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Necessary optimality conditions for a Lagrange
problem governed by a continuous Roesser model

with Caputo derivatives

Rafał KAMOCKIo

In the paper, we consider a Lagrange problem governed by a continuous Roesser type
system with single partial Caputo derivatives. The necessary optimality conditions for such a
problem are derived. In our approach, the increment method, as well as a fractional version of
Gronwall’s type lemma for functions of two variables are used.
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1. Introduction

The investigation object of the present paper is the following optimal control
problem:

minimize 𝐽 (𝑢) =
∫
𝑃

𝑓 0(𝑥, 𝑦, 𝑧1
𝑢 (𝑥, 𝑦), 𝑧2

𝑢 (𝑥, 𝑦), 𝑢(𝑥, 𝑦))d𝑥d𝑦, (1)

subject to
𝐶D𝛼

𝑥+𝑧
1 = 𝑓 1(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢),

𝐶D𝛽
𝑦+𝑧

2 = 𝑓 2(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢),
𝑢(𝑥, 𝑦) ∈ 𝑀 ⊂ R𝑚

(2)
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a.e. on 𝑃 = [0, 𝑎] × [0, 𝑏] and

𝑧1(0, 𝑦) = 𝛿(𝑦), 𝑦 ∈ [0, 𝑏] 𝑎.𝑒.,
𝑧2(𝑥, 0) = 𝛾(𝑥), 𝑥 ∈ [0, 𝑎] 𝑎.𝑒.,

(3)

where 𝛼, 𝛽 ∈ (0, 1), 𝐶D𝛼
𝑥+, 𝐶D𝛽

𝑦+ denote single partial fractional differential
operators in the Caputo sense, 𝑓 0 : 𝑃×R𝑛1 ×R𝑛2 ×R𝑚 → R, 𝑓 𝑖 : 𝑃×R𝑛1 ×R𝑛2 ×
R𝑚 → R𝑛𝑖 , 𝑖 = 1, 2, 𝛿 : [0, 𝑏] → R𝑛1 , 𝛾 : [0, 𝑎] → R𝑛2 , 𝑧𝑢 = (𝑧1

𝑢, 𝑧
2
𝑢) is a unique

solution of system (2)–(3), corresponding to any fixed control 𝑢.
Systems of the above type reduce to a classical 2D continuous Roesser model

(𝛼 = 𝛽 = 1) which is a counterpart of the 2D discrete model introduced by
Roesser in [13]. Such models are used to describe chemical processes occurring
in reactors with varying catalyst activity [10,11,15]. Many papers are devoted to
linear continuous and discrete-time systems described by the fractional Roesser
model. In [14], using the 2D Laplace transform, a general response formula for
the problem of type (2)–(3) has been derived. In [7], the authors obtained the
formula of such a type for fractional discrete-time Roesser model with the aid of
Z-transform. Furthermore, in both papers the necessary and sufficient conditions
for the positivity and stability have been studied. Existence of solutions, as well as
positivity of a fractional hybrid (discrete-continuous) Roesser model have been
investigated in [1].

The aim of this paper is to derive the maximum principle for problem (1)–(2).
In [2, 8] results of such a type for the classical 𝑛D Roesser model and linear sys-
tems 2 with the Riemann-Liouville derivatives, respectively, have been obtained.
To derive the necessary optimality conditions, a smooth-convex extremum prin-
ciple by Ioffe–Tikhomirov ( [6]) was applied there. In our approach, we use the
increment method in which it is necessary to estimate the increments of the trajec-
tory and the cost functional. In contrast to the method used in [2,8], compactness
of the set 𝑀 is not required (boundedness of 𝑀 is sufficient). Furthermore, our
method allows us to avoid a convexity-type assumption on 𝑓 0, 𝑓 1, 𝑓 2 which is re-
quired in a smooth-convex extremum principle. A key role in our approach plays
some fractional version of the Gronwall lemma for functions of two variables
(Appendix) which enables us to obtain pointwise equiboundedness of trajecto-
ries (Proposition 1). In [4], existence of optimal solutions for a Lagrange problem
governed by the classical and fractional (with the Riemann-Liouville derivatives)
Roesser model has been obtained. Different structures of the control system, sets
of controls, as well as different growth conditions imposed on 𝑓 0 have been con-
sidered there. In [12], a linear–quadratic optimal control problem described by
2D Roesser model with Caputo derivatives is studied. A numerical solution of
such a problem by using the Ritz method and the Laplace transform has been
obtained there.
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The paper is organized as follows. In Section 2, definitions of partial fractional
integrals and derivatives are recalled. Section 3 is devoted the main result of
the paper, namely the maximum principle for problem (1)–(3). A theoretical
illustrative example is contained in Section 4. Finally, in Appendix mentioned
Gronwall’s lemma, as well as a theorem on the existence of a unique solution
to a linear differential system with the right-sided Riemann-Liouville partial
derivatives are proved.

2. Preliminaries

In this part of the paper, we recall some necessary definitions and results
concerning fractional calculus of functions of two variables (for details, see [5,9]).

Let 𝑅 = [𝑐1, 𝑑1] × [𝑐2, 𝑑2] ⊂ R2 be any bounded rectangle.
We will use the following notation:
• 𝐿𝑟

𝑛 ( [𝑐, 𝑑]) – the space of all 𝑟-summable functions 𝜑 : [𝑐, 𝑑] → R𝑛, en-

dowed with the norm ∥𝜑∥𝐿𝑟
𝑛 ( [𝑐,𝑑]) =

(
𝑑∫
𝑐

|𝜑(𝑡) |𝑟 d𝑡

) 1
𝑟

for any 1 ¬ 𝑟 < ∞;

• 𝐿∞
𝑛 ( [𝑐, 𝑑]) – the space of all essentially bounded functions 𝜑 : [𝑐, 𝑑] → R𝑛,

endowed with the norm ∥𝜑∥𝐿∞
𝑛 ( [𝑐,𝑑]) = ess sup

𝑡∈[𝑐,𝑑]
|𝜑(𝑡) |;

• 𝐿𝑟
𝑛 (𝑅) – the space of all 𝑟-summable functions 𝜑 : 𝑅 → R𝑛, endowed with

the norm ∥𝜑∥𝐿𝑟
𝑛 (𝑅) =

(∫
𝑅

|𝜑(𝑥, 𝑦) |𝑟 d𝑥d𝑦

) 1
𝑟

for any 1 ¬ 𝑟 < ∞;

• 𝐿∞
𝑛 (𝑅) – the space of all essentially bounded functions 𝜑 : 𝑅 → R𝑛, en-

dowed with the norm ∥𝜑∥𝐿∞
𝑛 (𝑅) = ess sup

(𝑥,𝑦)∈𝑅
|𝜑(𝑥, 𝑦) |.

Let 𝛼 > 0. By the left–sided Riemann–Liouville integrals of a function
𝑤 ∈ 𝐿1

𝑛 (𝑅) of order 𝛼 with respect to 𝑥 and 𝑦 we shall mean functions

(𝐼𝛼𝑐1+,𝑥𝑤) (𝑥, 𝑦) :=
1

Γ(𝛼)

𝑥∫
𝑐1

𝑤(𝑠, 𝑦)
(𝑥 − 𝑠)1−𝛼 d𝑠, (𝑥, 𝑦) ∈ 𝑅 𝑎.𝑒.

(𝐼𝛼𝑐2+,𝑦𝑤) (𝑥, 𝑦) :=
1

Γ(𝛼)

𝑦∫
𝑐2

𝑤(𝑥, 𝑡)
(𝑦 − 𝑡)1−𝛼 d𝑡, (𝑥, 𝑦) ∈ 𝑅 𝑎.𝑒.,

respectively, with the convention that
(𝐼0

𝑐1+,𝑥𝑤) (𝑥, 𝑦) = 𝑤(𝑥, 𝑦) and (𝐼0
𝑐2+,𝑦𝑤) (𝑥, 𝑦) = 𝑤(𝑥, 𝑦) for a.e. (𝑥, 𝑦) ∈ 𝑅.
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Similarly, we define the right–sided Riemann-Liouville integrals, namely

(𝐼𝛼𝑑1−,𝑥𝑤) (𝑥, 𝑦) :=
1

Γ(𝛼)

𝑑1∫
𝑥

𝑤(𝑠, 𝑦)
(𝑠 − 𝑥)1−𝛼 d𝑠, (𝑥, 𝑦) ∈ 𝑅 𝑎.𝑒.

(𝐼𝛼𝑑2−,𝑦𝑤) (𝑥, 𝑦) :=
1

Γ(𝛼)

𝑑2∫
𝑦

𝑤(𝑥, 𝑡)
(𝑡 − 𝑦)1−𝛼 d𝑡, (𝑥, 𝑦) ∈ 𝑅 𝑎.𝑒.,

whereby
(𝐼0

𝑑1−,𝑥𝑤) (𝑥, 𝑦) = 𝑤(𝑥, 𝑦) and (𝐼0
𝑑2−,𝑦𝑤) (𝑥, 𝑦) = 𝑤(𝑥, 𝑦) for a.e. (𝑥, 𝑦) ∈ 𝑅. To

simplify the notations, we will use the symbols 𝐼𝛼𝑥+ and 𝐼𝛼𝑦+ to denote the left–sided
fractional integrals 𝐼𝛼0+,𝑥 , 𝐼

𝛼
0+,𝑦, respectively.

Now, we give definitions of partial fractional derivatives in the Caputo sense
introduced in [9]. In the rest of this section we assume that 𝛼 ∈ (0, 1). Let us
consider a class of functions 𝑤 ∈ 𝐿1

𝑛 (𝑃) such that

(𝑎) 𝑤(·, 𝑦) is continuous on [0, 𝑎] for a.e. 𝑦 ∈ [0, 𝑏],
(𝑏) 𝑤(0, ·) ∈ 𝐿1

𝑛 ( [0, 𝑏]).
By 𝐶𝑥,0(𝑃,R𝑛) we shall denote the set of all functions 𝑤 : 𝑃 → R𝑛, for which
there exists a function 𝑤 ∈ 𝐿1

𝑛 (𝑃) such that 𝑤 = 𝑤 a.e. on 𝑃 and 𝑤 satisfies
conditions (𝑎), (𝑏). We shall identify any function 𝑤 ∈ 𝐶𝑥,0(𝑃,R𝑛) with its
representant 𝑤 described above.

Similarly, we define the set of functions denoted by 𝐶𝑦,0(𝑃,R𝑛). In this case
conditions (𝑎) and (𝑏) are replaced with the following ones:

(�̃�) 𝑤(𝑥, ·) is continuous on [0, 𝑏] for a.e. 𝑥 ∈ [0, 𝑎],
(�̃�) 𝑤(·, 0) ∈ 𝐿1

𝑛 ( [0, 𝑎]).
For a function 𝑤 ∈ 𝐶𝑥,0(𝑃,R𝑛) (𝑤 ∈ 𝐶𝑦,0(𝑃,R𝑛)) we define the left–sided single
partial Caputo derivative 𝐶D𝛼

𝑥+𝑤 ( 𝐶D𝛼
𝑦+𝑤) of order 𝛼, with respect to 𝑥 (𝑦) as

follows:

(𝐶D𝛼
𝑥+𝑤) (𝑥, 𝑦) = 𝐷𝛼

𝑥+(𝑤(·, ·) − 𝑤(0, ·)) (𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒.

(
( 𝐶D𝛼

𝑦+𝑤) (𝑥, 𝑦) = 𝐷𝛼
𝑦+(𝑤(·, ·) − 𝑤(·, 0)) (𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒.

)
,

provided that right-hand side of the above equality exists. Here 𝐷𝛼
𝑥+, 𝐷𝛼

𝑦+ are
single partial fractional differential operators in the Riemann-Liouville sense
(cf. [5]).
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Let 1 < 1
𝛼

< 𝑝 < ∞. By 𝐶𝐴𝐶
𝛼,𝑝
𝑥+ (𝐿∞

𝑛 ( [0, 𝑏])) we denote the set of all
functions 𝑤 : 𝑃 → R𝑛 given by

𝑤(𝑥, 𝑦) = 𝜂(𝑦) + (𝐼𝛼𝑥+𝜑) (𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒., (4)

with some functions 𝜂 ∈ 𝐿∞
𝑛 ( [0, 𝑏]) and 𝜑 ∈ 𝐿

𝑝
𝑛 (𝑃). Similarly, we define the set

𝐶𝐴𝐶
𝛼,𝑝
𝑦+ (𝐿∞

𝑛 ( [0, 𝑎])), namely:
𝐶𝐴𝐶

𝛼,𝑝
𝑦+ (𝐿∞

𝑛 ( [0, 𝑎])) =
{
𝑤 : 𝑃 → R𝑛; 𝑤(𝑥, 𝑦) = 𝜅(𝑥) + (𝐼𝛼𝑦+𝜓) (𝑥, 𝑦),

(𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒.
}
,

with some functions 𝜅 ∈ 𝐿∞
𝑛 ( [0, 𝑎]) and 𝜓 ∈ 𝐿

𝑝
𝑛 (𝑃).

Remark 1. From [9, Lemma 3 and Theorem 5] it follows that if 𝑤 ∈
𝐶𝐴𝐶

𝛼,𝑝
𝑥+ (𝐿∞

𝑛 ( [0, 𝑏])) then 𝑤(0, 𝑦) = 𝜂(𝑦) and there exists the Caputo derivative
𝐶D𝛼

𝑥+𝑤 = 𝜑 a.e. on 𝑃. Similarly, if 𝑤 ∈ 𝐶𝐴𝐶
𝛼,𝑝
𝑦+ (𝐿∞

𝑛 ( [0, 𝑎])) then 𝑤(𝑥, 0) = 𝜅(𝑥)
and there exists the Caputo derivative 𝐶D𝛼

𝑦+𝑤 = 𝜓 a.e. on 𝑃.

3. Maximum principle

In this section we derive the necessary optimality conditions for problem
(1)–(3).

We introduce the following assumptions on functions 𝑓 0 and 𝑓 = ( 𝑓 1, 𝑓 2):
(𝐴) 𝑓 𝑖 (·, ·, 𝑧1, 𝑧2, 𝑢) is measurable on 𝑃 for all (𝑧1, 𝑧2, 𝑢) ∈ R𝑛1 × R𝑛2 × R𝑚,

𝑓 𝑖 (𝑥, 𝑦, 𝑧1, 𝑧2, ·) is continuous on R𝑚 for a.e. (𝑥, 𝑦) ∈ 𝑃 and all (𝑧1, 𝑧2) ∈
R𝑛1 ×R𝑛2 , 𝑓 𝑖 (𝑥, 𝑦, ·, ·, 𝑢) is continuously differentiable on R𝑛1 ×R𝑛2 for a.e.
(𝑥, 𝑦) ∈ 𝑃 and all 𝑢 ∈ R𝑚, whereby 𝑖 = 0, 1, 2,

(𝐴 𝑓 0) there exist functions 𝜂 𝑓 0 ∈ 𝐶 (R+
0 ×R+

0 ×R+
0 ,R

+
0), 𝑐 𝑓 0 ∈ 𝐿1(𝑃,R+

0) such that

| 𝑓 0(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢) | ¬ 𝑐 𝑓 0 (𝑥, 𝑦)𝜂 𝑓 0 ( |𝑧1 |, |𝑧2 |, |𝑢 |) (5)

| 𝑓 0
𝑧𝑖
(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢) | ¬ 𝜂 𝑓 0 ( |𝑧1 |, |𝑧2 |, |𝑢 |), 𝑖 = 1, 2 (6)

for a.e. (𝑥, 𝑦) ∈ 𝑃 and all (𝑧1, 𝑧2, 𝑢) ∈ R𝑛1 × R𝑛2 × 𝑀 ,
(𝐴 𝑓 ) there exist a constant 𝐿 > 0 and functions 𝜂 𝑓 𝑖 ∈ 𝐶 (R+

0 ,R
+
0), 𝛾1 ∈

𝐿
𝑝

1 ( [0, 𝑎]), 𝛾2 ∈ 𝐿
𝑝

1 ( [0, 𝑏]), with 𝑝 > 1, such that

| 𝑓 𝑖 (𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢) − 𝑓 𝑖 (𝑥, 𝑦, 𝑤1, 𝑤2, 𝑢) | ¬ 𝐿 ( |𝑧1 − 𝑤1 | + |𝑧2 − 𝑤2 |),

| 𝑓 1(𝑥, 𝑦, 0, 0, 𝑢) | ¬ 𝛾1(𝑥)𝜂 𝑓 1 ( |𝑢 |), | 𝑓 2(𝑥, 𝑦, 0, 0, 𝑢) | ¬ 𝛾2(𝑦)𝜂 𝑓 2 ( |𝑢 |)

for a.e. (𝑥, 𝑦) ∈ 𝑃 and all 𝑢 ∈ 𝑀 , 𝑧𝑖, 𝑤𝑖 ∈ R𝑛𝑖 , 𝑖 = 1, 2.
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Let 𝛼, 𝛽 ∈ (0, 1), 1 < 1
𝛽
< 𝑝 < ∞, 1 < 1

𝛼
< 𝑝 < ∞, 𝛿 ∈ 𝐿∞

𝑛1
( [0, 𝑏]) and 𝛾 ∈

𝐿∞
𝑛2
( [0, 𝑎]). By a solution (trajectory) to control system (2)–(3), corresponding

to a control 𝑢 ∈ U𝑀 , we mean a function (𝑧1, 𝑧2) ∈ 𝐶𝐴𝐶
𝛼,𝑝
𝑥+ (𝐿∞

𝑛1
( [0, 𝑏])) ×

𝐶𝐴𝐶
𝛽,𝑝
𝑦+ (𝐿∞

𝑛2
( [0, 𝑎])) satisfying system (2) a.e. on 𝑃 and boundary conditions

(3), where

U𝑀 := {𝑢 ∈ 𝐿∞
𝑚 (𝑃); 𝑢(𝑥, 𝑦) ∈ 𝑀, (𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒.} ⊂ 𝐿∞

𝑚 (𝑃)

(one can show that under assumptions (𝐴) and (𝐴 𝑓 ), for any fixed 𝑢 ∈ U𝑀

problem (2)–(3) possesses a unique solution1). In such a case, the pair ((𝑧1, 𝑧2), 𝑢)
is called an admissible process, whereby 𝑢, (𝑧1, 𝑧2) are said to be admissible
control and state, respectively. A couple ((𝑧1

∗, 𝑧
2
∗), 𝑢∗) is called an optimal solution

to problem (1)–(3) if it is admissible process and minimizes cost (1) among all
admissible processes ((𝑧1, 𝑧2), 𝑢).

Now, we prove the following useful result

Proposition 1. Let ((𝑧1, 𝑧2), 𝑢) ∈
(
𝐶𝐴𝐶

𝛼,𝑝
𝑥+ (𝐿∞

𝑛1
( [0, 𝑏]))× 𝐶𝐴𝐶

𝛽,𝑝
𝑦+ (𝐿∞

𝑛2
( [0, 𝑎]))

)
×U𝑀 be an admissible process. If 𝑀 ⊂ R𝑚 is bounded, then there exists a constant
𝐶 > 0 (independent on 𝑢) such that

|𝑧1(𝑥, 𝑦) |, |𝑧2(𝑥, 𝑦) | ¬ 𝐶, (𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒.

for any 𝑢 ∈ U𝑀 .

Proof. By (𝐴 𝑓 ) it follows that

|𝑧1(𝑥, 𝑦) | ¬ ∥𝛿∥𝐿∞
𝑛1 ( [0,𝑏])+𝐼

𝛼
𝑥+ |𝐶D𝛼

𝑥+𝑧
1(𝑥, 𝑦) |

= ∥𝛿∥𝐿∞
𝑛1 ( [0,𝑏])+𝐼

𝛼
𝑥+ | 𝑓 1(𝑥, 𝑦, 𝑧1(𝑥, 𝑦), 𝑧2(𝑥, 𝑦), 𝑢(𝑥, 𝑦)) |

¬ ∥𝛿∥𝐿∞
𝑛1 ( [0,𝑏])+𝐿𝐼

𝛼
𝑥+( |𝑧1(𝑥, 𝑦) | + |𝑧2(𝑥, 𝑦) |)+𝐼𝛼𝑥+(𝛾1(𝑥)𝜂 𝑓 1 ( |𝑢(𝑥, 𝑦) |)),

for a.e. (𝑥, 𝑦) ∈ 𝑃. Since 𝑀 is bounded, therefore there exists a constant 𝐶𝑖 > 0
(independed on 𝑢) such that

𝜂 𝑓 𝑖 ( |𝑢(𝑥, 𝑦) |) ¬ 𝐶𝑖, (𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒., 𝑖 = 1, 2.

Hence, with the aid of the Hölder inequality, we assert that

|𝑧1(𝑥, 𝑦) | ¬𝐿𝐼𝛼𝑥+( |𝑧1(𝑥, 𝑦) | + |𝑧2(𝑥, 𝑦) |) + 𝐶3, (𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒.,

1The existence result can be obtained for example with the aid of the Banach contraction principle,
applied to problem with zero boundary conditions. Next, using an appriopriate substitution the result of such
a type can be obtained for problem with nonzero boundary conditions ( [9]).
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where

𝐶3 = ∥𝛿∥𝐿∞
𝑛1 ( [0,𝑏]) +

𝐶1∥𝛾1∥𝐿𝑝

1 ( [0,𝑎])
𝑎
𝛼− 1

𝑝

Γ(𝛼)

(
𝑝 − 1
𝛼𝑝 − 1

)1− 1
𝑝

.

Similarly, we obtain the estimation

|𝑧2(𝑥, 𝑦) | ¬𝐿𝐼 𝛽𝑦+( |𝑧1(𝑥, 𝑦) | + |𝑧2(𝑥, 𝑦) |) + 𝐶4, (𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒.,

where

𝐶4 = ∥𝛾∥𝐿∞
𝑛2 ( [0,𝑎]) +

𝐶2∥𝛾2∥𝐿𝑝

1 ( [0,𝑏])
𝑏
𝛽− 1

𝑝

Γ(𝛽)

(
𝑝 − 1
𝛽𝑝 − 1

)1− 1
𝑝

.

Consequently,

|𝑧1(𝑥, 𝑦) | + |𝑧2(𝑥, 𝑦) |

¬ 𝐿

(
𝐼𝛼𝑥+( |𝑧1(𝑥, 𝑦) | + |𝑧2(𝑥, 𝑦) |) + 𝐼

𝛽
𝑦+( |𝑧1(𝑥, 𝑦) | + |𝑧2(𝑥, 𝑦) |)

)
+ 𝐶3 + 𝐶4

¬ 𝐿 max
{

1
Γ(𝛼) ,

1
Γ(𝛽)

} ©«
𝑥∫

0

|𝑧1(𝑠, 𝑦) | + |𝑧2(𝑠, 𝑦) |
(𝑥 − 𝑠)1−𝛼 d𝑠

+
𝑦∫

0

|𝑧1(𝑥, 𝑡) | + |𝑧2(𝑥, 𝑡) |
(𝑦 − 𝑡)1−𝛽 d𝑡ª®¬ + 𝐶3 + 𝐶4,

for a.e. (𝑥, 𝑦) ∈ 𝑃. From Corollary 1 (Appendix) it follows that there exists a
constant 𝐶5 > 0 such that

|𝑧1(𝑥, 𝑦) | + |𝑧2(𝑥, 𝑦) | ¬ (𝐶3 + 𝐶4)𝐶5, (𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒.,

Putting 𝐶 = (𝐶3 + 𝐶4)𝐶5, we conclude

|𝑧𝑖 (𝑥, 𝑦) | ¬ |𝑧1(𝑥, 𝑦) | + |𝑧2(𝑥, 𝑦) | ¬ 𝐶, (𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒., 𝑖 = 1, 2.

Now, we formulate and prove the main result of this paper.

Theorem 1. Let 𝑀 be a bounded set. Under assumptions (𝐴), (𝐴 𝑓 0), (𝐴 𝑓 )
if ((𝑧1

∗, 𝑧
2
∗), 𝑢∗) ∈

(
𝐶𝐴𝐶

𝛼,𝑝
𝑥+ (𝐿∞

𝑛1
( [0, 𝑏])) × 𝐶𝐴𝐶

𝛽,𝑝
𝑦+ (𝐿∞

𝑛2
( [0, 𝑎]))

)
× U𝑀 is an

optimal solution to problem (1)–(3) and 𝜆 = (𝜆1, 𝜆2) ∈ 𝐼𝛼𝑎−,𝑥 (𝐿∞
𝑛1
(𝑃)) ×
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𝐼
𝛽

𝑏−,𝑦 (𝐿
∞
𝑛2
(𝑃))2 is a solution to the conjugated system{

(𝐷𝛼
𝑎−,𝑥𝜆

1) (𝑥, 𝑦) = 𝑓 1
𝑧1 [𝑥, 𝑦]𝜆1(𝑥, 𝑦) + 𝑓 2

𝑧1 [𝑥, 𝑦]𝜆2(𝑥, 𝑦) − 𝑓 0
𝑧1 [𝑥, 𝑦]

(𝐷𝛽

𝑏−,𝑦𝜆
2) (𝑥, 𝑦) = 𝑓 1

𝑧2 [𝑥, 𝑦]𝜆1(𝑥, 𝑦) + 𝑓 2
𝑧2 [𝑥, 𝑦]𝜆2(𝑥, 𝑦) − 𝑓 0

𝑧2 [𝑥, 𝑦]
(7)

a.e. on 𝑃 with boundary conditions{
(𝐼1−𝛼

𝑎−,𝑥𝜆
1) (0, 𝑦) = 0, 𝑦 ∈ [0, 𝑏] 𝑎.𝑒.

(𝐼1−𝛽
𝑏−,𝑦𝜆

2) (𝑥, 0) = 0, 𝑥 ∈ [0, 𝑎] 𝑎.𝑒.,
(8)

where 𝑓 𝑖
𝑧 𝑗
[𝑥, 𝑦] = 𝑓 𝑖

𝑧 𝑗
(𝑥, 𝑦, 𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦)), 𝑖 = 0, 1, 2, 𝑗 = 1, 2, 𝐷𝛼

𝑎−,𝑥

and 𝐷
𝛽

𝑏−,𝑦 are partial right–sided Riemann-Liouville differential operators (cf. [8,
Remark 2]), then

2∑︁
𝑖=1

𝜆𝑖 (𝑥, 𝑦) 𝑓 𝑖
(
𝑥, 𝑦, 𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦)

)
− 𝑓 0

(
𝑥, 𝑦, 𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦)

)
= max

𝑣∈𝑀

{
2∑︁
𝑖=1

𝜆𝑖 (𝑥, 𝑦) 𝑓 𝑖 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑣)

− 𝑓 0(𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑣)
}

(9)

for a.e. (𝑥, 𝑦) ∈ 𝑃.

Proof. Let ((𝑧1
∗, 𝑧

2
∗), 𝑢∗) be an optimal solution to problem (1)–(3) and

((𝑧1, 𝑧2), 𝑢) denotes an admissible process. Then the increment

(Δ𝑧1,Δ𝑧2) = (𝑧1 − 𝑧1
∗, 𝑧

2 − 𝑧2
∗)

is a solution to the following system
𝐶D𝛼

𝑥+Δ𝑧
1 = Δ 𝑓 1(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢)

𝐶D𝛽
𝑦+Δ𝑧

2 = Δ 𝑓 2(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢)
𝑢(𝑥, 𝑦) ∈ 𝑀 ⊂ R𝑚

(10)

2The sets 𝐼𝛼𝑎−,𝑥 (𝐿∞𝑛1 (𝑃)) and 𝐼𝛼
𝑏−,𝑦 (𝐿

∞
𝑛2 (𝑃)) are defined as follows:

𝐼𝛼𝑎−,𝑥 (𝐿∞𝑛1 (𝑃)) := {𝑤 : 𝑃 → R𝑛1 : 𝑤 = 𝐼𝛼𝑎−,𝑥𝜑 𝑎.𝑒. 𝑜𝑛 𝑃, 𝜑 ∈ 𝐿∞𝑛1 (𝑃)},

𝐼𝛼
𝑏−,𝑦 (𝐿

∞
𝑛2 (𝑃)) := {𝑤 : 𝑃 → R𝑛2 : 𝑤 = 𝐼𝛼

𝑏−,𝑦𝜓 𝑎.𝑒. 𝑜𝑛 𝑃, 𝜓 ∈ 𝐿∞𝑛2 (𝑃)}.
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a.e. on 𝑃 and {
Δ𝑧1(0, 𝑦) = 0, 𝑦 ∈ [0, 𝑏] 𝑎.𝑒.
Δ𝑧2(𝑥, 0) = 0, 𝑥 ∈ [0, 𝑎] 𝑎.𝑒.,

(11)

where Δ 𝑓 𝑖 (𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢) = 𝑓 𝑖 (𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢) − 𝑓 𝑖 (𝑥, 𝑦, 𝑧1
∗, 𝑧

2
∗, 𝑢∗), 𝑖 = 1, 2. More-

over,

Δ𝐽 (𝑢) = 𝐽 (𝑢) − 𝐽 (𝑢∗) =
∫
𝑃

Δ 𝑓 0(𝑥, 𝑦, 𝑧1(𝑥, 𝑦), 𝑧2(𝑥, 𝑦), 𝑢(𝑥, 𝑦))d𝑥d𝑦,

whereby Δ 𝑓 0(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢) = 𝑓 0(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢) − 𝑓 0(𝑥, 𝑦, 𝑧1
∗, 𝑧

2
∗, 𝑢∗). Now, let us

fix any function (𝜆1, 𝜆2) ∈ 𝐿∞
𝑛1
(𝑃) × 𝐿∞

𝑛2
(𝑃). Then, the increment Δ𝐽 (𝑢) can be

written as follows:

Δ𝐽 (𝑢) =
∫
𝑃

(
Δ 𝑓 0(𝑥, 𝑦, 𝑧1(𝑥, 𝑦), 𝑧2(𝑥, 𝑦), 𝑢(𝑥, 𝑦))

+ 𝜆1(𝑥, 𝑦)
(𝐶D𝛼

𝑥+Δ𝑧
1(𝑥, 𝑦) − Δ 𝑓 1(𝑥, 𝑦, 𝑧1(𝑥, 𝑦), 𝑧2(𝑥, 𝑦), 𝑢(𝑥, 𝑦))

)
+ 𝜆2(𝑥, 𝑦)

(𝐶D𝛽
𝑦+Δ𝑧

2(𝑥, 𝑦) − Δ 𝑓 2(𝑥, 𝑦, 𝑧1(𝑥, 𝑦), 𝑧2(𝑥, 𝑦), 𝑢(𝑥, 𝑦))
) )

d𝑥d𝑦

=

∫
𝑃

(
𝜆1(𝑥, 𝑦)𝐶D𝛼

𝑥+Δ𝑧
1(𝑥, 𝑦) + 𝜆2(𝑥, 𝑦)𝐶D𝛽

𝑦+Δ𝑧
2(𝑥, 𝑦)

)
d𝑥d𝑦

−
∫
𝑃

(
𝐻 (𝑥, 𝑦, 𝑧1(𝑥, 𝑦), 𝑧2(𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))

− 𝐻 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))
+ 𝐻 (𝑥, 𝑦, 𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))

− 𝐻 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))
)
d𝑥d𝑦,

where: 𝑃 × R𝑛1 × R𝑛2 × R𝑚 × R𝑛1 × R𝑛2 → R,

𝐻 (𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢, 𝜆1, 𝜆2) = 𝜆1 𝑓 1(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢) + 𝜆2 𝑓 2(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢)
− 𝑓 0(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢).

From the Mean Value Theorem it follows that for a.e. (𝑥, 𝑦) ∈ 𝑃 there exists
𝜃 (𝑥, 𝑦) ∈ (0, 1) such that

𝐻 (𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢, 𝜆1, 𝜆2) − 𝐻 (𝑥, 𝑦, 𝑧1
∗, 𝑧

2
∗, 𝑢, 𝜆

1, 𝜆2)
= 𝐻𝑧1 (𝑥, 𝑦, 𝑧1

∗ + 𝜃 (𝑥, 𝑦)Δ𝑧1, 𝑧2
∗ + 𝜃 (𝑥, 𝑦)Δ𝑧2, 𝑢, 𝜆1, 𝜆2)Δ𝑧1

+ 𝐻𝑧2 (𝑥, 𝑦, 𝑧1
∗ + 𝜃 (𝑥, 𝑦)Δ𝑧1, 𝑧2

∗ + 𝜃 (𝑥, 𝑦)Δ𝑧2, 𝑢, 𝜆1, 𝜆2)Δ𝑧2.



522 R. KAMOCKI

Consequently,

Δ𝐽 (𝑢) =
∫
𝑃

(
𝜆1(𝑥, 𝑦)𝐶D𝛼

𝑥+Δ𝑧
1(𝑥, 𝑦) + 𝜆2(𝑥, 𝑦)𝐶D𝛽

𝑦+Δ𝑧
2(𝑥, 𝑦)

)
d𝑥d𝑦

−
∫
𝑃

(
Δ𝑢∗𝐻𝑧1 (𝑥, 𝑦, 𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))Δ𝑧1(𝑥, 𝑦)

+ Δ𝑢∗𝐻𝑧2 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))Δ𝑧2(𝑥, 𝑦)
+ Δ𝑢∗𝐻 (𝑥, 𝑦, 𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))

+ 𝐻𝑧1 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))Δ𝑧1(𝑥, 𝑦)
+ 𝐻𝑧2 (𝑥, 𝑦, 𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))Δ𝑧2(𝑥, 𝑦)

+ 𝑅(𝑥, 𝑦)
)
d𝑥d𝑦,

where

Δ𝑢∗𝐺 (𝑥, 𝑦, 𝑧1
∗, 𝑧

2
∗, 𝑢, 𝜆

1, 𝜆2) = 𝐺 (𝑥, 𝑦, 𝑧1
∗, 𝑧

2
∗, 𝑢, 𝜆

1, 𝜆2) −𝐺 (𝑥, 𝑦, 𝑧1
∗, 𝑧

2
∗, 𝑢∗, 𝜆

1, 𝜆2),

𝑅(𝑥, 𝑦) =
(
𝐻𝑧1

(
𝑥, 𝑦, (𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦))

+ 𝜃 (𝑥, 𝑦) (Δ𝑧1(𝑥, 𝑦),Δ𝑧2(𝑥, 𝑦)), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦)
)

− 𝐻𝑧1 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))
)
Δ𝑧1(𝑥, 𝑦)

+
(
𝐻𝑧2

(
𝑥, 𝑦, (𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦))

+ 𝜃 (𝑥, 𝑦) (Δ𝑧1(𝑥, 𝑦),Δ𝑧2(𝑥, 𝑦)), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦)
)

− 𝐻𝑧2 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))
)
Δ𝑧2(𝑥, 𝑦).

Since (Δ𝑧1,Δ𝑧2) is a solution to (10), therefore

Δ𝑧1 = 𝐼𝛼𝑥+
𝐶D𝛼

𝑥+Δ𝑧
1, Δ𝑧2 = 𝐼

𝛽
𝑦+

𝐶D𝛽
𝑦+Δ𝑧

2.

Thus, using Fubini’s theorem, we conclude∫
𝑃

𝐻𝑧1 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))Δ𝑧1(𝑥, 𝑦)d𝑥d𝑦

=

∫
𝑃

𝐼𝛼𝑎−,𝑥𝐻𝑧1 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))𝐶D𝛼
𝑥+Δ𝑧

1(𝑥, 𝑦)d𝑥d𝑦
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and∫
𝑃

𝐻𝑧2 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))Δ𝑧2(𝑥, 𝑦)d𝑥d𝑦

=

∫
𝑃

𝐼
𝛽

𝑏−,𝑦𝐻𝑧2 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))𝐶D𝛽
𝑦+Δ𝑧

2(𝑥, 𝑦)d𝑥d𝑦.

Now, let (𝜆1, 𝜆2) ∈ 𝐼𝛼𝑎−,𝑥 (𝐿∞
𝑛1
(𝑃)) × 𝐼

𝛽

𝑏−,𝑦 (𝐿
∞
𝑛2
(𝑃)) be a solution to conjugated

system (7)–(8). Then (by definition of 𝐼𝛼𝑎−,𝑥 (𝐿∞
𝑛1
(𝑃)) × 𝐼

𝛽

𝑏−,𝑦 (𝐿
∞
𝑛2
(𝑃))), it satisfies

the following integral system{
𝜆1(𝑥, 𝑦) = 𝐼𝛼𝑎−,𝑥𝐻𝑧1 (𝑥, 𝑦, 𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))

𝜆2(𝑥, 𝑦) = 𝐼
𝛽

𝑏−,𝑦𝐻𝑧2 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))

a.e. on 𝑃. Consequently,

Δ𝐽 (𝑢) = −
∫
𝑃

(
Δ𝑢∗𝐻𝑧1 (𝑥, 𝑦, 𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))Δ𝑧1(𝑥, 𝑦)

+ Δ𝑢∗𝐻𝑧2 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))Δ𝑧2(𝑥, 𝑦)

+ Δ𝑢∗𝐻 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢(𝑥, 𝑦), 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦)) + 𝑅(𝑥, 𝑦)
)
d𝑥d𝑦.

Now, let us fix any 𝑣 ∈ 𝑀 and denote by L𝑣 a set of the Lebesgue points
(𝜉, 𝜁) ∈ [0, 𝑎) × [0, 𝑏) of functions

(𝑥, 𝑦) → 𝑓 𝑖 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦)),
(𝑥, 𝑦) → 𝑓 𝑖 (𝑥, 𝑦, 𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦), 𝑣), 𝑖 = 0, 1, 2.

For a fixed (𝜉, 𝜁) ∈ L𝑣 and sufficiently small 𝜀 > 0 (such that 𝜉 + 𝜀 < 𝑎 and
𝜁 + 𝜀 < 𝑏) we define an admissible control 𝑢𝜀 in the following way

𝑢𝜀 (𝑥, 𝑦) =
{
𝑣; (𝑥, 𝑦) ∈ 𝑃𝜀 = [𝜉, 𝜉 + 𝜀) × [𝜁, 𝜁 + 𝜀)
𝑢∗(𝑥, 𝑦); (𝑥, 𝑦) ∈ 𝑃 \ 𝑃𝜀 .

Then

Δ𝐽 (𝑢𝜀) = −
∫
𝑃𝜀

(
Δ𝑢∗𝐻𝑧1 (𝑥, 𝑦, 𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦), 𝑣, 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))Δ𝑧1

𝜀 (𝑥, 𝑦)

+ Δ𝑢∗𝐻𝑧2 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑣, 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))Δ𝑧2
𝜀 (𝑥, 𝑦)

+ Δ𝑢∗𝐻 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑣, 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦)) + 𝑅𝜀,𝑣 (𝑥, 𝑦)
)
d𝑥d𝑦, (12)
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where (𝑧1
𝜀, 𝑧

2
𝜀) is an admissible trajectory (a solution of (2)–(3), corresponding to

𝑢𝜀) and

𝑅𝜀,𝑣 (𝑥, 𝑦)

=

(
𝐻𝑧1 (𝑥, 𝑦, (𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦)) + 𝜃 (𝑥, 𝑦) (Δ𝑧1

𝜀 (𝑥, 𝑦),Δ𝑧2
𝜀 (𝑥, 𝑦)), 𝑣, 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))

− 𝐻𝑧1 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑣, 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))
)
Δ𝑧1

𝜀 (𝑥, 𝑦)

+
(
𝐻𝑧2 (𝑥, 𝑦, (𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦)) + 𝜃 (𝑥, 𝑦) (Δ𝑧1

𝜀 (𝑥, 𝑦),Δ𝑧2
𝜀 (𝑥, 𝑦)), 𝑣, 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))

− 𝐻𝑧2 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑣, 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))
)
Δ𝑧2

𝜀 (𝑥, 𝑦).

Now, we investigate the behavior of increments Δ𝑧1
𝜀, Δ𝑧2

𝜀 on 𝑃𝜀. First, let us note
that since (Δ𝑧1

𝜀,Δ𝑧
2
𝜀) is a solution to (10)–(11), corresponding to 𝑢𝜀, therefore

problem (10)–(11) splits into two systems:
𝐶D𝛼

𝑥+Δ𝑧
1
𝜀 = 0,

𝐶D𝛽
𝑦+Δ𝑧

2
𝜀 = 0.

𝑢(𝑥, 𝑦) ∈ 𝑀 ⊂ R𝑚

(13)

a.e. on 𝑃 \ 𝑃𝜀 with boundary conditions{
Δ𝑧1

𝜀 (0, 𝑦) = 0, 𝑦 ∈ [0, 𝑏] 𝑎.𝑒. ,
Δ𝑧2

𝜀 (𝑥, 0) = 0, 𝑥 ∈ [0, 𝑎] 𝑎.𝑒.
(14)

and 
𝐶D𝛼

𝑥+Δ𝑧
1
𝜀 = 𝑓 1(𝑥, 𝑦, 𝑧1

𝜀, 𝑧
2
𝜀, 𝑣) − 𝑓 1(𝑥, 𝑦, 𝑧1

∗, 𝑧
2
∗, 𝑢∗),

𝐶D𝛽
𝑦+Δ𝑧

2
𝜀 = 𝑓 2(𝑥, 𝑦, 𝑧1

𝜀, 𝑧
2
𝜀, 𝑣) − 𝑓 2(𝑥, 𝑦, 𝑧1

∗, 𝑧
2
∗, 𝑢∗),

𝑢(𝑥, 𝑦) ∈ 𝑀 ⊂ R𝑚

(15)

a.e. on 𝑃𝜀. It is clear that the solution (Δ𝑧1
𝜀,Δ

2
𝜀) of problem (13)–(14), corre-

sponding to 𝑢𝜀, satisfies the following conditions:

• Δ𝑧1
𝜀 (𝑥, 𝑦) = 0 for all 𝑥 ∈ [0, 𝜉) and a.e. 𝑦 ∈ [0, 𝑏],

• Δ𝑧2
𝜀 (𝑥, 𝑦) = 0 for a.e. 𝑥 ∈ [0, 𝑎] and all 𝑦 ∈ [0, 𝜁).

In view of continuity of Δ𝑧1
𝜀 with respect to 𝑥 and Δ𝑧2

𝜀 with respect to 𝑦 we
conclude that Δ𝑧1

𝜀 (𝜉, 𝑦) = 0 for a.e. 𝑦 ∈ [0, 𝑏] and Δ𝑧2
𝜀 (𝑥, 𝜁) = 0 for a.e.

𝑥 ∈ [0, 𝑎]. Consequently, problem (15) can be considered with the boundary
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conditions {
Δ𝑧1

𝜀 (𝜉, 𝑦) = 0, 𝑦 ∈ [𝜁, 𝜁 + 𝜀) 𝑎.𝑒. ,
Δ𝑧2

𝜀 (𝑥, 𝜁) = 0, 𝑥 ∈ [𝜉, 𝜉 + 𝜀) 𝑎.𝑒.
(16)

Now, we estimate pointwise on 𝑃𝜀 the solution to (15)–16. Using (𝐴 𝑓 ) and
Proposition 1 we obtain

|Δ𝑧1
𝜀 (𝑥, 𝑦) | ¬ 𝐼𝛼𝜉+,𝑥

(
| 𝑓 1(𝑥, 𝑦, 𝑧1

𝜀 (𝑥, 𝑦), 𝑧2
𝜀 (𝑥, 𝑦), 𝑣) − 𝑓 1(𝑥, 𝑦, 𝑧1

∗ (𝑥, 𝑦), 𝑧2
∗ (𝑥, 𝑦), 𝑣) |

+| 𝑓 1(𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑣) − 𝑓 1(𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑢∗(𝑥, 𝑦)) |
)

¬ 𝐿𝐼𝛼𝜉+,𝑥 ( |Δ𝑧
1
𝜀 (𝑥, 𝑦) | + |Δ𝑧2

𝜀 (𝑥, 𝑦) |) + 2𝐿𝐼𝛼𝜉+,𝑥 ( |𝑧
1
∗ (𝑥, 𝑦) | + |𝑧2

∗ (𝑥, 𝑦) |)

+2𝐶1(𝐼𝛼𝜉+,𝑥𝛾1) (𝑥) ¬ 𝐿𝐼𝛼𝜉+,𝑥 ( |Δ𝑧
1
𝜀 (𝑥, 𝑦) | + |Δ𝑧2

𝜀 (𝑥, 𝑦) |) + 𝐷1𝜀
𝛼− 1

𝑝 ,

for a.e. (𝑥, 𝑦) ∈ 𝑃𝜀, where

𝐷1 = 𝜀
1
𝑝

4𝐿𝐶
Γ(𝛼 + 1) +

2𝐶1∥𝛾1∥𝐿𝑝

1 ( [0,𝑎])

Γ(𝛼)

(
𝑝 − 1
𝛼𝑝 − 1

)1− 1
𝑝

.

Similarly,

|Δ𝑧2
𝜀 (𝑥, 𝑦) | ¬ 𝐿𝐼

𝛽

𝜁+,𝑦 ( |Δ𝑧
1
𝜀 (𝑥, 𝑦) | + |Δ𝑧2

𝜀 (𝑥, 𝑦) |) + 𝐷2𝜀
𝛽− 1

𝑝 ,

for a.e. (𝑥, 𝑦) ∈ 𝑃𝜀, where

𝐷2 = 𝜀
1
𝑝

4𝐿𝐶
Γ(𝛽 + 1) +

2𝐶2∥𝛾2∥𝐿𝑝

1 ( [0,𝑏])

Γ(𝛽)

(
𝑝 − 1
𝛽𝑝 − 1

)1− 1
𝑝

(here 𝐶,𝐶1, 𝐶2 are constants from Proposition 1). Consequently,

|Δ𝑧1
𝜀 (𝑥, 𝑦) | + |Δ𝑧2

𝜀 (𝑥, 𝑦) |

¬ 𝐿

(
𝐼𝛼𝜉+,𝑥 ( |Δ𝑧

1
𝜀 (𝑥, 𝑦) | + |Δ𝑧2

𝜀 (𝑥, 𝑦) |) + 𝐼
𝛽

𝜁+,𝑦 ( |Δ𝑧
1
𝜀 (𝑥, 𝑦) | + |Δ𝑧2

𝜀 (𝑥, 𝑦) |)
)

+ 𝐷1𝜀
𝛼− 1

𝑝 + 𝐷2𝜀
𝛽− 1

𝑝

¬ 𝐿 max
{

1
Γ(𝛼) ,

1
Γ(𝛽)

} ©«
𝑥∫

𝜉

|Δ𝑧1
𝜀 (𝑠, 𝑦) | + |Δ𝑧2

𝜀 (𝑠, 𝑦) |
(𝑥 − 𝑠)1−𝛼 d𝑠

+
𝑦∫

𝜁

|Δ𝑧1
𝜀 (𝑥, 𝑡) | + |Δ𝑧2

𝜀 (𝑥, 𝑡) |
(𝑦 − 𝑡)1−𝛽 d𝑡

ª®®¬ + max{𝐷1, 𝐷2}(𝜀𝛼−
1
𝑝 + 𝜀

𝛽− 1
𝑝 ),
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for a.e. (𝑥, 𝑦) ∈ 𝑃𝜀. From Corollary 1 it follows that there exists a constant 𝐷 > 0
(independent on 𝑢) such that for 𝑖 = 1, 2

|Δ𝑧𝑖𝜀 (𝑥, 𝑦) | ¬ |Δ𝑧1
𝜀 (𝑥, 𝑦) | + |Δ𝑧2

𝜀 (𝑥, 𝑦) | ¬ 𝐷 (𝜀𝛼−
1
𝑝 + 𝜀

𝛽− 1
𝑝 ), (𝑥, 𝑦) ∈ 𝑃𝜀 𝑎.𝑒.

Now, we calculate Δ𝐽 (𝑢𝜀) given by (12). First, let us note that by Proposition 1,
for 𝑖 = 1, 2 we have

|𝑧𝑖∗(𝑥, 𝑦) + 𝜃 (𝑥, 𝑦)Δ𝑧𝑖𝜀 (𝑥, 𝑦) | ¬ 2|𝑧𝑖∗(𝑥, 𝑦) | + |𝑧𝑖𝜀 (𝑥, 𝑦) | ¬ 3𝐶, (𝑥, 𝑦) ∈ 𝑃𝜀 .

Hence∫
𝑃𝜀

|𝑅𝜀,𝑣 (𝑥, 𝑦) |d𝑥d𝑦 ¬ 4𝐿𝐷 (∥𝜆1∥𝐿∞
𝑛1
+ ∥𝜆2∥𝐿∞

𝑛2
+ 𝐸) (𝜀𝛼−

1
𝑝 + 𝜀

𝛽− 1
𝑝 )

∫
𝑃𝜀

d𝑥d𝑦

= 4𝐿𝐷 (∥𝜆1∥𝐿∞
𝑛1
+ ∥𝜆2∥𝐿∞

𝑛2
+ 𝐸) (𝜀𝛼−

1
𝑝 + 𝜀

𝛽− 1
𝑝 )𝜀2,

where 𝐸 = max{𝜂 𝑓 0 (𝑟1, 𝑟2, 𝑟3) : |𝑟1 |, |𝑟2 | ¬ 3𝐶, |𝑟3 | ¬ 𝜈}, 𝜈 > 0 is a
constant such that |𝑤 | ¬ 𝜈 for all 𝑤 ∈ 𝑀 .

Similarly, for 𝑖 = 1, 2, we obtain∫
𝑃𝜀

��Δ𝑢∗𝐻𝑧𝑖 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑣, 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))Δ𝑧𝑖𝜀 (𝑥, 𝑦)
��d𝑥d𝑦

¬2𝐿𝐷 (∥𝜆1∥𝐿∞
𝑛1
+ ∥𝜆2∥𝐿∞

𝑛2
+ 𝐸) (𝜀𝛼−

1
𝑝 + 𝜀

𝛽− 1
𝑝 )𝜀2.

Consequently, since ((𝑧1
∗, 𝑧

2
∗), 𝑢∗) is an optimal solution to problem (1)–(3), there-

fore

0 ¬ 𝐽 (𝑢𝜀) ¬ −
∫
𝑃𝜀

Δ𝑢∗𝐻 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑣, 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))d𝑥d𝑦

+8𝐿𝐷 (∥𝜆1∥𝐿∞
𝑛1
+ ∥𝜆2∥𝐿∞

𝑛2
+ 𝐸) (𝜀𝛼−

1
𝑝 + 𝜀

𝛽− 1
𝑝 )𝜀2,

so
1
𝜀2

∫
𝑃𝜀

Δ𝑢∗𝐻 (𝑥, 𝑦, 𝑧1
∗ (𝑥, 𝑦), 𝑧2

∗ (𝑥, 𝑦), 𝑣, 𝜆1(𝑥, 𝑦), 𝜆2(𝑥, 𝑦))d𝑥d𝑦

¬8𝐿𝐷 (∥𝜆1∥𝐿∞
𝑛1
+ ∥𝜆2∥𝐿∞

𝑛2
+ 𝐸) (𝜀𝛼−

1
𝑝 + 𝜀

𝛽− 1
𝑝 ) −→

𝜀→0
0.

Using the Lebesgue Differentiation Theorem, we assert that

Δ𝑢∗𝐻 (𝜉, 𝜁 , 𝑧1
∗ (𝜉, 𝜁), 𝑧2

∗ (𝜉, 𝜁), 𝑣, 𝜆1(𝜉, 𝜁), 𝜆2(𝜉, 𝜁)) ¬ 0, (𝜉, 𝜁) ∈ 𝑃 𝑎.𝑒.,

so condition (9) is satisfied. The proof is completed.
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4. Theoretical example

Example 1. Let us consider problem (1)–(3), where

𝛼1 = 𝛼2 =
1
2
, 𝑝 > 2, 𝑃 = [0, 2] × [0, 2], 𝑀 =

(
−𝜋

2
,
3
2
𝜋

)
, 𝛾, 𝛿 : [0, 2] → R2,

𝛾(𝑥) = (𝑥2, 𝑥), 𝑥 ∈ [0, 2], 𝛿(𝑦) = (𝑦, 𝑦3), 𝑦 ∈ [0, 2],

𝑓 0 : 𝑃 × R2 × R2 × R → R,

𝑓 0(𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢) = 𝑓 0(𝑥, 𝑦, (𝑧1
1, 𝑧

1
2), (𝑧

2
1, 𝑧

2
2), 𝑢) = 𝑧1

1 − 2𝑧1
2 + 𝑧2

1 + 𝑧2
2 + cos 𝑢,

𝑓 𝑖 : 𝑃 × R2 × R2 × R → R2,

𝑓 𝑖 (𝑥, 𝑦, 𝑧1, 𝑧2, 𝑢) = 𝐴𝑖𝑧
𝑖 − 𝐵𝑖 cos 𝑢, 𝑖 = 1, 2,

𝐴1 =

[
0 1
0 0

]
, 𝐴2 =

[
0 0
1 0

]
, 𝐵1 =

[
−2
−1

]
, 𝐵2 =

[
−1
1

]
.

It is easily to check that all assumptions of Theorem 1 are satisfied. Conse-
quently, if (𝑧1

∗, 𝑧
2
∗, 𝑢∗) ∈ (𝐶𝐴𝐶

1
2 ,𝑝
𝑥+ (𝐿∞

2 ( [0, 2]))× 𝐶𝐴𝐶
1
2 ,𝑝
𝑦+ (𝐿∞

2 ( [0, 2])))×U𝑀 is an

optimal solution to problem (1)–(3) and (𝜆1, 𝜆2) ∈ 𝐼
1
2
2−,𝑥 (𝐿

∞
2 (𝑃)) × 𝐼

1
2
2−,𝑦 (𝐿

∞
2 (𝑃))

is a solution to the conjugate system

(
𝐷

1
2
2−,𝑥𝜆

1) (𝑥, 𝑦) = 𝐴𝑇
1𝜆

1(𝑥, 𝑦) +
[
−1
2

]
(
𝐷

1
2
2−,𝑦𝜆

2) (𝑥, 𝑦) = 𝐴𝑇
2𝜆

2(𝑥, 𝑦) +
[
−1
−1

] (17)

for a.e. (𝑥, 𝑦) ∈ 𝑃 and(
𝐼

1
2
2−,𝑥𝜆

1) (2, 𝑦) = 0, 𝑦 ∈ [0, 2] 𝑎.𝑒., (18)(
𝐼

1
2
2−,𝑦𝜆

2) (𝑥, 2) = 0, 𝑥 ∈ [0, 2] 𝑎.𝑒. (19)

then (
𝜆1(𝑥, 𝑦)𝐵1 + 𝜆2(𝑥, 𝑦)𝐵2 + 1

)
(− cos 𝑢∗(𝑥, 𝑦))

= max
𝑢∈(− 𝜋

2 ,
3
2 𝜋)

{
(𝜆1(𝑥, 𝑦)𝐵1 + 𝜆2(𝑥, 𝑦)𝐵2 + 1) (− cos 𝑢)

}
(20)

for a.e. (𝑥, 𝑦) ∈ 𝑃.
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It is easy to verify that the solution (𝜆1, 𝜆2) to system (17)–(19) is given by

[
𝜆1(𝑥, 𝑦)
𝜆2(𝑥, 𝑦)

]
=


− (2 − 𝑥) 1

2

Γ

(
3
2

) 𝑥 − 2 + 2(2 − 𝑥) 1
2

Γ

(
3
2

)
− (2 − 𝑦) 1

2

Γ

(
3
2

) + 𝑦 − 2 − (2 − 𝑦) 1
2

Γ

(
3
2

)

, (𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒.

Consequently, condition (20) is equivalent to the following one

(𝑥 + 𝑦 − 5) cos 𝑢∗(𝑥, 𝑦) = max
𝑢∈(− 𝜋

2 ,
3
2 𝜋)

{
(𝑥 + 𝑦 − 5) cos 𝑢

}
for a.e. (𝑥, 𝑦) ∈ 𝑃.

Thus, 𝑢∗ is of the form

𝑢∗(𝑥, 𝑦) = 𝜋, (𝑥, 𝑦) ∈ 𝑃 𝑎.𝑒.

It means that for a.e. (𝑥, 𝑦) ∈ 𝑃

[
𝑧1
∗ (𝑥, 𝑦)
𝑧2
∗ (𝑥, 𝑦)

]
=


𝑥2 − 𝑥 − 2𝑥

1
2

Γ

(
3
2

) 𝑥 − 𝑥
1
2

Γ

(
3
2

)
𝑦 − 𝑦

1
2

Γ

(
3
2

) 𝑦3 − 𝑦 + 𝑦
1
2

Γ

(
3
2

)

,

so the pair

(𝑧∗, 𝑢∗) =
( (
𝑧1
∗, 𝑧

2
∗
)
, 𝑢∗

)
is only one candidate to be the optimal solution to problem (1) − (3).

5. Conclusions

In the paper we considered a Lagrange type problem described by a frac-
tional Roesser model with Caputo derivatives. Using the increment method the
necessary optimality conditions in the form of a Pontryagin maximum principle
for such a problem were derived. Let us note that in the above example the set
𝑀 is not compact, as well as functions 𝑓 0, 𝑓 1, 𝑓 2 are not convex with respect to
𝑢. The aim of a forthcoming work will be studying of the sufficient optimality
conditions for problem (1)–(3).
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Appendix

In the first part of this section we formulate and prove a some version of
Gronwall’s lemma for functions of two variables.

Let 𝛼, 𝛽 > 0 and 𝑤 ∈ 𝐿1
𝑛 (𝑅), 𝑅 = [𝑐1, 𝑑1] × [𝑐2, 𝑑2]. The left–sided mixed

Riemann-Liouville integral of order (𝛼, 𝛽) of the function 𝑤 is defined by

(𝐼𝛼,𝛽𝑐1+,𝑥,𝑐2+,𝑦𝑤) (𝑥, 𝑦) =
1

Γ(𝛼)
1

Γ(𝛽)

𝑥∫
𝑐1

𝑦∫
𝑐2

𝑤(𝑠, 𝑡)
(𝑥 − 𝑠)1−𝛼 (𝑦 − 𝑡)1−𝛽 d𝑠d𝑡,

(𝑥, 𝑦) ∈ 𝑅 𝑎.𝑒.

One can show ( [5]) that

(𝐼𝛼,𝛽𝑐1+,𝑥,𝑐2+,𝑦𝑤) (𝑥, 𝑦) = (𝐼𝛼𝑐1+,𝑥 𝐼
𝛽
𝑐2+,𝑦𝑤) (𝑥, 𝑦)

= (𝐼 𝛽𝑐2+,𝑦 𝐼
𝛼
𝑐1+,𝑥𝑤) (𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝑅 𝑎.𝑒. (21)

Lemma 1 (Gronwall’s lemma). If 𝑔, ℎ ∈ 𝐿1
1(𝑅) are nonnegative, 𝑁 > 0 and

𝑔(𝑥, 𝑦) ¬ ℎ(𝑥, 𝑦) + 𝑁
©«

𝑥∫
𝑐1

𝑔(𝑠, 𝑦)
(𝑥 − 𝑠)1−𝛼 d𝑠 +

𝑦∫
𝑐2

𝑔(𝑥, 𝑡)
(𝑦 − 𝑡)1−𝛽 d𝑡ª®¬ ,
(𝑥, 𝑦) ∈ 𝑅 𝑎.𝑒. (22)

then

𝑔(𝑥, 𝑦) ¬ Ψ(ℎ) (𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝑅 𝑎.𝑒., (23)

where Ψ : 𝐿1
1(𝑅) → 𝐿1

1(𝑅) is a linear and bounded operator, depending on 𝑅,
𝑁 , 𝛼, 𝛽.

Proof. The proof of this result is analogous to the proof of [3, Lemma 3.1]. For
the convenience of a reader, we present a sketch of the proof of Lemma 1.

Assumption (22) can be written as follows:

𝑔(𝑥, 𝑦) ¬ ℎ(𝑥, 𝑦) + 𝐺 (𝐼𝛼𝑐1+,𝑥 + 𝐼
𝛽
𝑐2+,𝑦)𝑔(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝑅 𝑎.𝑒.,

where 𝐺 = 𝑁 max{Γ(𝛼), Γ(𝛽)}. Hence, for 𝑛  1, we obtain

𝑔(𝑥, 𝑦) ¬
𝑛−1∑︁
𝑘=0

𝐺𝑘 (𝐼𝛼𝑐1+,𝑥 + 𝐼
𝛽
𝑐2+,𝑦)

𝑘ℎ(𝑥, 𝑦) + 𝐺𝑛 (𝐼𝛼𝑐1+,𝑥

+ 𝐼
𝛽
𝑐2+,𝑦)

𝑛𝑔(𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝑅 𝑎.𝑒., (24)
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whereby (see (21))

(𝐼𝛼𝑐1+,𝑥 + 𝐼
𝛽
𝑐2+,𝑦)

𝑘𝑤(𝑥, 𝑦) =
𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
𝐼𝑖𝛼𝑐1+,𝑥 𝐼

(𝑘−𝑖)𝛽
𝑐2+,𝑦 𝑤(𝑥, 𝑦)

=

𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
𝐼
𝑖𝛼,(𝑘−𝑖)𝛽
𝑐1+,𝑥,𝑐2+,𝑦𝑤(𝑥, 𝑦)

for any nonnegative function 𝑤 ∈ 𝐿1
1(𝑅). Let 𝑘0 be the smallest integer such that[

𝑘0

2

]
min{𝛼, 𝛽} > arg min{Γ(𝜇); 𝜇 > 0}.

Then, for 𝑘  𝑘0, we have

(𝐼𝛼𝑐1+,𝑥 + 𝐼
𝛽
𝑐2+,𝑦)

𝑘𝑤(𝑥, 𝑦)

¬
∑︁

0¬𝑖¬𝑘,
𝑖𝛼1,

(𝑘−𝑖)𝛽1

(
𝑘

𝑖

)
max{1, (𝑑1 − 𝑐1)𝑘𝛼−1}max{1, (𝑑2 − 𝑐2)𝑘𝛽−1}

Γ

( [
𝑘
2
]

min{𝛼, 𝛽}
)
𝐸

(
𝐼
1,1
𝑐1+,𝑥,𝑐2+,𝑦𝑤

)
(𝑥, 𝑦)

+
∑︁

0¬𝑖¬𝑘,
𝑖𝛼1,

(𝑘−𝑖)𝛽<1

(
𝑘

𝑖

)
max{1, (𝑑1 − 𝑐1)𝑘𝛼−1}

Γ

( [
𝑘
2
]

min{𝛼, 𝛽}
) (

𝐼
1,(𝑘−𝑖)𝛽
𝑐1+,𝑥,𝑐2+,𝑦𝑤

)
(𝑥, 𝑦)

+
∑︁

0¬𝑖¬𝑘,
𝑖𝛼<1,

(𝑘−𝑖)𝛽1

(
𝑘

𝑖

)
max{1, (𝑑2 − 𝑐2)𝑘𝛽−1}

Γ

( [
𝑘
2
]

min{𝛼, 𝛽}
) (

𝐼
𝑖𝛼,1
𝑐1+,𝑥,𝑐2+,𝑦𝑤

)
(𝑥, 𝑦),

where 𝐸 = min{Γ(𝜇); 𝜇 > 0}. Let us define the linear operator
𝐵 : 𝐿1

1(𝑅) → 𝐿1
1(𝑅) as follows:

𝐵(𝑤) :=
©«𝐼

1,1
𝑐1+,𝑥,𝑐2+,𝑦 +

∑︁
0¬ 𝑗¬𝑘,
𝑗 𝛽<1

𝐼
1, 𝑗 𝛽
𝑐1+,𝑥,𝑐2+,𝑦 +

∑︁
0¬𝑖¬𝑘,
𝑖𝛼<1

𝐼
𝑖𝛼,1
𝑐1+,𝑥,𝑐2+,𝑦

ª®®®¬𝑤.
Since 𝐵 consists of a finite number of terms, therefore it is bounded. Then, for
𝑘 > 𝑘0

𝐺𝑘 (𝐼𝛼𝑐1+,𝑥 + 𝐼
𝛽
𝑐2+,𝑦)

𝑘𝑤(𝑥, 𝑦) ¬ 𝑑𝑘𝐵(𝑤) (𝑥, 𝑦),
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where

𝑑𝑘 =
(2𝐺)𝑘

Γ

( [
𝑘
2
]

min{𝛼, 𝛽}
)

×
(
max{1, (𝑑1 − 𝑐1)𝑘𝛼−1}max{1, (𝑑2 − 𝑐2)𝑘𝛽−1}

𝐸

+ max{1, (𝑑1 − 𝑐1)𝑘𝛼−1} + max{1, (𝑑2 − 𝑐2)𝑘𝛽−1
)
.

It is easy to check that the sequence (𝑑𝑘 )𝑘∈N is convergent to 0, as well as, the

series
∞∑︁

𝑘=𝑘0+1
𝑑𝑘 is convergent. Consequently, (24) gives

𝑔(𝑥, 𝑦) ¬
∞∑︁
𝑘=0

𝐺𝑘 (𝐼𝛼𝑐1+,𝑥 + 𝐼
𝛽
𝑐2+,𝑦)

𝑘ℎ(𝑥, 𝑦) ¬ 𝐴(ℎ) (𝑥, 𝑦) + 𝑑𝐵(ℎ) (𝑥, 𝑦),

(𝑥, 𝑦) ∈ 𝑅 𝑎.𝑒.,

where 𝑑 =

∞∑︁
𝑘=𝑘0+1

𝑑𝑘 and 𝐴 : 𝐿1
1(𝑅) → 𝐿1

1(𝑅) is a linear bounded operator

given by

𝐴(ℎ) =
𝑘0∑︁
𝑘=0

𝐺𝑘 (𝐼𝛼𝑐1+,𝑥 + 𝐼
𝛽
𝑐2+,𝑦)

𝑘ℎ.

Putting
Ψ(ℎ) = 𝐴(ℎ) + 𝑑𝐵(ℎ),

we get (23).
From the above Gronwall’s lemma, we immediately obtain the following

useful result

Corollary 1. If ℎ(𝑥, 𝑦) ≡ 𝐶 > 0 then there exists a constant 𝐷 > 0, depending
on 𝑅, 𝑁 , 𝛼, 𝛽, such that

𝑔(𝑥, 𝑦) ¬ 𝐶𝐷, (𝑥, 𝑦) ∈ 𝑅 𝑎.𝑒.

In the second part of this section, we shall study the existence and uniqueness
of a solution to the following linear problem

(𝐷𝛼
𝑎−,𝑥𝜆

1) (𝑥, 𝑦) = 𝐴11(𝑥, 𝑦)𝜆1(𝑥, 𝑦) + 𝐴12(𝑥, 𝑦)𝜆2(𝑥, 𝑦) + 𝐵1(𝑥, 𝑦),

(𝐷𝛽

𝑏−,𝑦𝜆
2) (𝑥, 𝑦) = 𝐴21(𝑥, 𝑦)𝜆1(𝑥, 𝑦) + 𝐴22(𝑥, 𝑦)𝜆2(𝑥, 𝑦) + 𝐵2(𝑥, 𝑦)

(25)
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a.e. on 𝑃 = [0, 𝑎] × [0, 𝑏] with boundary conditions

(𝐼1−𝛼
𝑎−,𝑥𝜆

1) (0, 𝑦) = 0, 𝑦 ∈ [0, 𝑏] 𝑎.𝑒.,

(𝐼1−𝛽
𝑏−,𝑦𝜆

2) (𝑥, 0) = 0, 𝑥 ∈ [0, 𝑎] 𝑎.𝑒.,
(26)

where 𝛼, 𝛽 ∈ (0, 1), 𝐴𝑖 𝑗 : 𝑃 → R𝑛𝑖×𝑛 𝑗 , 𝐵𝑖 : 𝑃 → R𝑛𝑖 , 𝑖, 𝑗 = 1, 2.
By a solution of the above problem we mean a function

𝜆 = (𝜆1, 𝜆2) ∈ 𝐼𝛼𝑎−,𝑥 (𝐿∞
𝑛1
(𝑃)) × 𝐼

𝛽

𝑏−,𝑦 (𝐿
∞
𝑛2
(𝑃)).

It is easy to check that the existence of the solution to problem (25)–(26) in
𝐼𝛼𝑎−,𝑥 (𝐿∞

𝑛1
(𝑃)) × 𝐼

𝛽

𝑏−,𝑦 (𝐿
∞
𝑛2
(𝑃)) is equivalent to the existence of a solution to the

following integral problem in 𝐿∞
𝑛1
(𝑃) × 𝐿∞

𝑛2
(𝑃)

𝜓1(𝑥, 𝑦) = 𝐴11(𝑥, 𝑦) (𝐼𝛼𝑎−,𝑥𝜓1) (𝑥, 𝑦) + 𝐴12(𝑥, 𝑦) (𝐼 𝛽𝑏−,𝑦𝜓
2) (𝑥, 𝑦) + 𝐵1(𝑥, 𝑦),

𝜓2(𝑥, 𝑦) = 𝐴21(𝑥, 𝑦) (𝐼𝛼𝑎−,𝑥𝜓1) (𝑥, 𝑦) + 𝐴22(𝑥, 𝑦) (𝐼 𝛽𝑏−,𝑦𝜓
2) (𝑥, 𝑦) + 𝐵2(𝑥, 𝑦)

(27)

a.e. on 𝑃 = [0, 𝑎] × [0, 𝑏]. In such a case (𝜆1, 𝜆2) = (𝐼𝛼𝑎−,𝑥𝜓1, 𝐼
𝛽

𝑏−,𝑦𝜓
2).

We have

Theorem 2. If 𝐴𝑖 𝑗 ∈ 𝐿∞
𝑛𝑖×𝑛 𝑗

(𝑃), 𝐵𝑖 ∈ 𝐿∞
𝑛𝑖
(𝑃), 𝑖 = 1, 2 then problem (25)–(26)

has a unique solution 𝜆 = (𝜆1, 𝜆2) ∈ 𝐼𝛼𝑎−,𝑥 (𝐿∞
𝑛1
(𝑃)) × 𝐼

𝛽

𝑏−,𝑦 (𝐿
∞
𝑛2
(𝑃)).

Proof. It is sufficient to prove that the operator

𝑇 = (𝑇1, 𝑇2) : 𝐿∞
𝑛1
(𝑃) × 𝐿∞

𝑛2
(𝑃) → 𝐿∞

𝑛1
(𝑃) × 𝐿∞

𝑛2
(𝑃),

defined by

𝑇 𝑖 : (𝜓1, 𝜓2) → 𝐴𝑖1(𝑥, 𝑦) (𝐼𝛼𝑎−,𝑥𝜓1) (𝑥, 𝑦) + 𝐴𝑖2(𝑥, 𝑦) (𝐼 𝛽𝑏−,𝑦𝜓
2) (𝑥, 𝑦)

+ 𝐵𝑖 (𝑥, 𝑦), 𝑖 = 1, 2,

possesses a unique fixed point. Of course, 𝑇 is well defined. Let us consider in
𝐿∞
𝑛1
(𝑃) × 𝐿∞

𝑛2
(𝑃) the Bielecki norm given by

∥𝜎1, 𝜎2∥𝑟,𝑛1×𝑛2 = ∥𝜎1∥𝑟,𝑛1 + ∥𝜎2∥𝑟,𝑛2 ,

where
∥𝜎𝑖∥𝑟,𝑛𝑖 = ess sup

(𝑥,𝑦)∈𝑃
𝑒−𝑟 (𝑎−𝑥+𝑏−𝑦) |𝜎𝑖 (𝑥, 𝑦) |, 𝑖 = 1, 2

and 𝑟 > 0 is a fixed constant. Due to the relation

𝑒−𝑟 (𝑎+𝑏) ∥𝜎1, 𝜎2∥𝐿∞
𝑛1 (𝑃)×𝐿

∞
𝑛1 (𝑃) ¬ ∥𝜎1, 𝜎2∥𝑟,𝑛1×𝑛2 ¬ ∥𝜎1, 𝜎2∥𝐿∞

𝑛1 (𝑃)×𝐿
∞
𝑛1 (𝑃) ,
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where ∥𝜎1, 𝜎2∥𝐿∞
𝑛1 (𝑃)×𝐿

∞
𝑛1 (𝑃) = ess sup

(𝑥,𝑦)∈𝑃
|𝜎1(𝑥, 𝑦) | + ess sup

(𝑥,𝑦)∈𝑃
|𝜎2(𝑥, 𝑦) |), we assert

that the space 𝐿∞
𝑛1
(𝑃) × 𝐿∞

𝑛1
(𝑃) with the norm ∥·, ·∥𝑟,𝑛1×𝑛2 is complete.

Now, we show that the operator 𝑇 is contraction. Indeed, let

𝑐𝑖 = max{∥𝐴𝑖1∥𝐿∞
𝑛1 (𝑃) , ∥𝐴𝑖2∥𝐿∞

𝑛2 (𝑃)}, 𝑖 = 1, 2.

Using the fact that

𝑎∫
𝑥

𝑒−𝑟 (𝑠−𝑥)

(𝑠 − 𝑥)1−𝛼 d𝑠 =
1
𝑟𝛼

𝑟 (𝑎−𝑥)∫
0

𝑒−𝜏𝜏𝛼−1d𝜏 ¬
1
𝑟𝛼

∞∫
0

𝑒−𝜏𝜏𝛼−1d𝜏 =
Γ(𝛼)
𝑟𝛼

and
𝑏∫

𝑦

𝑒−𝑟 (𝑡−𝑦)

(𝑡 − 𝑦)1−𝛽 d𝑡 ¬
Γ(𝛽)
𝑟 𝛽

,

we have𝑇 𝑖 (𝜓1, 𝜓2) − 𝑇 𝑖 (𝜑1, 𝜑2)

𝑟,𝑛𝑖

¬ 𝑐𝑖

(
∥𝐼𝛼𝑎−,𝑥 (𝜓1 − 𝜑1)∥𝑟,𝑛1 + ∥𝐼 𝛽

𝑏−,𝑦 (𝜓
2 − 𝜑2)∥𝑟,𝑛2

)
¬ 𝑐𝑖

©«ess sup
(𝑥,𝑦)∈𝑃

1
Γ(𝛼)

𝑎∫
𝑥

𝑒−𝑟 (𝑠−𝑥)𝑒−𝑟 (𝑎−𝑠+𝑏−𝑦)
|𝜓1(𝑠, 𝑦) − 𝜑1(𝑠, 𝑦) |

(𝑠 − 𝑥)1−𝛼 d𝑠

+ ess sup
(𝑥,𝑦)∈𝑃

1
Γ(𝛽)

𝑏∫
𝑦

𝑒−𝑟 (𝑡−𝑦)𝑒−𝑟 (𝑎−𝑥+𝑏−𝑡)
|𝜓2(𝑥, 𝑡) − 𝜑2(𝑥, 𝑡) |

(𝑡 − 𝑦)1−𝛽 d𝑡
ª®®¬

¬ 𝑐𝑖
©«∥𝜓1 − 𝜑1∥𝑟,𝑛1 ess sup

(𝑥,𝑦)∈𝑃

1
Γ(𝛼)

𝑎∫
𝑥

𝑒−𝑟 (𝑠−𝑥)

(𝑠 − 𝑥)1−𝛼 d𝑠

+∥𝜓2 − 𝜑2∥𝑟,𝑛2 ess sup
(𝑥,𝑦)∈𝑃

1
Γ(𝛽)

𝑏∫
𝑦

𝑒−𝑟 (𝑡−𝑦)

(𝑡 − 𝑦)1−𝛽 d𝑡
ª®®¬

¬ 𝑐𝑖 max{𝑟−𝛼, 𝑟−𝛽}
(
∥𝜓1 − 𝜑1∥𝑟,𝑛1 + ∥𝜓2 − 𝜑2∥𝑟,𝑛2

)
= 𝑐𝑖 max{𝑟−𝛼, 𝑟−𝛽}∥(𝜓1, 𝜓2) − (𝜑1, 𝜑2)∥𝑟,𝑛1×𝑛2

for 𝑖 = 1, 2 and any (𝜓1, 𝜓2), (𝜑1, 𝜑2) ∈ 𝐿∞
𝑛1
(𝑃) × 𝐿∞

𝑛2
(𝑃).
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Consequently,𝑇 (𝜓1, 𝜓2)−𝑇 (𝜑1, 𝜑2)

𝑟,𝑛1×𝑛2

=
𝑇1(𝜓1, 𝜓2) − 𝑇1(𝜑1, 𝜑2)


𝑟,𝑛1

+
𝑇2(𝜓1, 𝜓2) − 𝑇2(𝜑1, 𝜑2)


𝑟,𝑛2

¬max{𝑐1, 𝑐2}max{𝑟−𝛼, 𝑟−𝛽}
(𝜓1, 𝜓2) − (𝜑1, 𝜑2)


𝑟,𝑛1×𝑛2

.

Let us choose 𝑟 such that (max{𝑐1, 𝑐2}max{𝑟−𝛼, 𝑟−𝛽}) ∈ (0, 1). Then 𝑇 is a
contraction, so from the Banach contraction principle it follows that 𝑇 has a
unique fixed point. The proof is completed.
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