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Fuzzy sliding mode control based-fast finite-time
projective synchronization for fractional-order

chaotic systems

Abdesselem BOULKROUNEo , Amel BOUZERIBA and Amina BOUBELLOUTA

This study explores the challenge of achieving a fast finite-time projective synchroniza-
tion (FFTPS) in chaotic systems characterized by incommensurate fractional orders, unknown
master-slave models, and uncertain external disturbances. Utilizing the principles of Lyapunov
stability theory, two fuzzy sliding mode control (FSMC) schemes are proposed. Accordingly,
two novel non-singular finite-time sliding surfaces are constructed. Fuzzy logic systems are uti-
lized to provide an approximation of the continuous uncertain dynamics within the master-slave
system. The sufficient conditions for both controllers are derived to ensure this robust FFTPS.
Finally, the proposed controllers are validated through numerical simulations on two projective
synchronization examples of fractional-order chaotic systems, demonstrating their feasibility.
Key words: finite-time projective synchronization, chaotic systems with fractional-orders, fuzzy
systems, sliding mode control

1. Introduction

Chaotic systems appear to be dynamic systems that defy to be synchronized.
In fact, two similar autonomous chaotic systems with very close initial conditions
have trajectories which quickly become uncorrelated, despite each one charting
the identical attractor within the phase space. The notion of chaotic synchroniza-
tion was initially investigated in a 1990s paper authored by Pecora and Carroll [1].
Essentially, this method involves creating two chaotic systems that are linked to-
gether so that the behavior of one system (the master system) controls the behavior
of the other system (the slave one). Controlling and synchronizing chaotic systems
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can provide practical benefits in secure communication, control of complex sys-
tems, and understanding natural and technological processes. It also contributes
to the fundamental understanding of chaos and nonlinear dynamics [2–4]. Fur-
thermore, in recent times, researchers have become increasingly interested in
the synchronization and control challenges presented by integer-order chaotic
systems. Various control methods, such as adaptive control [5, 6]; linear matrix
inequality-based control [7]; sliding-mode control (SMC) [8–11]; fuzzy adaptive
control [12–15]; and so on, have been explored in this context.

Fractional-order systems have garnered significant attention from the global
research community [2, 4, 16]. The exploration of fractional-calculus began in
1695 when mathematician L’Hôpital posed a question to Leibniz about fractional-
order derivation. Since then, fractional differential equations have been employed
to model faithfully and accurately model various real-world systems [16–20],
including but not being limited to electrical circuits, viscoelastic beams, diffusion
equation models, as well as chaotic systems. Accordingly, the issue of the chaos
control (i.e. chaos suppression) and synchronization of fractional-order chaotic
systems have received substantial attention in the literature, as evidenced by
numerous noteworthy studies, e.g. [21–28]. Nonetheless, in all of these studies,
the stability of the closed-loop system is asymptotic (in the best exponential).
This implies that the synchronization or chaos suppression (stabilization) can
only be fully realized as time approaches infinity. It’s worth highlighting that
the rate of convergence and achieving rapid convergence are crucial aspects
of synchronization and control effectiveness, particularly in certain practical
applications within this domain.

That is why the study of finite-time (FT) control and FT synchronization
has gained recently attention in the field of control due to their appealing at-
tributes, including swift convergence, exceptional control efficiency, and the abil-
ity to effectively handle disturbances [29–31]. Over the past few years, numerous
methodologies for achieving finite-time control, whether for chaos-suppression
or achieving chaos synchronization, have emerged. These methods are based on
the well-known sliding mode control (SMC) principle [32–38]. These strategies
encompass terminal SMC [39–41], high-order SMC [42,43], and super-twisting
SMC [44,45]. Nevertheless, each of these control techniques comes with its own
set of limitations. For example, terminal SMC can encounter challenges such
as the singularity problem and unwanted chattering in practical applications. In
contrast, high-order SMC represents an elegant and robust control method, but it
necessitates knowledge of all subsequent time derivatives of the designated slid-
ing surface variable. Super-twisting SMC was introduced as a solution to these
issues; however, it demands prior knowledge of the upper bounds of system un-
certainties. Additionally, by combining universal function approximators, specif-
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ically the fuzzy logic systems and neural networks, the authors of [39,40,46–49]
have achieved effective designs for FT control or FT synchronization for some
classes of uncertain chaotic systems. These systems are distinctive due to their
lack of known models and the existence of external disturbances. Importantly, in
contrast to schemes based only on SMC, control and synchronization schemes
based on the universal function approximators remove the requirement for prior
information regarding the upper limits of system uncertainties.

Drawing inspiration from the aforementioned excellent works, this paper
delves into the fast finite-time projective synchronization (FFTPS) problem for
chaotic systems with noncommensurate fractional-orders and unknown master-
slave models and external disturbances. For that, two novel fuzzy sliding mode
control (FSMC) schemes are proposed. Here are the principal contributions made
by this research:

• Unlike the respective works in [29, 31–35, 39–49] and [30, 36, 38, 50], the
proposed FSMC based-FFTPS schemes depend neither on the master-slave
model nor the upper bounds for its uncertainties.

• Unlike many recent works [40, 41, 47–49], this paper provides a rigorous
proof of FFTPS error convergence using Lyapunov theory.

• Notably, our second control scheme incorporating a useful integral term
successfully solves the adverse chattering phenomenon, being a common
issue in many existing finite-time controllers, e.g. [29–31,33–36,38,41,43,
46, 47, 49, 50].

• In contrast to the close related work [31–33, 35, 40, 41, 43, 45–49], our
FSMCs guarantee that both the sliding-mode phase and the reaching phase
are accomplished rapidly and in FT.

• Unlike [29, 30, 34, 36, 38–44, 48–50], the model of the master-slave sys-
tem (MSS) under-consideration is assumed to be with non-commensurate
fractional orders.

The remainder of this paper is structured as follows: Section 2 presents pre-
liminary concepts and formulates the problem. Section 3 outlines the first control
design approach, while Section 4 describes the second one. A theoretical com-
parison is shown in Section 5. Section 6 discusses the simulation results, and
Section 7 concludes the paper.

2. Preliminaries and problem formulation

Below, we present helpful definitions, properties, and lemmas related to frac-
tional calculus, finite-time stability, and fuzzy systems that will be employed in
subsequent sections.
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2.1. Fractional calculus

Caputo’s definition of derivative operator will be employed extensively within
this paper, because it offers well-established physical interpretations and mean-
ings for the initial conditions in fractional differential equations [51].

The 𝑞-th fractional integral of a continuous function 𝑓 (𝑡) is described as
follows:

Definition 1. The 𝑞-th fractional integral of a continuous function 𝑓 (𝑡) is de-
scribed as follows:

𝐽𝑞 𝑓 (𝑡) = 1
Γ(𝑞)

𝑡∫
0

(𝑡 − 𝜏)𝑞−1 𝑓 (𝜏)d𝜏, (1)

where Γ(𝑞) =
+∞∫

0

𝑡𝑞−1𝑒−𝑡 d𝑡 is the gamma function.

Definition 2. The Caputo fractional derivative is:

𝐷
𝑞
𝑡 𝑥(𝑡) = 𝐽𝑚−𝑞 𝑥 (𝑚) (𝑡) = 1

Γ(𝑚 − 𝑞)

𝑡∫
0

(𝑡 − 𝜏)𝑚−𝑞−1 𝑓 (𝑚) (𝜏)d𝜏, (2)

where 𝑚 − 1 < 𝑞 < 𝑚, 𝑚 ∈ 𝑍+. In the remainder of this study, we will exclusively
consider 0 < 𝑞 < 1.

Property 1. Let 0 < 𝑞 < 1. Then, one has

𝐷𝑥(𝑡) = 𝐷
1−𝑞
𝑡 𝐷

𝑞
𝑡 𝑥(𝑡), (3)

where 𝐷 =
d
d𝑡

.

Property 2. Consider 𝑥(𝑡) ∈ 𝑅𝑛 a state vector and a fractional differential system
of order q in the Caputo sense [52–54]:

𝐷
𝑞
𝑡 𝑥(𝑡) = 𝑓 (𝑥(𝑡)) , (4)

where 𝑓 (𝑥(𝑡)) is a Lipschitz function, i.e.

∥ 𝑓 (𝑥(𝑡)) − 𝑓 (𝑦(𝑡))∥ ¬ 𝑙 ∥𝑥(𝑡) − 𝑦(𝑡)∥ (5)

with 𝑙 > 0 is a Lipschitz’s constant. Without sacrificing generality, let’s assume
that 𝑓 (0) = 0. Consequently, we can derive the following:

∥ 𝑓 (𝑥(𝑡))∥ ¬ 𝑙 ∥𝑥(𝑡)∥ . (6)
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2.2. Some useful Lemmas for stability analysis

Lemma 1. Consider 0 < 𝑞 < 2, and 𝛿1, 𝛿2, . . . , and 𝛿𝑛 real numbers, then [55]:

|𝛿1 |𝑞 + |𝛿2 |𝑞 + . . . + |𝛿𝑛 |𝑞 
(
𝛿2

1 + 𝛿2
2 + . . . + 𝛿2

𝑛

)𝑞/2
. (7)

Lemma 2. Consider the nonlinear system ¤𝑥 = 𝑓 (𝑥, 𝑡) with 𝑥 ∈ 𝑅𝑛 being its state
vector. Suppose the existence of a positively defined continuous functional𝑉 (𝑥, 𝑡)
which satisfies [56]:

¤𝑉 + 𝛼𝑉 + 𝛽𝑉𝛾 ¬ 0, (8)

where 𝛼 > 0, 𝛽 > 0, and 0 < 𝛾 < 1.
Then, 𝑥 is converges rapidly and in a FT to the equilibrium point. The con-

vergence time is

𝑇𝑠 = 𝑡0 +
1

𝛼(1 − 𝛾) ln
(
𝛼𝑉𝛾 (𝑥0, 𝑡0) + 𝛽

𝛽

)
. (9)

2.3. Fuzzy systems

A fuzzy logic system (FLS) primarily comprises four elements: a knowledge
base module, a fuzzification module, a fuzzy inference mechanism and a defuzzi-
fication module. Specifically, the knowledge base module contains a set of fuzzy
rules with the following structure:

𝑅(𝑖) : IF 𝑧1 is 𝐴𝑖
1 . . . AND . . . AND 𝑧𝑛 is 𝐴𝑖

𝑛,

THEN 𝐹 is 𝐺𝑖, for 𝑖 = 1, 2, . . . , 𝑁, (10)

where 𝑍𝑇 = [𝑧1, . . . , 𝑧𝑛] ∈ 𝑅𝑛 represents the input vector of the FLS, while
𝐹 ∈ 𝑅 corresponds to its generated output. 𝑁 stands for the number of fuzzy
rules.

The result of a FLS utilizing a center-average defuzzifier, a singleton fuzzifier,
and a product inference can be succinctly formulated as:

𝐹 (𝑍) =

𝑁∑︁
𝑖=1

𝐺𝑖 ©«
𝑛∏
𝑗=1

𝜇𝐴𝑖
𝑗

(
𝑧 𝑗

)ª®¬
𝑁∑︁
𝑖=1

©«
𝑛∏
𝑗=1

𝜇𝐴𝑖
𝑗

(
𝑧 𝑗

)ª®¬
= 𝜃𝑇𝜓(𝑍), (11)

with 𝜇𝐴𝑖
𝑗
(𝑧 𝑗 ) being the membership function significance of the fuzzy vari-

able 𝑧 𝑗 . 𝜃𝑇 = [𝐺1, 𝐺2, . . . , 𝐺𝑁 ] is the parameter’ vector to be adjusted, and



478 A. BOULKROUNE, A. BOUZERIBA, A. BOUBELLOUTA

𝜓𝑇 = [𝜓1, 𝜓2, . . . , 𝜓𝑁 ] with

𝜓𝑖 (𝑍) =

𝑛∏
𝑗=1

𝜇𝐴𝑖
𝑗

(
𝑧 𝑗

)
𝑁∑︁
𝑖=1

©«
𝑛∏
𝑗=1

𝜇𝐴𝑖
𝑗

(
𝑧 𝑗

)ª®¬
(12)

being the fuzzy basis function (FBF).

Lemma 3. [57]: Let consider a continuous, real function 𝐹 (𝑍), defined within
a bounded and closed set Ω𝑍 in 𝑅𝑛. For any positive constant 𝜀, there is a FLS
such that: ��𝐹 (𝑍) − 𝜃∗𝑇𝜓(𝑍)

�� ¬ 𝜀, (13)

where 𝜃∗ represents the best parameter vector which is theoretically assumed to
be unknown.

2.4. Problem formulation

Our master system is a chaotic system with Caputo fractional-order dynamics,
described by:

𝐷
𝑞1
𝑡 𝑥1 = 𝑓1(𝑥),

...

𝐷
𝑞𝑛
𝑡 𝑥𝑛 = 𝑓𝑛 (𝑥)

(14)

with 0 < 𝑞𝑖 < 1. 𝑥 = [𝑥1, . . . , 𝑥𝑛]𝑇 ∈ 𝑅𝑛 being its measurable pseudo-state
vector, and 𝑓𝑖 (𝑥) ∈ 𝑅 uncertain functions.

We also consider the slave system to be a Caputo’s fractional-order chaotic
system:

𝐷
𝑞1
𝑡 𝑦1 = 𝑔1(𝑦) + 𝑢1 + 𝑑1(𝑡, 𝑦),

...

𝐷
𝑞𝑛
𝑡 𝑦𝑛 = 𝑔𝑛 (𝑦) + 𝑢𝑛 + 𝑑𝑛 (𝑡, 𝑦),

(15)

where 𝑦 = [𝑦1, . . . , 𝑦𝑛]𝑇 ∈ 𝑅𝑛 is its measurable pseudo-state vector. 𝑔𝑖 (𝑦) ∈ 𝑅

are uncertain functions. 𝑢𝑖 ∈ 𝑅 is the slave system input and 𝑑𝑖 (𝑡, 𝑦) ∈ 𝑅 are
external disturbances.
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Define the synchronization error as 𝑒𝑖 = 𝑦𝑖 − 𝜆𝑖𝑥𝑖, with 𝜆𝑖 being a scaling
factor. By taking the fractional-order time-derivative of 𝑒𝑖, one obtains

𝐷
𝑞1
𝑡 𝑒1 = 𝑔1(𝑦) − 𝜆1 𝑓1(𝑥) + 𝑢1 + 𝑑1(𝑡, 𝑦),

...

𝐷
𝑞𝑛
𝑡 𝑒𝑛 = 𝑔𝑛 (𝑦) − 𝜆𝑛 𝑓𝑛 (𝑥) + 𝑢𝑛 + 𝑑𝑛 (𝑡, 𝑦).

(16)

The main target of this research is to design two FSMC laws which adequately
carry out a FFTPS between (14) and (15). Figure 1 illustrates the block-diagram
of our synchronization scheme.

Figure 1: Block-diagram of our synchronization scheme

Remark 1. In the sequel, we will use the state equations (16) to analyze the system
stability and design two FSMC schemes. Via these dynamics, we can transform
a projective synchronization problem to a stabilization one. So, our objective
becomes the design of two FSMCs steering the synchronization errors to fastly
converge in FT to zero.

Remark 2. It’s crucial to emphasize that equations (14) and (15) can serve as
models for various chaotic systems with fractional orders, including the Duffing
oscillator, Chua’s chaotic circuit, gyro system, Genesio-Tesi system, laser Lorenz
system, and numerous others. Assumption 1 can be seen as a relatively mild con-
dition, as the constants 𝑑𝑑𝑖 and 𝑑𝑖 are unknown. Furthermore, such a hypothesis
is prevalent within the field of fractional-order control research.

Remark 3. In the sequel, unlike the close related work [41], one will design two
FSMCs to achieve a FFTPS, where the MSS model is assumed to be unknown.
Additionally, they ensure the attainment of both the reaching phase and the
sliding-mode phase within a FT. It’s crucial to emphasize that the work in [41]



480 A. BOULKROUNE, A. BOUZERIBA, A. BOUBELLOUTA

does not assure the fats achievement of FT convergence for synchronization
errors.

Remark 4. Control and synchronization in chaotic systems are vital for enhanc-
ing stability, predictability, and efficiency in various applications, from engineer-
ing to biology to secure communications, and for advancing our understanding
of complex systems.

a) Why does one need control of chaotic systems?
Despite being deterministic, their complex dynamics make them difficult to pre-
dict and control. Control of chaotic systems is necessary for several reasons:

• Stabilization: In numerous practical applications, chaotic behavior is often
unwanted. For example, in mechanical systems, chaos can cause unpre-
dictable movements and increased wear. By controlling chaos, the system
can be stabilized into a preferred state, such as a fixed point or a periodic
orbit.

• Synchronization: In certain applications, it is crucial to synchronize the
behavior of multiple chaotic systems. This is especially important in secure
communications, where chaotic signals are employed to obscure informa-
tion.

• Improving system performance: In certain situations, managing chaos can
boost a system’s performance. For instance, in power systems, controlling
chaotic behavior can avert voltage collapse and enhance overall stability.

• Application in engineering and technology: Chaos control is applicable
in diverse areas, including robotics, telecommunications, and biological
systems.

b) What are the control requirements for chaotic systems?
• Observability: If these states cannot be accurately measured or estimated,

designing a control system becomes difficult.
• Controllability: The chaotic system must be controllable, meaning it should

be possible to influence its behavior through inputs or feedback mechanisms.
• Model accurateness: A precise mathematical model of the chaotic sys-

tem is often required for designing an effective control law. Even slight
inaccuracies in the model can lead to significant control errors.

• Robustness: The control law must be robust to uncertainties as well as ex-
ternal disturbances. Since chaotic systems are extremely sensitive to minor
changes, the control strategy needs therefore to successfully manage these
uncertainties.
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• Real-time processing: In many cases, control must be implemented in real-
time, requiring quick processing and response from the control algorithm.
Therefore, the control law does not have to be very complicated.

c) What are sufficient conditions for chaos synchronization?
Chaos synchronization happens when two or more chaotic systems, whether they
have similar or different models, eventually align their states despite starting from
different initial conditions. Sufficient conditions for achieving chaos synchroniza-
tion are:

• Lyapunov stability: A negative largest conditional Lyapunov exponent is
needed. If the largest conditional Lyapunov exponent of the synchroniza-
tion error dynamics is negative, the error will decrease to zero over time,
resulting in synchronization.

• Strength of coupling: Adequate coupling strength between the chaotic sys-
tems is crucial. If the coupling is too weak, synchronization may not occur.
The coupling function can be either linear or nonlinear, depending on the
system and the wanted type of synchronization.

• Adaptive control system: Sometimes, an adaptive control system that dy-
namically adjusts the coupling parameters can ease synchronization, even
under varying system conditions.

d) Synchronization of chaotic systems can fail under certain conditions, what are
they?
Synchronization of chaotic systems might not succeed under the following con-
ditions:

• Weak coupling strength: If the coupling strength between the chaotic sys-
tems is inadequate, synchronization will not occur, and the states of the
systems will continue to diverge.

• Positive Lyapunov exponent: If the largest conditional Lyapunov exponent
of the error dynamics is positive, the synchronization error will increase,
obstructing synchronization.

• Mismatched system parameters: Significant differences in the parameters
of the systems to be synchronized can hinder synchronization.

• External disturbances: High levels of noise or external disturbances can
disrupt the synchronization process, leading to failure.

• Time-delay: Synchronization can become more challenging or even impos-
sible if there is a time-delay in the coupling, depending on the length of the
delay and the system dynamics.



482 A. BOULKROUNE, A. BOUZERIBA, A. BOUBELLOUTA

3. Control design approach 1

Design a non-singular dynamic sliding-mode surface as:

𝑆𝑖 = 𝐷
𝑞𝑖−1
𝑡 𝑒𝑖 + 𝜆1𝑖

𝑡∫
0

���𝐷𝑞𝑖−1
𝑡 𝑒𝑖 (𝜏)

���𝑟 sign
(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖 (𝜏)

)
d𝜏

+ 𝜆2𝑖

𝑡∫
0

𝐷
𝑞𝑖−1
𝑡 𝑒𝑖 (𝜏)d𝜏 (17)

with 0 < 𝑟 < 1. 𝜆1𝑖, and 𝜆2𝑖 are positive constants.
If 𝑆𝑖 = ¤𝑆𝑖 = 0, one has the following dynamics:

𝐷
𝑞𝑖−1
𝑡 𝑒𝑖 + 𝜆1𝑖

𝑡∫
0

���𝐷𝑞𝑖−1
𝑡 𝑒𝑖 (𝜏)

���𝑟 sign
(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖 (𝜏)

)
d𝜏

+ 𝜆2𝑖

𝑡∫
0

𝐷
𝑞𝑖−1
𝑡 𝑒𝑖 (𝜏)d𝜏 = 0 (18)

and
𝐷

𝑞𝑖
𝑡 𝑒𝑖 = −𝜆1𝑖

���𝐷𝑞𝑖−1
𝑡 𝑒𝑖

���𝑟 sign
(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)
− 𝜆2𝑖𝐷

𝑞𝑖−1
𝑡 𝑒𝑖 . (19)

Theorem 1. If 𝑆𝑖 = ¤𝑆𝑖 = 0, then the synchronization errors 𝑒𝑖 fastly vanish to
zero in a FT.

Proof. Consider 𝑉1 =
1
2

𝑛∑︁
𝑖=1

(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)2
. Its time-derivative can be bounded by:

¤𝑉1 =

𝑛∑︁
𝑖=1

(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)
𝐷

𝑞𝑖
𝑡 𝑒𝑖 = −

𝑛∑︁
𝑖=1

𝜆2𝑖

(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)2
−

𝑛∑︁
𝑖=1

𝜆1𝑖

���𝐷𝑞𝑖−1
𝑡 𝑒𝑖

���𝑟+1

¬ −𝑎1

𝑛∑︁
𝑖=1

(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)2
− 𝑏1

𝑛∑︁
𝑖=1

���𝐷𝑞𝑖−1
𝑡 𝑒𝑖

���𝑟+1
, (20)

where 𝑎1 = min {𝜆2𝑖}, 𝑏1 = min {𝜆1𝑖}.
Using Lemma 1, (20) becomes

¤𝑉1¬−2𝑎1

𝑛∑︁
𝑖=1

1
2

(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)2
−2

1+𝑟
2 𝑏1

(
𝑛∑︁
𝑖=1

1
2

���𝐷𝑞𝑖−1
𝑡 𝑒𝑖

���2) 1+𝑟
2

=−𝛼1𝑉1−𝛽1𝑉
1+𝑟

2
1 (21)

with 𝛼1 = 2𝑎1, 𝛽1 = 2
1+𝑟

2 𝑏1.
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Using Lemma 2, we can determine the settling time as

𝑇𝑠1 =
2

𝛼1(1 − 𝑟) ln ©«
𝛼1𝑉

1+𝑟
2

2 (0) + 𝛽1

𝛽1

ª®¬ , (22)

where 𝑡0 = 0.
Based on the analysis provided, it can be deduced that the error variable

𝐷
𝑞𝑖−1
𝑡 𝑒𝑖 achieves a FT convergence to zero. It’s evident from (19) that the error

variable 𝐷
𝑞𝑖
𝑡 𝑒𝑖 achieves also a FT convergence. By using Property 2 (i.e. |𝑒𝑖 | ¬

𝑙

���𝐷𝑞𝑖−1
𝑡 𝑒𝑖

���), one can deduce the fast FT convergence of 𝑒𝑖. So, the proof of
Theorem 1 ends here. 2

From (16) and (17), one has

¤𝑆𝑖 = 𝐹𝑖 (𝑦, 𝑥) + 𝑢𝑖 + 𝑑𝑖 (𝑡, 𝑦) + 𝜆1𝑖

���𝐷𝑞𝑖−1
𝑡 𝑒𝑖

���𝑟 sign
(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)
+ 𝜆2𝑖𝐷

𝑞𝑖−1
𝑡 𝑒𝑖 , (23)

where
𝐹𝑖 (𝑦, 𝑥) = 𝑔𝑖 (𝑦) − 𝜆𝑖 𝑓𝑖 (𝑥) (24)

is an uncertain nonlinear function that can be approximated using the fuzzy
system (11).
Assumption 1. |𝑑𝑖 (𝑡, 𝑦) | ¬ 𝑑𝑖, and

��𝐷𝑞1
𝑡 𝑑𝑖 (𝑡, 𝑦)

�� ¬ 𝑑𝑑𝑖, where 𝑑𝑖 and 𝑑𝑑𝑖 are
unknown positive constants.

According to [57], there is an optimal fuzzy system such that

𝐹𝑖 (𝑦, 𝑥) = 𝜃∗𝑇𝑖 𝜓𝑖 (𝑦, 𝑥) + 𝜀𝑖 (𝑦, 𝑥) (25)

with 𝜀𝑖 (𝑦, 𝑥) being the unavoidable margin of error in the fuzzy system approxi-
mation, and |𝜀𝑖 (𝑦, 𝑥) | ¬ 𝜀𝑖 where 𝜀𝑖 is a positive constant.

Let write (25) as follows

𝐹𝑖 (𝑦, 𝑥) = 𝜃∗𝑇𝑖 𝜓𝑖 (𝑦) + 𝜀𝑖 (𝑦, 𝑥) + 𝜃∗𝑇𝑖 [𝜓𝑖 (𝑦, 𝑥) − 𝜓𝑖 (𝑦)] . (26)

Substituting (26) into (23) yields

¤𝑆𝑖 = 𝜃∗𝑇𝑖 𝜓𝑖 (𝑦) +𝑤𝑖 (𝑦, 𝑥, 𝑡) +𝑢𝑖 +𝜆1𝑖

���𝐷𝑞𝑖−1
𝑡 𝑒𝑖

���𝑟 sign
(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)
+𝜆2𝑖𝐷

𝑞𝑖−1
𝑡 𝑒𝑖 , (27)

where 𝑤𝑖 (𝑦, 𝑥, 𝑡) = 𝜀𝑖 (𝑦, 𝑥) + 𝜃∗𝑇
𝑖

[𝜓𝑖 (𝑦, 𝑥) − 𝜓𝑖 (𝑦)] + 𝑑𝑖 (𝑡, 𝑦). Evidently,
𝑤𝑖 (𝑦, 𝑥, 𝑡) can be bounded as: |𝑤𝑖 (𝑦, 𝑥) | ¬ �̄�𝑖, where �̄�𝑖 is a positive constant.

Taking Young’s inequality into account leads to

𝑆𝑖𝜃
∗𝑇
𝑖 𝜓𝑖 (𝑦) + 𝑆𝑖𝑤𝑖 (𝑦, 𝑥, 𝑡) ¬ 𝑘2𝑖 |𝑆𝑖 | ∥𝜓𝑖 (𝑦)∥2 + 1

4𝑘2𝑖
|𝑆𝑖 |

𝜃∗𝑖 2 + �̄�𝑖 |𝑆𝑖 |

¬ 𝑘2𝑖 |𝑆𝑖 | ∥𝜓𝑖 (𝑦)∥2 + 𝑘1𝑖 |𝑆𝑖 | (28)
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with 𝑘2𝑖 and 𝑘1𝑖 being positive constants, where 𝑘1𝑖 >
1

4𝑘2𝑖

𝜃∗
𝑖

2 + �̄�𝑖.

Design our first FSMC law as follows:

𝑢𝑖 = −
(
𝜌1𝑖 + 𝑘1𝑖 + 𝑘2𝑖 ∥𝜓𝑖 (𝑦)∥2

)
sign (𝑆𝑖) − 𝑘3𝑖𝑆𝑖

− 𝜆1𝑖

���𝐷𝑞𝑖−1
𝑡 𝑒𝑖

���𝑟 sign
(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)
− 𝜆2𝑖𝐷

𝑞𝑖−1
𝑡 𝑒𝑖 , (29)

where 𝑘3𝑖, 𝜌1𝑖 > 0 are design constants.

Theorem 2. Consider the MSS described by (14) and (15) with its control law
(29) and assume that Assumption 1 holds. Then, this MSS achieves a FFTPS.

Proof. Consider a quadratic Lyapunov function as 𝑉2 =
1
2

𝑛∑︁
𝑖=1

𝑆2
𝑖 . The time-

derivative of 𝑉2 along the solutions of (27) is

¤𝑉2 =

𝑛∑︁
𝑖=1

(
𝑆𝑖𝜃

∗𝑇
𝑖 𝜓𝑖 (𝑦) + 𝑆𝑖𝑤𝑖 (𝑦, 𝑥, 𝑡) + 𝑆𝑖𝑢𝑖

+ 𝜆1𝑖𝑆𝑖

���𝐷𝑞𝑖−1
𝑡 𝑒𝑖

���𝑟 sign
(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)
+ 𝜆2𝑖𝑆𝑖𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)
¬

𝑛∑︁
𝑖=1

(
𝑘2𝑖 |𝑆𝑖 | ∥𝜓𝑖 (𝑦)∥2 + 𝑘1𝑖 |𝑆𝑖 | + 𝑆𝑖𝑢𝑖

+ 𝜆1𝑖𝑆𝑖

���𝐷𝑞𝑖−1
𝑡 𝑒𝑖

���𝑟 sign
(
𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)
+ 𝜆2𝑖𝑆𝑖𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)
. (30)

Substituting (29) into (30) then using Lemma 1 results in

¤𝑉2 ¬ −
𝑛∑︁
𝑖=1

𝜌1𝑖 |𝑆𝑖 | −
𝑛∑︁
𝑖=1

𝑘3𝑖𝑆
2
𝑖 ¬ −

√
2𝜌1𝑉

1
2

2 − 2𝑘3𝑉2 = −𝛼2𝑉2 − 𝛽2𝑉
1/2
2 , (31)

where 𝜌1 = min {𝜌1𝑖}, 𝑘3 = min {𝑘3𝑖}, 𝛼2 = 2𝑘3, 𝛽2 =
√

2𝜌1.
According to Lemma 2, it can be derived that 𝑆𝑖 converges rapidly to zero in

a FT and the settling time is

𝑇𝑠2 =
2
𝛼2

ln ©«
𝛼2𝑉

1
2

2 (0) + 𝛽2

𝛽2

ª®¬ . (32)

Based on the analysis provided above, it can be inferred that the MSS under-
consideration achieves a projective synchronization within a FT, with a total
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settling time given by:

𝑇 = 𝑇𝑠1 + 𝑇𝑠2 =
2

𝛼1(1 − 𝑟) ln ©«
𝛼1𝑉

1+𝑟
2

2 (0) + 𝛽1

𝛽1

ª®¬ + 2
𝛼2

ln ©«
𝛼2𝑉

1
2

2 (0) + 𝛽2

𝛽2

ª®¬ .
So, the proof of Theorem 2 ends here. 2

4. Control design approach 2

Let construct a non-singular dynamic sliding-mode surface as:

𝑆𝑖 = 𝑒𝑖 + 𝜆1𝑖

𝑡∫
0

|𝑒𝑖 (𝜏) |𝑟 sign (𝑒𝑖 (𝜏)) d𝜏 + 𝜆2𝑖

𝑡∫
0

𝑒𝑖 (𝜏)d𝜏, (33)

where 0 < 𝑟 < 1, 𝜆1𝑖, and 𝜆2𝑖 are positive constants.
During sliding mode behavior, one obtains

𝑆𝑖 = 𝑒𝑖 + 𝜆1𝑖

𝑡∫
0

|𝑒𝑖 (𝜏) |𝑟 sign (𝑒𝑖 (𝜏)) d𝜏 + 𝜆2𝑖

𝑡∫
0

𝑒𝑖 (𝜏)d𝜏 = 0 (34)

and
¤𝑆𝑖 = ¤𝑒𝑖 + 𝜆1𝑖 |𝑒𝑖 |𝑟 sign (𝑒𝑖) + 𝜆2𝑖𝑒𝑖 = 0. (35)

From (35), one obtains

¤𝑒𝑖 = −𝜆1𝑖 |𝑒𝑖 |𝑟 sign (𝑒𝑖) − 𝜆2𝑖𝑒𝑖 . (36)

Theorem 3. When 𝑆𝑖 = ¤𝑆𝑖 = 0, the projective synchronization errors rapidly
converge to zero in a FT.

Proof. The obvious candidate is as usual the square shape 𝑉3 =
1
2

𝑛∑︁
𝑖=1

𝑒2
𝑖 . The

time-derivative of 𝑉3 is

¤𝑉3 = −
𝑛∑︁
𝑖=1

𝜆1𝑖 |𝑒𝑖 |𝑟+1 −
𝑛∑︁
𝑖=1

𝜆2𝑖𝑒
2
𝑖 ¬ −𝑏2

𝑛∑︁
𝑖=1

|𝑒𝑖 |𝑟+1 − 𝑎2

𝑛∑︁
𝑖=1

𝑒2
𝑖 , (37)

where 𝑎2 = min {𝜆2𝑖}, 𝑏2 = min {𝜆1𝑖}.
Using Lemma 1 leads to

¤𝑉3 ¬ −𝛼3𝑉3 − 𝛽3𝑉
1+𝑟

2
3 (38)

with 𝛼3 = 2𝑎2, 𝛽3 = 2
1+𝑟

2 𝑏2.
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According to Lemma 2, the projective synchronization errors 𝑒𝑖 can fastly
converge to the origin in FT, with a settling time that can be estimated by:

𝑇𝑠3 =
2

𝛼3(1 − 𝑟) ln ©«
𝛼3𝑉

1+𝑟
2

3 (0) + 𝛽3

𝛽3

ª®¬ . (39)

This concludes the proof for Theorem 3. 2

From (33), one has

𝐷
𝑞𝑖
𝑡 𝑆𝑖 = 𝐷

𝑞𝑖
𝑡 𝑒𝑖 + 𝜆1𝑖𝐷

𝑞𝑖−1
𝑡 ( |𝑒𝑖 |𝑟 sign (𝑒𝑖)) + 𝜆2𝑖𝐷

𝑞𝑖−1
𝑡 𝑒𝑖 . (40)

Using (16) and (40) gives

¤𝑆𝑖 = 𝐷
1−𝑞𝑖
𝑡 (𝐷𝑞𝑖

𝑡 𝑆𝑖) = 𝐷
1−𝑞𝑖
𝑡

(
𝐷

𝑞𝑖
𝑡 𝑒𝑖 + 𝜆1𝑖𝐷

𝑞𝑖−1
𝑡 ( |𝑒𝑖 |𝑟 sign (𝑒𝑖)) + 𝜆2𝑖𝐷

𝑞𝑖−1
𝑡 𝑒𝑖

)
= 𝐷

1−𝑞𝑖
𝑡

(
𝐹𝑖 (𝑦, 𝑥) − 𝑘4𝑖𝑆𝑖 − 𝑘5𝑖 tanh

(
𝑆𝑖

𝜀𝑢𝑖

))
+ 𝐷

1−𝑞𝑖
𝑡

(
𝑘4𝑖𝑆𝑖 + 𝑘5𝑖 tanh

(
𝑆𝑖

𝜀𝑢𝑖

))
+ 𝐷

1−𝑞𝑖
𝑡 𝑢𝑖 + 𝐷

1−𝑞𝑖
𝑡 𝑑𝑖 (𝑡, 𝑦) + 𝜆1𝑖 |𝑒𝑖 |𝑟 sign (𝑒𝑖) + 𝜆2𝑖𝑒𝑖 , (41)

where 𝑘4𝑖 > 0 and 𝑘5𝑖 > 0 are design constants and 𝜀𝑢𝑖 > 0 is small design
constant. tanh stands for the hyperbolic tangent function.

Assumption 2. Suppose that
a)

���𝐷1−𝑞𝑖
𝑡 𝑑𝑖 (𝑡, 𝑦)

��� ¬ 𝑑∗
𝑑𝑖

,

b)
���𝐷1−𝑞𝑖

𝑡

(
𝐹𝑖 (𝑦, 𝑥) − 𝑘4𝑖𝑆𝑖 − 𝑘5𝑖 tanh

(
𝑆𝑖
𝜀𝑢𝑖

))��� ¬ �̄�𝑖 (𝑦, 𝑥),
where 𝑑∗

𝑑𝑖
> 0 is an unknown constant and �̄�𝑖 (𝑦, 𝑥) > 0 an unknown function.

Remark 5. Assumption 2 can be seen a relatively mild condition, because 𝑑∗
𝑑𝑖

and �̄�𝑖 (𝑦, 𝑥) are already unknown. Furthermore, such an assumption is frequently
made in control literature [27].

In accordance with reference [57], there is always a fuzzy system capable of
optimally estimating the nonlinear function �̄�𝑖 (𝑦, 𝑥):

�̄�𝑖 (𝑦, 𝑥) = 𝜃∗𝑇𝑖 𝜓𝑖 (𝑦, 𝑥) + 𝜀𝑖 (𝑦, 𝑥) (42)

with |𝜀𝑖 (𝑦, 𝑥) | ¬ 𝜀𝑖, where 𝜀𝑖 > 0 is a constant. 𝜃∗
𝑖

is an unknown constant
parameters’ vector.

One can rewrite (42) as follows

�̄�𝑖 (𝑦, 𝑥) = 𝜃∗𝑇𝑖 𝜓𝑖 (𝑦) + 𝜀𝑖 (𝑦, 𝑥) + 𝜃∗𝑇𝑖 [𝜓𝑖 (𝑦, 𝑥) − 𝜓𝑖 (𝑦)] . (43)
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Using Assumption 2, (41) and (43) leads to

𝑆𝑖 ¤𝑆𝑖 ¬ |𝑆𝑖 | �̄�𝑖 (𝑦, 𝑥) + 𝑆𝑖𝐷
1−𝑞𝑖
𝑡 𝑢𝑖 + |𝑆𝑖 | 𝑑∗𝑑𝑖 + 𝑆𝑖𝐷

1−𝑞𝑖
𝑡

(
𝑘4𝑖𝑆𝑖+𝑘5𝑖 tanh

(
𝑆𝑖

𝜀𝑢𝑖

))
+ 𝑆𝑖

(
𝜆1𝑖 |𝑒𝑖 |𝑟 sign (𝑒𝑖) + 𝜆2𝑖𝑒𝑖

)
¬ |𝑆𝑖 | 𝜃∗𝑇𝑖 𝜓𝑖 (𝑦)+|𝑆𝑖 | 𝑤𝑖 (𝑦, 𝑥, 𝑡)+𝑆𝑖𝐷1−𝑞𝑖

𝑡 𝑢𝑖+𝑆𝑖𝐷1−𝑞𝑖
𝑡

(
𝑘4𝑖𝑆𝑖+𝑘5𝑖 tanh

(
𝑆𝑖

𝜀𝑢𝑖

))
+ 𝑆𝑖 (𝜆1𝑖 |𝑒𝑖 |𝑟 sign (𝑒𝑖) + 𝜆2𝑖𝑒𝑖) . (44)

where 𝑤𝑖 (𝑦, 𝑥, 𝑡) = |𝜀𝑖 (𝑦, 𝑥) | +
��𝜃∗𝑇
𝑖

[𝜓𝑖 (𝑦, 𝑥) − 𝜓𝑖 (𝑦)]
�� + 𝑑∗

𝑑𝑖
. It is straightforward

to prove that 𝑤𝑖 (𝑦, 𝑥, 𝑡) is upper bounded such that: |𝑤𝑖 (𝑦, 𝑥) | ¬ �̄�𝑖, with �̄�𝑖 being
a positive constant.

Using Young’s inequality leads to this outcome:

|𝑆𝑖 | 𝜃∗𝑇𝑖 𝜓𝑖 (𝑦) + |𝑆𝑖 | 𝑤𝑖 (𝑦, 𝑥, 𝑡) ¬ 𝑘2𝑖 |𝑆𝑖 | ∥𝜓𝑖 (𝑦)∥2 + 1
4𝑘2𝑖

|𝑆𝑖 |
𝜃∗𝑖 2 + �̄�𝑖 |𝑆𝑖 |

¬ 𝑘2𝑖 |𝑆𝑖 | ∥𝜓𝑖 (𝑦)∥2 + 𝑘1𝑖 |𝑆𝑖 | (45)

with 𝑘2𝑖 and 𝑘1𝑖 being positive constants, where 𝑘1𝑖 >
1

4𝑘2𝑖

𝜃∗
𝑖

2 + �̄�𝑖.
Design our second FSMC law as:

𝑢𝑖 = −𝐷𝑞𝑖−1
𝑡

((
𝜌1𝑖 + 𝑘1𝑖 + 𝑘2𝑖 ∥𝜓𝑖 (𝑦)∥2 + 𝑘3𝑖 |𝑆𝑖 |

)
sign (𝑆𝑖)

)
− 𝑘4𝑖𝑆𝑖

− 𝑘5𝑖 tanh
(
𝑆𝑖

𝜀𝑢𝑖

)
− 𝜆1𝑖𝐷

𝑞𝑖−1
𝑡 ( |𝑒𝑖 |𝑟 sign (𝑒𝑖)) − 𝜆2𝑖𝐷

𝑞𝑖−1
𝑡 𝑒𝑖 (46)

with 𝜌1𝑖 and 𝑘3𝑖 are positive constants.
Substituting (45) and (46) into (44) yields

𝑆𝑖 ¤𝑆𝑖 ¬ −𝜌1𝑖 |𝑆𝑖 | − 𝑘3𝑖𝑆
2
𝑖 . (47)

Theorem 4. Consider the MSS described by (14) and (15) with its control law
(46) and assume that Assumption 2 holds. Therefore this MSS achieves a FFTPS.

Proof. Consider 𝑉4 =
1
2

𝑛∑︁
𝑖=1

𝑆2
𝑖 , where its derivative versus time is bounded as:

¤𝑉4 ¬ −
𝑛∑︁
𝑖=1

𝜌1𝑖 |𝑆𝑖 | −
𝑛∑︁
𝑖=1

𝑘3𝑖𝑆
2
𝑖 ¬ −

√
2𝜌1𝑉

1/2
4 − 2𝑘3𝑉4 = −𝛼4𝑉4 − 𝛽4𝑉

1/2
4 , (48)

where 𝜌1 = min {𝜌1𝑖} and 𝑘3 = min {𝑘3𝑖}, 𝛼4 = 2𝑘3, 𝛽4 =
√

2𝜌1.
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Similarly, by Lemma 2, we can infer that 𝑆𝑖 quickly approaches zero within a
FT. The settling time is therefore:

𝑇𝑠4 =
2
𝛼4

ln ©«
𝛼4𝑉

1
2

4 (0) + 𝛽4

𝛽4

ª®¬ . (49)

Based on the analysis provided above, it can be inferred that the proposed
controller solves the FFTPS problem of our MSS, where the total convergence
time is:

𝑇 = 𝑇𝑠3 + 𝑇𝑠4 =
2

𝛼3(1 − 𝑟) ln ©«
𝛼3𝑉

1+𝑟
2

3 (0) + 𝛽3

𝛽3

ª®¬ + 2
𝛼4

ln ©«
𝛼4𝑉

1
2

4 (0) + 𝛽4

𝛽4

ª®¬ .
Thus, this concludes the proof. 2

5. Comparison between the control schemes

Table 1 shows the comparison of our control schemes with other neighboring
control ones proposed in the literature. Table 2 summarizes the key differences
between our FSMC schemes proposed in this paper.

Table 1: Comparison with other neighboring control schemes proposed in the literature
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Our scheme 1 YES NO YES YES NO YES YES
Our scheme 2 YES NO YES NO NO YES YES

[29] NO YES NO YES YES NO NO
[30] NO YES YES YES YES YES NO
[31] NO YES YES YES NO NO YES
[32] NO NO YES NO NO NO YES
[33] NO NO YES YES NO NO NO
[34] NO NO YES YES NO YES NO
[35] NO NO NO YES NO NO YES
[36] NO YES YES YES NO NO NO
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Table 1 [cont.]
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[37] NO NO NO YES NO YES NO
[38] NO NO YES YES NO YES NO
[39] NO NO NO NO NO YES NO
[40] NO NO NO YES NO YES NO
[41] NO NO NO YES NO NO NO
[42] NO YES NO YES NO YES NO
[43] NO NO YES YES NO NO NO
[44] NO NO NO NO YES YES NO
[45] YES NO NO YES NO NO NO
[46] NO NO YES YES NO NO NO
[47] NO NO NO YES YES NO YES
[48] NO YES NO NO NO NO NO
[49] NO NO NO YES NO NO NO
[50] NO NO YES YES NO YES NO

Table 2: Key differences between the first control scheme and the second one

First control scheme Second control scheme

Type of sliding surface Dynamic fractional-order
surface Dynamic integer-order surface

Presence of chattering
in the control signal

Due to the presence of the
sign function, the control
law (29) experiences a chat-
tering issue.

The control law (46) addresses the
chatter problem thanks to the inclu-
sion of a fractional order integral.

Number of design
parameters 7 parameters 10 parameters.

Assumptions used in
the control design

𝑎) |𝑑𝑖 (𝑡, 𝑦) | ¬ 𝑑𝑖 , and��𝐷𝑞1
𝑡 𝑑𝑖 (𝑡, 𝑦)

�� ¬ 𝑑𝑑𝑖 ,

𝑎)
���𝐷1−𝑞𝑖

𝑡 𝑑𝑖 (𝑡, 𝑦)
��� ¬ 𝑑∗

𝑑𝑖
,

𝑏)
���𝐷1−𝑞𝑖

𝑡

(
𝐹𝑖 (𝑦, 𝑥) − 𝑘4𝑖𝑆𝑖

−𝑘5𝑖 tanh
(
𝑆𝑖
𝜀𝑢𝑖

) )��� ¬ �̄�𝑖 (𝑦, 𝑥)
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6. Simulation results

To confirm the effectiveness of the established control strategies, we present
two simulation examples below.

Example 1. Consider the fractional-order Lü system [58]:
Master system:

𝐷
𝑞1
𝑡 𝑥1 = 𝑎𝑙 (𝑥2 − 𝑥1),

𝐷
𝑞2
𝑡 𝑥2 = 𝑐𝑙𝑥2 − 𝑥1𝑥3 ,

𝐷
𝑞3
𝑡 𝑥3 = 𝑥1𝑥2 − 𝑏𝑙𝑥3], .

(50)

Slave system:

𝐷
𝑞1
𝑡 𝑦1 = 𝑎𝑙 (𝑦2 − 𝑦1) + 𝑢1 + 𝑑1(𝑡, 𝑦),

𝐷
𝑞2
𝑡 𝑦2 = 𝑐𝑙𝑦2 − 𝑦1𝑦3 + 𝑢2 + 𝑑2(𝑡, 𝑦),

𝐷
𝑞3
𝑡 𝑦3 = 𝑦1𝑦2 − 𝑏𝑙𝑦3 + 𝑢3 + 𝑑3(𝑡, 𝑦),

(51)

where 𝑎𝑙 = 35, 𝑏𝑙 = 3 and 𝑐𝑙 = 28, and (𝑞1, 𝑞2, 𝑞3) = (0.95, 0.98, 0.99).
The initial states are selected at random, as: 𝑥(0) = [−0.5, 1.2, 2]𝑇 and
𝑦(0) = [1, 2,−3] . The disturbances are taken as: 𝑑1(𝑡, 𝑦) = 𝑑2(𝑡, 𝑦) = 𝑑3(𝑡, 𝑦) =
0.15 sin(3𝑡) − 0.2 cos(5𝑡). Three non-adaptive fuzzy systems (i.e. 𝜃𝑇

𝑖
𝜓𝑖 (𝑌 ), with

𝑖 = 1, 2, 3) are constructed and they have as input the vector 𝑦 = [𝑦1, 𝑦2, 𝑦3]𝑇 .
As described in reference [59], three membership functions (comprising two
trapezoidal and one triangular) are generated, with uniform distribution across
the intervals [−50 50] for each input variable in these fuzzy systems.

For the first control scheme, the values of the design parameters have been
taken as follows:
𝑘11 = 𝑘12 = 𝑘13 = 4.5, 𝑘21 = 𝑘22 = 𝑘23 = 10, 𝑘31 = 𝑘32 = 𝑘33 = 0.1, 𝑟 = 0.4,
𝜆11 = 𝜆12 = 𝜆13 = 5, 𝜆21 = 𝜆22 = 𝜆23 = 1, and 𝜌11 = 𝜌12 = 𝜌13 = 0.5.

For our second control scheme, the values of the design parameters were set
as follows:
𝑘11 = 𝑘12 = 𝑘13 = 0.5, 𝑘21 = 𝑘22 = 𝑘23 = 6, 𝑘31 = 𝑘32 = 𝑘33 = 2.7, 𝑘41 =

𝑘42 = 𝑘43 = 1.5, 𝑘51 = 𝑘52 = 𝑘53 = 1, 𝑟 = 0.4, 𝜆11 = 𝜆12 = 𝜆13 = 0.01,
𝜆21 = 𝜆22 = 𝜆23 = 0.01, and 𝜌11 = 𝜌12 = 𝜌13 = 0.5.

We examine two projective synchronization cases.
Case 1: Complete synchronization (i.e. for 𝜆𝑖 = 1)

The simulation results are depicted in Fig. 2 and Fig. 3. Figures 2a–2c and 3a–
3c show the states of the MSS. These figures demonstrate the successful attain-
ment of an accurate and fast complete synchronization. Figure 2d and 3d provide
the curves of the control signals generated by both controllers, respectively.
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Obviously, these control signals are bounded and within the admissible range.
Furthermore, the second controller has substantially diminished the chattering
effect.

Figure 2: Synchronization results and the control signal generated by controller 1 (Example 1)

Figure 3: Synchronization results and the control signal generated by controller 2 (Example 1)
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Case 2: Anti-phase synchronization (i.e. for 𝜆𝑖 = −1)
The anti-phase synchronization simulation results are plotted in Fig. 4 and

Fig. 5. Clearly evident in these graphs is the rapid anti-phase synchronization of
the slave states with those of the master, even when uncertain nonlinear dynamics
and disturbances are present.

Figure 4: Anti-phase synchronization results and the control signal generated by controller 1
(Example 1)

Figure 5: Anti-phase synchronization results and the control signal generated by controller 2
(Example 1)



FUZZY SLIDING MODE CONTROL BASED-FAST FINITE-TIME PROJECTIVE
SYNCHRONIZATION FOR FRACTIONAL-ORDER CHAOTIC SYSTEMS 493

Example 2. Consider the chaotic laser Lorenz system [60].
Master system:

𝐷
𝑞1
𝑡 𝑥1 = 𝛿𝑐 (𝑥2 − 𝑥1),

𝐷
𝑞2
𝑡 𝑥2 = 𝑎𝑐 𝑥1 − 𝑥1𝑥3 − 𝑥2 ,

𝐷
𝑞3
𝑡 𝑥3 = 𝑥1𝑥2 − 𝑟𝑐𝑥3 ,

(52)

where 𝛿𝑐 = 10, 𝑎𝑐 = 28, and 𝑟𝑐 = 8/3.
Slave system:

𝐷
𝑞1
𝑡 𝑦1 = 𝛿𝑐 (𝑦2 − 𝑦1) + 𝑢1 + 𝑑1(𝑡, 𝑦),

𝐷
𝑞2
𝑡 𝑦2 = 𝑎𝑐 𝑦1 − 𝑦1𝑦3 − 𝑦2 + 𝑢2 + 𝑑2(𝑡, 𝑦),

𝐷
𝑞3
𝑡 𝑦3 = 𝑦1𝑦2 − 𝑟𝑐 𝑦3 + 𝑢3 + 𝑑3(𝑡, 𝑦),

(53)

where 𝑞1 = 0.98, 𝑞2 = 0.99, 𝑞3 = 1, and 𝑑𝑖 (𝑡, 𝑦) = 0.2 sin(3𝑡) + 0.2 cos(3𝑡). The
initial state conditions are arbitrarily selected as: 𝑥(0) = [−2, −3.2, 10.9] and
𝑦(0) = [−2.9, −3.9, −11.5]𝑇 .

Three non-adaptive fuzzy systems (i.e. 𝜃𝑇
𝑖
𝜓𝑖 (𝑌 ), with 𝑖 = 1, 2, 3) are con-

structed and they have as input the vector 𝑦 = [𝑦1, 𝑦2, 𝑦3]𝑇 . As described in
reference [59], three membership functions (comprising two trapezoidal and one
triangular) are generated, with uniform distribution across the intervals [−50 50]
for each input variable in these fuzzy systems.

The design parameters for controller 1 are selected as follows:
𝑘11 = 𝑘12 = 𝑘13 = 0.4, 𝑘21 = 𝑘22 = 𝑘23 = 5, 𝑘31 = 𝑘32 = 𝑘33 = 0.1, 𝑟 = 0.7,
𝜆11 = 𝜆12 = 𝜆13 = 0.1, 𝜆21 = 𝜆22 = 𝜆23 = 0.1, and 𝜌11 = 𝜌12 = 𝜌13 = 0.1.

Those of the second controller are taken as:
𝑘11 = 𝑘12 = 𝑘13 = 0.2, 𝑘21 = 𝑘22 = 𝑘23 = 1, 𝑘31 = 𝑘32 = 𝑘33 = 4, 𝑘41 =

𝑘42 = 𝑘43 = 0.2, 𝑘51 = 𝑘52 = 𝑘53 = 2, 𝑟 = 0.7, 𝜆11 = 𝜆12 = 𝜆13 = 0.1,
𝜆21 = 𝜆22 = 𝜆23 = 0.1, and 𝜌11 = 𝜌12 = 𝜌13 = 0.1.

Similarly, two cases are considered here.
Case 1: Complete synchronization (i.e. when 𝜆𝑖 = 1)

The simulation results are presented in Fig. 6 and Fig. 7. Figures 6a–6c and
Figs. 7a–7c display the curves of MSS state variables. These figures demon-
strate the successful attainment of an accurate and fast complete synchronization.
Figure 6d and 7d exhibit the curves of the control signals produced by our two
controllers, respectively. Evidently, these control signals are bounded and within
the admissible range. Additionally, the signals produced by the second controller
are devoid of chattering.
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Figure 6: Synchronization results and the control signal generated by controller 1
(Example 2)

Figure 7: Synchronization results and the control signal generated by controller 2
(Example 2)
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Case 2: Anti-phase synchronization (i.e. when 𝜆𝑖 = −1)
The anti-phase synchronization simulation results are plotted in Fig. 8 and

Fig. 9. It can be obviously observed from these images that the slave state variables

Figure 8: Anti-phase synchronization results and the control signal generated by controller 1
(Example 2)

Figure 9: Anti-phase synchronization results and the control signal generated by controller 2
(Example 2)
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are successfully antiphase-synchronized with those of the master one. Further-
more, the second controller has notably minimized the chattering effect in the
obtained results.

7. Conclusions

In this paper, by designing two FSMC schemes, the problem of FFTPS of
uncertain fractional-order chaotic systems has been solved. The considered class
of chaotic systems has been supposed to be with non-commensurate fractional-
orders, unknown dynamics and external disturbances. Of primary importance, a
thorough and rigorous analysis grounded in Lyapunov theory has been conducted
to establish both the criteria for finite-time stability and the convergence proof
for FFTPS errors. A set of simulation results have been presented to highlight the
effectiveness of the proposed control schemes.
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