADXL1002 ac-
celerometer involves a systematic series of steps de-
signed to ensure the accuracy and reliability of data
collection (Ahsan, Bismor, 2023). Initial setup in-
cludes interfacing the accelerometer with the Beagle-

Bone Black microcontroller, establishing robust com-
munication protocols between the two systems, laying
the groundwork for subsequent calibration stages.

The experimental setup for calibration, detailed in
Fig. 1, incorporates essential components such as a signal
generator, power amplifier, vibration exciter, measur-
ing amplifier, the MEMS accelerometer (ADXL1002),
and the BeagleBone Black microcontroller, all inte-
gral to the calibration procedure. In the experimental
setup, sinusoidal signals spanning different frequencies
were generated by the function generator, initiating the
attached vibration exciter to induce vertical vibrations.
An ADXL1002 accelerometer, interfaced with the Bea-
gleBone Black, captured and recorded these induced
vibrations.

a) signal generator type SFG-2100 b) power amplifier type 2706

c) vibration exciter type 4809d) measuring amplifier type 4809

f) BeagleBone Black e) ADXL1002 accelerometer

Fig. 1. Controlled environment setup for ADXL1002 ac-
celerometer calibration: a) signal generator type SFG-2100;
b) power amplifier type 2706; c) vibration exciter type 4809;
d) measuring amplifier type 2525; e) ADXL1002 accelerom-

eter; f) BeagleBone Black.

The FFT was utilized to analyze the time-
domain vibration signals produced by the vibration
exciter, computing the recorded frequencies and sub-
sequently comparing them with the reference frequen-
cies of the input signal to the vibration exciter. Re-
markably, the plot depicted in Fig. 2 reveals a linear
relationship between the reference and measured fre-
quencies, affirming the efficiency of the ADXL1002 ac-
celerometer and reliable detection of input frequencies.

Following the frequency comparison analysis, the
sensitivity of the ADXL1002 accelerometer to recorded
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Fig. 2. Comparison of reference and computed frequencies
using FFT analysis.
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Fig. 3. Sensitivity analysis of ADXL1002 accelerometer:
a) sensitivity plotted against frequencies showcasing con-
sistent sensitivity across frequency ranges; b) sensitivity
variation with gravitational forces, highlighting an inverse
relationship between sensitivity and gravitational levels.

vibration signals was determined using the following
equation:

Si =
RMS(v(fi))

gi
, (1)

where v(fi) represents the time-domain vibration sig-
nal at a specific frequency fi with i = 1,2,3, .., k,
gi denotes the acceleration of the vibration signals,
and RMS(.) denotes the root-mean-square of the sig-
nal. This sensitivity analysis was depicted in Fig. 3a,
demonstrating consistent sensitivity levels across vari-
ous frequency ranges. Additionally, Fig. 3b illustrates
the inverse proportionality between sensitivity and
gravitational force, indicating that higher gravitational
levels resulted in reduced sensitivity.

Utilizing the developed prototype of the ADXL1002
accelerometer interfaced with the BeagleBone Black,
the calibration process lays the foundation for ad-
vanced applications in misfire detection within vehicle
engine vibration data.

2.2. Vibration dataset of vehicle engine
using ADXL1002 accelerometer

Figure 4 visually depicts the placement of the ac-
celerometer on the vehicle engine, illustrating its posi-
tioning for data capture purposes. The vehicle engine
vibration dataset given in Table 1 offers a structured
overview of engine conditions across various RPMs,
loads, and misfire occurrences. Each entry in the table
corresponds to a specific engine scenario, denoted by
RPM (revolutions per minute), load intensity, and mis-
fire status. The dataset captures instances across dif-
ferent RPMs, including 1500, 2500, and 3000, coupled
with load conditions ranging from no load to half load
and full load. Moreover, the dataset signifies whether
a misfire was present or absent in each specific scenario.
This dataset serves as a comprehensive representation
of engine performance variations under different op-
erational settings, allowing for in-depth analysis and
exploration of how RPM, load, and misfire interrelate
within the context of vehicle vibrations.

Fig. 4. Placement of ADXL1002 accelerometer on vehicle
engine for vibration data collection.

To further elucidate the engine vibration dataset
captured through the ADXL1002 accelerometer, a rep-
resentation in the time domain is crucial for visual
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Table 1. Vehicle engine vibration dataset.

RPM Frequency [Hz] Load Misfire
1500 25 no load no misfire
3000 50 no load no misfire
1500 25 half load no misfire
1500 25 full load no misfire
2500 41.667 half load no misfire
2500 41.667 full load no misfire
3000 50 half load no misfire
3000 50 full load no misfire
1500 25 half load misfire
1500 25 full load misfire
2500 41.667 half load misfire
2500 41.667 full load misfire
3000 50 half load misfire
3000 50 full load misfire

comprehension. The selected vibration signals, de-
picted in Fig. 5 showcase the temporal characteristics
of engine vibrations across distinct operational states.
These signals, plotted against time, offer a direct in-
sight into the fluctuations and patterns within the
recorded vibrations during various engine conditions
at 3000 RPMs, such as load levels, and misfire occur-
rences.

a)
3

2.5

2

1.5

M
ag
ni
tu
de

b)
3

2.5

2

1.5

M
ag
ni
tu
de

c)

Time [s]

3

2.5

2

1.5
0 0.5 1 1.5 2.52

M
ag

ni
tu

de

Fig. 5. Engine vibration signals at 3000 RPMs under var-
ied load conditions and misfire scenarios: a) unloaded with-
out misfire condition; b) loaded without misfire condition;

c) loaded with misfire condition.

2.3. Frequency-domain approaches
for misfire diagnoses

Misfires in a vehicle engine indeed have a tangible
impact on the vibration signal’s spectrum. These dis-

ruptions occur when the typical firing sequence of the
engine cylinders is disturbed, resulting in irregulari-
ties in the vibration pattern. The introduction of addi-
tional frequency components, particularly around the
harmonics or multiples of the engine’s firing frequency,
is a hallmark of misfires. Consequently, these irregular
firing patterns lead to distinct spikes or alterations in
the spectral content of the vibration signal. Detect-
ing these deviations becomes pivotal for diagnostics
and maintenance, necessitating advanced signal pro-
cessing techniques capable of differentiating between
load-induced alterations and the presence of misfires
within the intricate vibration signals generated during
engine operation.

2.3.1. FFT approach for misfire detection

Utilizing the FFT in the misfire and engine anal-
ysis involves decomposing vibration signals into their
fundamental frequency components, unveiling spectral
patterns inherent within the signals (Lin, Ye, 2019).

The FFT algorithm computes the discrete Fourier
transform (DFT) efficiently. Mathematically, the DFT
of a discrete-time function f(n) can be represented as
follows (Lin, Ye, 2019):

F (k) =
N−1
∑
n=0

f(n)e−i2πkn/N , (2)

where F (k) denotes the complex values within the
frequency domain at a specific index k. This complex
value represents the transformed signal’s amplitude
and phase at a particular frequency component. On
the other hand, f(n) signifies the discrete-time sig-
nal in the time domain at a distinct index n. The
variable N represents the total count of samples con-
stituting the time-domain signal. The term e−i2πkn/N

is a complex exponential expression encapsulating the
phase shift and frequency of individual components
within the signal.

2.3.2. Envelope spectrum approach
for misfire detection

The computation of the ES stands as an essen-
tial method to discern nuanced variations induced by
both load and misfire events. This technique entails
the extraction of the signal’s envelope, thereby high-
lighting alterations in the overall vibration behavior at-
tributed to changes in load or misfires. This approach
furnishes accurate diagnostic insights into the opera-
tional state of the engine, pinpointing specific modifi-
cations in the vibration patterns influenced by varying
loads or misfire occurrences (Ahsan, Bismor, 2022).

The ES represents the amplitude of specific fre-
quency components within a signal f(n). Mathemati-
cally, the computation of the ES involves obtaining the
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magnitude spectrum of the positive frequency compo-
nents obtained from the signal’s FFT. The equation for
the ES for a signal f(n) can be expressed as ES(k):

ES(k) = FFTpositive(k), (3)

where the symbol ES(k) signifies the ES at a specific
index k within the frequency domain representation.
Meanwhile, FFTpositive(k) represents the positive fre-
quency components extracted from the FFT computa-
tion conducted on the signal. The operation ∥ ⋅ ∥ de-
notes the magnitude operation, commonly known as
the absolute value operation. This mathematical oper-
ation retrieves the amplitude information from the pos-
itive frequency components derived through the FFT
process, allowing for the extraction of the ES show-
casing the amplitudes of distinct vibration frequencies
within the signal.

In essence, the ES is derived by taking the absolute
values of the positive frequency components obtained
through the FFT process of the signal f(n). This rep-
resentation highlights the amplitudes of selected vibra-
tion frequencies within the signal.

2.3.3. EMD approach for misfire detection

The EMD serves as an invaluable tool in analyz-
ing the intricacies of non-linear and non-stationary sig-
nals, offering a means to disentangle them into com-
ponents of varying resolutions (Liu et al., 2021). The
process of EMD involves several steps. Initially, ex-
trema, comprising local maxima and minima points,
are identified within the signal f(n). Subsequently, up-
per and lower envelopes are formed by connecting these
extrema points. The mean signal, obtained by calcu-
lating the mean of the upper and lower envelopes, is
then subtracted from the original signal f(n) to derive
the first intrinsic mode function (IMF). This process is
iteratively applied to the obtained IMF, treating it as
the new signal in each iteration, until specific conver-
gence or stopping criteria are met. The iterative nature
of EMD allows it to adapt to the characteristics of the
input signal, resulting in the successive extraction of
IMFs that collectively represent the signal’s intrinsic
oscillatory modes.

Misfires within the engine introduce additional, un-
familiar frequencies and harmonics into these vibration
signals, intensifying the intricacy of the diagnostic pro-
cess. To dissect and interpret these signals accurately,
advanced signal processing techniques are crucial in
distinguishing, analyzing, and understanding the new
frequency components attributed to misfires. EMD,
by its inherent nature, offers a potent means to han-
dle these challenges. Its ability to effectively decom-
pose signals into varying resolutions aligns with the
demands posed by the intricate nature of vibration sig-
nals, especially in the presence of misfires. Thus, EMD
emerges as a suitable technique to disentangle and in-

terpret these complex signals, facilitating a deeper un-
derstanding of the new frequency components intro-
duced by misfires and aiding in precise engine diag-
nostics.

3. Results and discussion

Figure 6 illustrates the FFT representations of vi-
bration signals at 1500 RPMs under varied load condi-
tions and misfire scenarios: unloaded without misfire,
loaded without misfire, and loaded with misfire. No-
tably, the FFT demonstrates harmonic frequency com-
ponents within the loaded vibration signals, yet fails to
reveal the 1500 RPM (25 Hz) frequency component in
the presence of a misfire, as indicated in Fig. 6.
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Fig. 6. FFT of raw vibration signals at 1500 RPMs under
varied load conditions and misfire scenarios: a) unloaded
without misfire condition; b) loaded without misfire condi-

tion; c) loaded with misfire condition.

Vibration signals recorded from vehicle engines via
MEMS sensors, like the ADXL1002 accelerometer, of-
ten encompass unwanted frequencies that deteriorate
the signal-to-noise ratio. During engine misfires, the
power associated with the misfire frequency substan-
tially diminishes, rendering it imperceptible within the
FFT representation (Fig. 6).

However, misfires within the engine generate dis-
cernible periodic impacts in the time-domain vibra-
tion signals, as depicted in Fig. 5. ES analysis serves
as a potent frequency-domain signal processing tool
capable of highlighting misfire frequencies within vi-
bration signals. Figure 7 showcases the ES representa-
tions of loaded signals without misfires, at 1500 RPMs
and 2500 RPMs. These representations underscore the
effectiveness of ES in discerning the absence of misfires
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Fig. 7. Envelope spectrum of raw vibration signals at
different RPMs under loaded and no misfire conditions:

a) 1500 RPMs; b) 2500 RPMs.

within the engine, thereby exhibiting a clear spectral
output.

Moreover, Fig. 8 illustrates the misfire frequency at
1500 RPMs (25 Hz) for both half load and full load condi-
tions. Similarly, Figs. 9 and 10 showcase the ES repre-
sentations at 2500 RPMs (41.667 Hz) and 3000 RPMs
(50 Hz), correspondingly. Specifically, Fig. 9a displays
ES for half load, while Fig. 9b present ES for full
load. Similarly, Fig. 10a exhibits ES for half load, and
Fig. 10b showcases ES for full load, illustrating the fre-
quency components pertinent to their respective mis-
fire frequencies.
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Fig. 8. Envelope spectrum of raw vibration signals
at 1500 RPMs under loaded and misfire conditions:

a) half load; b) full load.

The observations and discussions from the preced-
ing analysis suggest that the ES offers enhanced profi-
ciency in detecting misfires compared to the FFT ap-
plied to the raw vibration signals acquired using the
ADXL1002 accelerometer. The diagnosis of misfires in
vehicle engines utilizing the ADXL1002 accelerometer
revolves around identifying periodic impulses. Upon
misfire detection, requisite measures for periodic main-
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Fig. 9. Envelope spectrum of raw vibration signals
at 2500 RPMs under loaded and misfire conditions:

a) half load; b) full load.
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Fig. 10. Envelope spectrum of raw vibration signals
at 3000 RPMs under loaded and misfire conditions:

a) half load; b) full load.

tenance are undertaken. However, this task poses chal-
lenges due to the inherent characteristics of low signal-
to-noise ratio and interference from unwanted external
signals, as evidenced in the FFT results depicted in
Fig. 6.

Figures 11 and 12 illustrate the IMF components
pertaining to loaded conditions at 2500 RPMs and
3000 RPMs, respectively. Specifically, Fig. 11 displays
the IMF components at 2500 RPMs for the loaded con-
dition without any misfires, while Fig. 12 showcases the
IMF components at 3000 RPMs under loaded condi-
tions with misfires.

Figure 13 exhibits the FFT analysis conducted on
the first IMF extracted from vibration signals observed
at 1500 RPMs, 2500 RPMs, and 3000 RPMs, account-
ing for both half load and full load conditions. In
Figs. 13a and 13b, the display illustrates the presence
of the misfire frequency at 1500 RPMs (25 Hz), accom-
panied by discernible side harmonic frequency com-
ponents, all stemming from the combined influence of
misfires and consistent load conditions – either half
load or full load.
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Fig. 11. EMD of vibration signal at 2500 RPMs Fig. 12. EMD of vibration signal at 3000 RPMs
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Fig. 13. FFT of the first IMF at different RPMs under loaded conditions and misfire scenarios: a) 1500 RPMs with
half load; b) 1500 RPMs with full load; c) 2500 RPMs with half load; d) 2500 RPMs with full load; e) 3000 RPMs

with half load; f) 3000 RPMs with full load.
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Similarly, Figs. 13c and 13d delineate the 42 Hz
misfire frequency, while Figs. 13e and 13f showcase the
50 Hz misfire frequency, specifically identifiable at dis-
tinct engine speeds. This analysis, applied to the first
IMF, significantly reduces unwanted signals inherent in
raw vibration data, offering a more refined representa-
tion compared to the observations depicted in Fig. 6.

4. Conclusions

This research highlights the vital role of MEMS
sensors, notably the ADXL1002 accelerometer inter-
faced with the Beaglebone Black microcontroller, in
diagnosing complex engine malfunctions. Specifically,
it focuses on identifying misfires within intricate vi-
bration datasets. The use of these sensors is crucial in
efficiently detecting misfires and other engine irregu-
larities.

The calibration process, meticulously detailed
in a previous work (Ahsan, Bismor, 2023), stands as
a fundamental aspect of this study. This calibration
ensured precision and reliability in capturing vibra-
tion data, serving as a solid foundation for subsequent
experiments and analyses.

In this research, the primary objective was to
record vibration signals across diverse operational
scenarios, encompassing unloaded, loaded, and mis-
fire conditions at varying RPMs. The vehicle en-
gine was equipped with the ADXL1002 accelerome-
ter, and vibration data were systematically recorded
under distinct conditions: at 1500 RPMs, 2500 RPMs,
and 3000 RPMs. The recorded scenarios included
unloaded without misfire, loaded without misfire,
and loaded with misfire conditions. Subsequently, the
collected data was presented and analyzed in both
the time-domain and the frequency-domain to visual-
ize the effects of misfires and varying loads on vibration
signals.

Additionally, this involved the application of ad-
vanced frequency-domain signal processing techniques
such as FFT, ES, and EMD. These methods were care-
fully designed to distinguish distinctive patterns signi-
fying engine misfires, specifically when considering di-
verse engine RPMs and loads. This strategic approach
substantially amplified our capability to diagnose and
understand potential engine issues. The efficiency of
applying FFT directly to the raw vibration data was
hindered by the presence of unwanted signals and ex-
ternal noises, making misfire detection challenging. To
address this issue, EMD was employed to decompose
the vibration signal into distinct frequencies. Subse-
quently, FFT was applied to the first IMF to pinpoint
the misfire frequency variations at different RPMs.
This method proved effective in diagnosing misfire fre-
quencies within the vibration signals obtained through
the use of the ADXL1002 accelerometer in the vehicle
engine. Furthermore, it not only enabled the precise

identification of misfires but also provided intricate in-
sights into the precise vibrational characteristics asso-
ciated with varying engine conditions.

References

1. Ahsan M., Bismor D. (2022), Early-stage fault diag-
nosis for rotating element bearing using improved har-
mony search algorithm with different fitness functions,
IEEE Transactions on Instrumentation and Measure-
ment, 71: 1–9, doi: 10.1109/TIM.2022.3192254.

2. Ahsan M., Bismor D. (2023), Calibration of a high
sampling frequency MEMS-based vibration mea-
surement system, [in:] Pawelczyk M., Bismor D.,
Ogonowski S., Kacprzyk J. [Eds.], Advanced, Contem-
porary Control. PCC 2023. Lecture Notes in Networks
and Systems, Vol. 708, Springer, Cham, doi: 10.1007/
978-3-031-35170-9_28.

3. Ahsan M., Bismor D., Manzoor M.A. (2023), ARL-
Wavelet-BPF optimization using PSO algorithm for
bearing fault diagnosis, Archives of Control Sciences,
33(3): 589–606, doi: 10.24425/acs.2023.146961.

4. Analog Devices (n.d.), ADXL1002 Accelerometer Data-
sheet. Analog Devices, Inc., https://www.analog.com/
en/products/adxl1002.html (access: 2022).

5. Bismor D. (2019), Analysis and comparison of vibra-
tion signals from internal combustion engine acquired
using piezoelectric and MEMS accelerometers, Vibra-
tion in Physical Systems, 30(1): 2019112.

6. Du C., Jiang F., Ding K., Li F., Yu F. (2021), Re-
search on feature extraction method of engine misfire
fault based on signal sparse decomposition, Shock and
Vibration, doi: 10.1155/2021/6650932.

7. Firmino J.L., Neto J.M., Oliveira A.G., Silva J.C.,
Mishina K.V., RodriguesM.C. (2021), Misfire detec-
tion of an internal combustion engine based on vibra-
tion and acoustic analysis, Journal of the Brazilian So-
ciety of Mechanical Sciences and Engineering, 43: 336,
doi: 10.1007/s40430-021-03052-y.

8. Gül M., Karaer M., Doǧan A. (2021), Design of
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