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Linearized asymptotic stability for nabla
Riemann-Liouville fractional difference equation

Pham The ANHo , Adam CZORNIKo and Michał NIEZABITOWSKIo

In this paper, we present a theorem about stability of nonlinear fractional difference equation
with Riemann-Liouvile difference operator. The result is a version of classical theorem on linear
approximation and to derive them, we prove the variation of constants formula for nabla Riemann-
Liouville fractional difference equations. We also present some results concerning the existence
and uniqueness of the equation under consideration.
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1. Introduction

The study of the stability of nonlinear systems through their linear approxi-
mation has a long history, formalized and structured by the well-known work of
A.M. Lyapunov [1]. A comprehensive description of the state of the art of this
field for systems described by differential equations can be found in [2], and for
discrete systems in [3]. The classical results of this theory make it possible to
infer the stability of a nonlinear system on the basis of the stability of its linear
approximation and some assumptions about the nonlinear part.
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Recently, many researchers in the field of dynamic systems use models with
derivatives or differences of fractional order, see e.g. [4–7] and the references
therein. Among other reasons, this follows from many successful applications
of fractional calculus to modeling of various problems via fractional differential
and difference equations. These applications arise in various areas such as control
theory, signal processing and the theory of viscoelasticity, see e.g. [8–14].

This paper deals with discrete time systems where different types of fractional
differences are considered in the literature (forward/backward, Caputo, Riemann-
Liouville, Grünwald-Letnikov), see [15–17]. In this paper we consider a discrete-
time fractional nonlinear system with backward Riemann-Liouville differences
which is also called nabla Riemann-Liouville system.

Stability as an important property of control systems [18] receives wide
attention, and various stability issues of fractional order systems have been studied
(see e.g. [19, 20]). The classic Lyapunov method becomes an attractive strategy,
which is very convenient and practical because it does not need explicit solution
of the differential equations. In continuous fractional-order nonlinear systems,
many results for stability analysis have been obtained. The Mittag-Leffler stability
definition is proposed to describe the dynamics of the system, and the fractional
direct Lyapunov method is introduced creatively in [21,22], which inspired many
scientists and derived a series of pioneering work. Based on methodology of the
frequency-distributed model, a Lyapunov approach has been presented to analyze
the stability of fractional-order systems [23].

In terms of discrete fractional-order nonlinear dynamic systems, related work
on stability analysis is scattered along the literature and faces many challenges.
We cannot directly apply methods known from the theory of fractional differ-
ential equations. Discrete fractional direct Lyapunov method is consider in [24].
Besides, the authors extend an inequality from the continuous case [25] and give
a sufficient condition for stability of Caputo delta fractional difference equations.
The stability criterion under the definition of Riemann-Liouville difference is
given in [26], yet, it should be mentioned that Refs. [24, 26] use noncausal for-
ward difference. The definition of discrete Mittag-Leffler stability given in [27]
also adopts the forward difference and limits the initial instant to 0, which makes
the conclusion less general. To compensate for the difficulty in obtaining fractional
difference of Lyapunov functions, in [28] some useful inequalities under different
definitions, which bring great convenience to the use of discrete fractional direct
Lyapunov method are proposed. Nevertheless, most current studies of stability
analysis concentrate on convergence in the steady state, while the convergence
rule is rarely investigated. Still an open problem is to how the dynamics of the
system should be characterized. Thus far, for discrete fractional-order systems,
systematic and complete framework for stability analysis has not been conducted.
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The Schauder fixed point theorem in the asymptotic stability of nonlinear frac-
tional difference equations is used [29]. The stability regions for linear fractional
difference systems using Laplace transform is investigated in [30]. The authors
of [31] established comparison theorems to extend the corresponding asymptotic
result in [32]. The linearization to decide the stability of fractional difference
systems is presented in [33].

In [34], a new definition of discrete Mittag-Leffler stability is proposed, pro-
ducing a novel stability description of discrete fractional-order systems. Besides,
using Lyapunov direct method, some useful criteria for analyzing stability of
nabla discrete fractional-order systems are derived. The presented methods are
applicable to both Caputo and Riemann-Liouville definitions, and a useful in-
equality is given to further improve the practicality of the discrete fractional direct
Lyapunov method.

A new way to examine the asymptotic stability of nabla discrete fractional
order systems is proposed in [35]. In this paper, several useful inequalities on
fractional difference of Lyapunov functions have been investigated. Note that,
all the inequalities are applicable for Riemann-Liouville, Caputo and Grünwald-
Letnikov definitions. Applying these results, the classical Lyapunov theory can
be used to analyze the stability of discrete fractional nonlinear systems without
and with delays. The stability analysis for the discrete-time case has been also
investigated in [36–38]. The explicit stability conditions for a linear fractional
difference system with the Caputo-type operator are presented in [39, 40]. Ad-
ditionally, in [39], the discussion concerning stability behavior of systems with
the Riemann-Liouville-type difference operator is given. The main goal of the
paper [41] is to formulate the stability conditions for the nonlinear systems with
the difference fractional operators. The linearization of the considered nonlinear
systems is used to formulate the conditions that guarantee the local asymptot-
ical stability of nonlinear difference systems. Moreover, the fact that fractional
derivatives can be approximate by fractional h-differences of corresponding types
is used to show the relations between the stability of nonlinear fractional order
differential systems and the stability of linear discrete-time systems with the frac-
tional h-difference operators. In that paper the delta type fractional order systems
are investigated. The main result of [41] contains a relatively strong assumption
on decay of the utilized discrete Mittag-Leffler function (hence does not provide a
direct fractional analogue to the classical linearization theorems known from the
theory of first-order differential or difference systems). Therefore, the main goal
of paper [42] is to prove the stability part of the linearization theorem for frac-
tional difference equations, i.e., to provide a discrete analogue to [43]. The authors
consider a system with the backward Caputo fractional difference operator due to
its better numerical stability properties compared to the forward discretization.
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The existence and uniqueness of solutions is the basis for studying the stability
problem, but it is sometimes neglected. Differential and integral inequalities are
important tools for exploring existence, uniqueness and stability of solutions of
differential and difference equations (see, [44, 45] and the references therein).
In [46], the local uniqueness of solutions of the fractional integro-differential
equations was established with the help of Schauder’s fixed-point theorem. In [47],
local uniqueness and global uniqueness of solution of the initial value problem
was given by use of the Gronwall inequality and the Bihari inequality. The works
on uniqueness of nonlinear fractional difference systems can be divided mainly
into two groups. The contractive mapping approach is used in first group, for
instance [48–51]. The fractional Gronwall inequalities are used in second group,
for example [52,53]. However, most nonlinear functions in the existing literature
on fractional difference systems are Lipschitz continuous.

With respect to paper [42], we deal with Riemann-Liouville equation instead
of Caputo equation. Main result of this paper is the theorem about stability on
the linear approximation. To obtain this result we establish a version of variation
of constants formula for nonlinear nabla Riemann-Liouville fractional difference
equations which is interesting by itself. In fact, this work can be considered
as a discrete version of [54]. It should be emphasized, however, that certain
difficulties arise for discrete systems compared to continuous systems. First,
for discrete systems, expressing the solution through a discrete Mittag-Leffler
function is possible only in a certain sub-area of the area in which the solution
exists (see point 2 of Theorem 1 below). Second, the asymptotic properties of
the discrete Mittag-Leffler function are much less studied than its continuous
counterpart (see, [55, Eq. (4.1)]). The relations between Mittag-Leffler function
and the solution of linear approximation equation as well as asymptotic growth
rate are one of the main properties used in [54]. Despite these difficulties, we
managed to show that if the eigenvalues of the matrix of the linear approximation
equation are in the stability set of the linear equation and the nonlinear part
satisfies a certain minor condition in the sense of the Lipschitz condition, then
the null solution of the nonlinear equation is asymptotically locally stable.

The following notations will be used throughout this paper: by R we denote
the set of real numbers, by Z the set of integers, by N := Z0 the set of natural
numbers {0, 1, 2, . . . } including 0, and by Z¬0 := {0,−1,−2, . . . } the set of non-
positive integers. For 𝑎 ∈ R we denote by N𝑎 := 𝑎 + N the set {𝑎, 𝑎 + 1, . . . }.
Moreover, we will use the following symbols:

∥𝑥∥ := max
1¬𝑖¬𝑑

|𝑥𝑖 | for (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 ,

𝐵R𝑑 (0,𝑟) :=
{
𝑥 ∈ R𝑑 : ∥𝑥∥ ¬ 𝑟

}
,
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𝑆𝛼 :=
{
𝑧 ∈ C : |Arg(𝑧) | > 𝛼𝜋

2
or |𝑧 | >

(
2 cos

(
Arg(𝑧)

𝛼

))𝛼}
.

For a square matrix 𝐴 ∈ R𝑑×𝑑 we denote by𝜎(𝐴) the spectrum of 𝐴 i.e. the set
of all eigenvalues of 𝐴. By 𝐼𝑑 ∈ R𝑑×𝑑 we will denote the identity matrix. The set

of all sequences 𝑥 : N1 → R𝑑 will be denoted by 𝑙 (N1), and such that
∞∑︁
𝑘=1

∥𝑥(𝑘)∥𝑝

converges will be denoted by 𝑙 𝑝 (N1). By 𝑙∞(N1) we will denote the Banach space
of all bounded sequences 𝑥 : N1 → R𝑑 with the norm ∥𝑥∥∞ = sup𝑛∈N1

∥𝑥(𝑛)∥ .
For a matrix 𝐶 =

[
𝑐𝑖 𝑗

]
the symbol |𝐶 | denotes the matrix given by |𝐶 | =

( |𝑐𝑖 𝑗 |).
We recall some notions concerning fractional summation and fractional dif-

ferences. By Γ : R \ Z¬0 → R we denote the Euler- Gamma function defined by

Γ(𝛼) := lim
𝑛→∞

𝑛𝛼𝑛!
𝛼(𝛼 + 1) · · · (𝛼 + 𝑛)

for 𝛼 ∈ R \Z¬0, which is well-defined, since the limit exists, see e.g. [56, p. 156].
For 𝑠 ∈ R with 𝑠 + 1, 𝑠 + 1 + 𝛼 ∉ Z¬0 the raising factorial power (𝑠) (𝛼) is

defined by

(𝑠) (𝛼) = Γ(𝑠 + 𝛼)
Γ(𝑠)

for 𝑠 ∈ (R \ Z¬−1) ∩ (R \ (−𝛼 + Z¬−1)). For 𝑟 ∈ R and 𝑚 ∈ Z the binomial
coefficient

( 𝑟
𝑚

)
is defined as follows (see [57, Section 5.1, formula (5.1)])

(
𝑟

𝑚

)
=


𝑟 (𝑟 − 1) · · · (𝑟 − 𝑚 + 1)

𝑚!
if 𝑚 ∈ Z1,

1 if 𝑚 = 0,
0 if 𝑚 ∈ Z¬−1 .

For 𝜈 ∈ R0 and a function 𝑥 : N1 → R, the 𝜈-th nabla fractional sum
∇−𝜈𝑥 : N1 → R𝑑 of order 𝜈 of 𝑥 is defined as

(∇−𝜈𝑥) (𝑛) =
𝑛∑︁

𝑘=1
(−1)𝑛−𝑘

(
−𝜈

𝑛 − 𝑘

)
𝑥(𝑘) (1)

for 𝑛 ∈ N1 (see [16]). Let 𝛼 ∈ (0, 1) and 𝑥 : N1 → R𝑑 . The nabla Riemann-
Liouville difference R−L∇𝛼𝑥 : N2 → R of 𝑥 of order 𝛼 is defined as

R−L∇𝛼 = ∇ ◦ ∇−(1−𝛼) ,

i.e.
(R−L∇𝛼𝑥) (𝑛) = (∇∇−(1−𝛼)𝑥) (𝑛) (2)
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for 𝑛 ∈ N2, where ∇ is a backward difference operator, i.e.

∇𝑥(𝑛) = 𝑥(𝑛) − 𝑥(𝑛 − 1),
see [16]. It can be shown [58] that

(R−L∇𝛼𝑥) (𝑛) =
𝑛∑︁

𝑘=1
(−1)𝑛−𝑘

(
𝛼

𝑛 − 𝑘

)
𝑥(𝑘), 𝑛 ∈ N2. (3)

The following definition can be found e.g. in [59] (see also [55]).

Definition 1. For a matrix 𝐴 ∈ C𝑑×𝑑 such that 𝜎(𝐴) ⊂ {𝑧 ∈ C : |𝑧 | < 1} and
𝛼, 𝛽 > 0, the nabla discrete-time Mittag-Leffler type function is defined by

𝐸(𝛼,𝛽) (𝐴, 𝑛) =
∞∑︁
𝑘=0

𝐴𝑘 𝑛𝑘𝛼+𝛽−1

Γ(𝛼𝑘 + 𝛽) =

∞∑︁
𝑘=0

𝐴𝑘

(
𝛼𝑘 + 𝛽 − 2 + 𝑛

𝛼𝑘 + 𝛽 − 1

)
, 𝑛 ∈ N1 .

The condition 𝜎(𝐴) ⊂ {𝑧 ∈ C : |𝑧 | < 1} ensures the convergence of the series
in definition of 𝐸(𝛼,𝛽) (𝐴, 𝑛) (for more detail, see [55, Eq. (4.1)]).

2. Preliminaries

In this paper, we consider linear inhomogeneous fractional difference systems
of the form

(R−L∇𝛼𝑥) (𝑛) = 𝐴𝑥(𝑛) + 𝑓 (𝑥(𝑛)), 𝑛 ∈ N2 (4)

where 𝑥 : N1 → R𝑑 , R−L∇𝛼 is Riemann-Liouville difference operator of a real
order 𝛼 ∈ (0, 1), 𝑓 : R𝑑 → R𝑑 is a continuous function and 𝐴 ∈ R𝑑×𝑑 .

We denote by 𝜑(𝑛, 𝑥1) the solution of (4) with initial condition 𝜑(1, 𝑥1) = 𝑥1.
Observe that the problem of existence of the solution is not a trivial problem
since 𝑥(𝑛) is on the left and right hand side of (4). In case of 𝑓 ≡ 0, the solution
of (4) with initial condition 𝑥1 ∈ R𝑑 will be denoted by 𝜑(·, 𝑥1) : N1 → R𝑑 . We
will use the following standard definition of stability of trivial solution of (4).

Definition 2. Suppose that 𝑓 (0) = 0. The trivial solution of (4) is called:
1) stable if for any 𝜖 > 0 there exists 𝛿 = 𝛿(𝜖) > 0 such that for every ∥𝑥0∥ < 𝛿

we have
∥𝜑(𝑛, 𝑥0)∥ ¬ 𝜖 for𝑛  0;

2) unstable if it is not stable;
3) attractive if there exists �̂� > 0 such that lim

𝑛→∞
𝜑(𝑛, 𝑥0) = 0 whenever

∥𝑥0∥ < �̂�;
4) asymptotically stable if it is both stable and attractive.
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Using the representation (3) we may rewrite (4) as a Volterra convolution
equation as it is stated in the following lemma.

Lemma 1. The sequence 𝑥 : N1 → R𝑑 is the solution of (4) with initial condition
𝑥1 if and only if 𝑥(1) = 𝑥1 and

𝑥(𝑛) − 𝐴𝑥(𝑛) − 𝑓 (𝑥(𝑛)) =
𝑛−1∑︁
𝑘=1

(−1)𝑛−1−𝑘
(

𝛼

𝑛 − 𝑘

)
𝑥(𝑘), 𝑛 ∈ N2 . (5)

Using this representation of solution of (4) we will prove the following result
providing a necessary and sufficient condition for the existence and uniqueness
of global solution of (4) for all initial conditions 𝑥1 ∈ R𝑑 . Later, in Theorem 3,
we will show another condition guaranteeing the existence of a global solution to
equation (4) but only in some neighborhood of 0.

Lemma 2. For each 𝑥1 ∈ R𝑑 there exists a unique global solution of (4) if and
only if the function 𝑔 : R𝑑 → R𝑑 given by

𝑔(𝑥) = 𝑥 − 𝐴𝑥 − 𝑓 (𝑥)

is a bĳection.

Proof. Suppose that 𝑔 is a bĳection and denote by 𝑔−1 : R𝑑 → R𝑑 the inverse
function. Then for each 𝑥1 ∈ R𝑑 , we may define a sequence 𝑥(𝑛), 𝑛 ∈ N1 by
𝑥(1) = 𝑥1 and

𝑥(𝑛) = 𝑔−1

(
𝑛−1∑︁
𝑘=1

(−1)𝑛−1−𝑘
(

𝛼

𝑛 − 𝑘

)
𝑥(𝑘)

)
, 𝑛 ∈ N2 .

From (5) it follows, that 𝑥(𝑛), 𝑛 ∈ N1 is the unique and global solution of (4)
corresponding to initial condition 𝑥1. Suppose now that for each 𝑥1 ∈ R𝑑 there
exists a unique global solution of (4) and 𝑔 is not a surjection i.e. Im𝑔 ≠ R𝑑 .

Consider any 𝑥1 ∈ R𝑑 such that 𝛼𝑥1 ∉ Im𝑔, then by (5) for 𝑛 = 2 we have

𝑔(𝑥(2)) = 𝛼𝑥1 .

This is a contradiction with 𝛼𝑥1 ∉ Im𝑔, therefore Im𝑔 = R𝑑 . Suppose now that 𝑔
is not a injection i.e. there exists a 𝛼𝑥1 ∈ R𝑑 and 𝑥2, �̃�2 ∈ R𝑑 , 𝑥2 ≠ �̃�2 such that

𝑔(𝑥2) = 𝑔(�̃�2) = 𝛼𝑥1 .

The last inequality shows, in the context of (5) for 𝑛 = 2, that the solution with
initial conditions 𝑥(1) = 𝛼𝑥1 is not uniquely defined for 𝑛 = 2. This contradiction
completes the proof. 2
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The next theorem collects some known facts about linear equation

(R−L∇𝛼𝑥) (𝑛) = 𝐴𝑥(𝑛), 0 < 𝛼 < 1, 𝑛 ∈ N2 . (6)

Theorem 1. Consider (4) with 𝑓 ≡ 0. The following facts hold
1. For each initial condition 𝑥1 ∈ R𝑑 there exists a unique and global solution

𝜑(·, 𝑥1) : N1 → R𝑑 if and only if 𝐼 − 𝐴 is invertible;
2. If 𝜎(𝐴) ⊂ {𝑧 ∈ C : |𝑧 | < 1} , then

𝜑(𝑛, 𝑥1) = (𝐼𝑑 − 𝐴) 𝐸(𝛼,𝛼) (𝐴, 𝑛)𝑥1

for all 𝑥1 ∈ R𝑑

3. If 𝜎(𝐴) ⊂ 𝑆𝛼, then (6) is asymptotically stable and 𝜑(·, 𝑥1) ∈ 𝑙1(N1) for
all 𝑥1 ∈ R𝑑;

4. If 𝜎
(
|𝐼𝑑 − 𝐴|−1

)
⊂ {𝑧 ∈ C : |𝑧 | < 1} , then for each 𝑥1 ∈ R𝑑 there exists a

𝐶 > 0 such that
∥𝜑(𝑛, 𝑥1)∥ ¬

𝐶

𝑛1+𝛼

for all 𝑛 ∈ N1.

Proof. Point 1 follows form Lemma 2. Points 2, 3 and 4 are proved in [59],
Theorem 18 and Theorem 6. Notice, however that in [59] the solution of (6) is
defined on N0 with the condition that 𝑥1 = (𝐼𝑑 − 𝐴)−1𝑥0. 2

We end this section with a theorem containing the so-called variation of
constants formula. A particular case of this formula has been proved in [60,
Theorem 1].

Theorem 2 (Variation of constants formula). Suppose that 𝐼𝑑 − 𝐴 is invertible
and function 𝑔 : R𝑑 → R𝑑 given by 𝑔(𝑥) = 𝑥 − 𝐴𝑥 − 𝑓 (𝑥) is a bĳection with
the inverse function 𝑔−1 : R𝑑 → R𝑑 . Then the unique global solutions 𝜑(·, 𝑥1),
𝜑(·, 𝑥′1), 𝑥1, 𝑥

′
1 ∈ R𝑑 of the initial value problem for (4) and (6), respectively, are

related as follows

𝜑(𝑛, 𝑥1) = 𝜑(𝑛, 𝑥1) + (𝐼𝑑 − 𝐴)−1
𝑛−1∑︁
𝑘=1

𝜑 (𝑘, 𝑓 (𝜑(𝑛 − 𝑘 + 1, 𝑥1))) (7)

for all 𝑛 ∈ N2. In particular 𝜑 can be recursively expressed by 𝜑 as follows

𝜑(𝑛, 𝑥1) = 𝑔−1

(
(𝐼𝑑 − 𝐴) 𝜑(𝑛, 𝑥1) +

𝑛−1∑︁
𝑘=2

𝜑 (𝑘, 𝑓 (𝜑(𝑛 − 𝑘 + 1, 𝑥1)))
)
, (8)

for all 𝑛 ∈ N2.
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Proof. We will show (7) by mathematical induction. Using (5) for 𝑛 = 2 we have

𝜑(2, 𝑥1) − 𝐴𝜑(2, 𝑥1) − 𝑓 (𝜑(2, 𝑥1)) = 𝛼𝜑(1, 𝑥1)

and therefore

𝜑(2, 𝑥1) = (𝐼𝑑 − 𝐴)−1 𝛼𝑥1 + (𝐼𝑑 − 𝐴)−1 𝑓 (𝜑(2, 𝑥1)) .

Since by (5) for 𝑛 = 2 and 𝑓 ≡ 0 we know that 𝜑(2, 𝑥1) = (𝐼𝑑 − 𝐴)−1 𝛼𝑥1, then

𝜑(2, 𝑥1) = 𝜑(2, 𝑥1) + (𝐼𝑑 − 𝐴)−1 𝑓 (𝜑(2, 𝑥1))

and therefore (7) is true for 𝑛 = 2. Suppose now that (7) is true for all 𝑘 = 2, . . . , 𝑛
and certain 𝑛 ∈ N2. We will show that it is true also for 𝑛 + 1. According to (5)
we have

𝜑(𝑛 + 1, 𝑥1) − 𝐴𝜑(𝑛 + 1, 𝑥1) − 𝑓 (𝜑(𝑛 + 1, 𝑥1)) =
𝑛∑︁

𝑘=1
(−1)𝑛−𝑘

(
𝛼

𝑛+1−𝑘

)
𝜑(𝑘, 𝑥1)

and therefore

𝜑(𝑛 + 1, 𝑥1) = (𝐼𝑑 − 𝐴)−1
𝑛∑︁

𝑘=1
(−1)𝑛−𝑘

(
𝛼

𝑛+1−𝑘

)
𝜑(𝑘, 𝑥1)

+ (𝐼𝑑 − 𝐴)−1 𝑓
(
𝜑(𝑛 + 1, 𝑥1)

)
. (9)

We have
𝜑(1, 𝑥1) = 𝑥1

and by the induction hypothesis

𝜑(𝑘, 𝑥1) = 𝜑(𝑘, 𝑥1) + (𝐼𝑑 − 𝐴)−1
𝑘−1∑︁
𝑗=1

𝜑
(
𝑗 , 𝑓

(
𝜑(𝑘 − 𝑗 + 1, 𝑥1)

) )
for 𝑘 = 2, . . . , 𝑛. Using the last two equalities in (9) we get

𝜑(𝑛 + 1, 𝑥1) = (𝐼𝑑 − 𝐴)−1
𝑛∑︁

𝑘=2
(−1)𝑛−𝑘

(
𝛼

𝑛+1−𝑘

) (
𝜑(𝑘, 𝑥1)

+ (𝐼𝑑 − 𝐴)−1
𝑘−1∑︁
𝑗=1

𝜑 ( 𝑗 , 𝑓 (𝜑(𝑘 − 𝑗 + 1, 𝑥1)))
)

+ (𝐼𝑑 − 𝐴)−1 (−1)𝑛−1
(
𝛼

𝑛

)
𝑥1 + (𝐼𝑑 − 𝐴)−1 𝑓 (𝜑(𝑛 + 1, 𝑥1))
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= (𝐼𝑑 − 𝐴)−1
𝑛∑︁

𝑘=2
(−1)𝑛−𝑘

(
𝛼

𝑛+1−𝑘

)
𝜑(𝑘, 𝑥1)

+ (𝐼𝑑 − 𝐴)−1
𝑛∑︁

𝑘=2
(−1)𝑛−𝑘

(
𝛼

𝑛+1−𝑘

)
(𝐼𝑑 − 𝐴)−1

𝑘−1∑︁
𝑗=1

𝜑 ( 𝑗 , 𝑓 (𝜑(𝑘 − 𝑗 + 1, 𝑥1)))

+ (𝐼𝑑 − 𝐴)−1 (−1)𝑛−1
(
𝛼

𝑛

)
𝜑(1, 𝑥1) + (𝐼𝑑 − 𝐴)−1 𝑓 (𝜑(𝑛 + 1, 𝑥1))

= (𝐼𝑑 − 𝐴)−1
𝑛∑︁

𝑘=1
(−1)𝑛−𝑘

(
𝛼

𝑛+1−𝑘

)
𝜑(𝑘, 𝑥1)

+ (𝐼𝑑 − 𝐴)−1
𝑛∑︁

𝑘=2

𝑘−1∑︁
𝑗=1

(−1)𝑛−𝑘
(

𝛼

𝑛+1−𝑘

)
(𝐼𝑑 − 𝐴)−1 𝜑 ( 𝑗 , 𝑓 (𝜑(𝑘 − 𝑗 + 1, 𝑥1)))

+ (𝐼𝑑 − 𝐴)−1 𝑓 (𝜑(𝑛 + 1, 𝑥1)) .

From (5) with 𝑓 ≡ 0 we know that

𝜑(𝑛 + 1, 𝑥1) = (𝐼𝑑 − 𝐴)−1
𝑛∑︁

𝑘=1
(−1)𝑛−𝑘

(
𝛼

𝑛+1−𝑘

)
𝜑(𝑘, 𝑥1).

Therefore to complete the induction proof it is enough to show that

(𝐼𝑑 − 𝐴)−1
𝑛∑︁

𝑘=2

𝑘−1∑︁
𝑗=1

(−1)𝑛−𝑘
(

𝛼

𝑛+1−𝑘

)
𝜑 ( 𝑗 , 𝑓 (𝜑(𝑘 − 𝑗 + 1, 𝑥1)))

+ 𝑓 (𝜑(𝑛 + 1, 𝑥1)) =
𝑛∑︁

𝑘=1
𝜑 (𝑘, 𝑓 (𝜑(𝑛 − 𝑘 + 2, 𝑥1))) ,

or equivalently

(𝐼𝑑 − 𝐴)−1
𝑛∑︁

𝑘=2

𝑘−1∑︁
𝑗=1

(−1)𝑛−𝑘
(

𝛼

𝑛+1−𝑘

)
𝜑 ( 𝑗 , 𝑓 (𝜑(𝑘 − 𝑗 + 1, 𝑥1)))

=

𝑛∑︁
𝑘=2

𝜑 (𝑘, 𝑓 (𝜑(𝑛 − 𝑘 + 2, 𝑥1))) .
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Expressing 𝜑 (·, 𝑓 (𝜑(𝑛 − 𝑘 + 2, 𝑥1))) according to (5) with 𝑓 ≡ 0 we get
𝑛∑︁

𝑘=2
𝜑 (𝑘, 𝑓 (𝜑(𝑛 − 𝑘 + 2, 𝑥1)))

= (𝐼𝑑 − 𝐴)−1
𝑛∑︁

𝑘=2

𝑘−1∑︁
𝑗=1

(−1)𝑘−1− 𝑗

(
𝛼

𝑘 − 𝑗

)
𝜑 ( 𝑗 , 𝑓 (𝜑(𝑛 − 𝑘 + 2, 𝑥1))) .

Let us fix 𝑛 ∈ N2 and suppose that for any 𝑘 ∈ {2, . . . , 𝑛} and 𝑗 ∈ {1, . . . , 𝑘 − 1}
we define a real number 𝑎(𝑘, 𝑗). It is clear that

𝑛∑︁
𝑘=2

𝑘−1∑︁
𝑗=1

𝑎(𝑘, 𝑗) =
𝑛∑︁

𝑘=2

𝑘−1∑︁
𝑗=1

𝑎(𝑛 + 1 − 𝑘 + 𝑗 , 𝑗).

Applying the last identity with

𝑎(𝑘, 𝑗) = (−1)𝑘−1− 𝑗

(
𝛼

𝑘 − 𝑗

)
𝜑 ( 𝑗 , 𝑓 (𝜑(𝑛 − 𝑘 + 2, 𝑥1)))

we get
𝑛∑︁

𝑘=2

𝑘−1∑︁
𝑗=1

(−1)𝑘−1− 𝑗

(
𝛼

𝑘 − 𝑗

)
𝜑 ( 𝑗 , 𝑓 (𝜑(𝑛 − 𝑘 + 2, 𝑥1)))

=

𝑛∑︁
𝑘=2

𝑘−1∑︁
𝑗=1

(−1)𝑛−𝑘
(

𝛼

𝑛+1−𝑘

)
𝜑 ( 𝑗 , 𝑓 (𝜑(𝑘 − 𝑗 + 1, 𝑥1))) .

This completes the proof of (7). And, (8) follows immediately from (7). 2

3. Main result

From now, we assume that 𝑓 : R𝑑 → R𝑑 is a locally Lipschitz continuous
function satisfying that

𝑓 (0) = 0, lim
𝑟→0

𝑙 𝑓 (𝑟) = 0, (10)

where 𝑙 𝑓 (𝑟) is denoted to be the Lipschitz constant

𝑙 𝑓 (𝑟) := sup
𝑥,𝑦∈𝐵R𝑑 (0;𝑟);𝑥≠𝑦

∥ 𝑓 (𝑥) − 𝑓 (𝑦)∥
∥𝑥 − 𝑦∥ (11)

of 𝑓 on the ball 𝐵R𝑑 (0,𝑟) .
The main result of this paper is contained in the following theorem.
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Theorem 3. Suppose that 𝑓 : R𝑑 → R𝑑 satisfies conditions (10) and that
𝜎(𝐴) ⊂ 𝑆𝛼. There exists 𝜀 > 0 such that for all 𝑥1 ∈ R𝑑 , ∥𝑥1∥ < 𝜀 there exists
the unique global solutions 𝜑(·, 𝑥1), of the initial value problem for (4) and the
trivial solution of (4) is asymptotically stable.

Before presenting the proof of this theorem we will introduce for all 𝑥 ∈ R𝑑

an operator 𝑇𝑥 : 𝑙 (N1 → 𝑙 (N1). Assume that 𝐼𝑑 − 𝐴 is invertible. Let us fix
𝜑 ∈ 𝑙 (N1) and define

(𝑇𝑥𝜑) (𝑛) = 𝜑(𝑛, 𝑥) + (𝐼𝑑 − 𝐴)−1
𝑛−1∑︁
𝑘=1

𝜑 (𝑘, 𝑓 (𝜑(𝑛 − 𝑘 + 1))) , 𝑛 ∈ N1,

where 𝜑(·, 𝑥) : N1 → R𝑑 is the unique global solution of initial value problem(
R−L∇𝛼𝑥

)
(𝑛) = 𝐴𝑥(𝑛), 𝑛 ∈ N2, (12)

𝑥(1) = 𝑥. In the definition of 𝑇𝑥 we use the convention that Σ0
𝑘=1 := 0. The

operator 𝑇𝑥 is called Lyapunov-Perron operator, and its role is stated in the
following theorem, which follows from definition of 𝑇𝑥 and the variation of
constants formula (7).

Proposition 1. Let 𝑥1 ∈ R𝑑 be arbitrary and 𝜑 ∈ 𝑙 (N1,R𝑑) is such that 𝜑(1) = 𝑥1.
Then, the following statements are equivalent:

1. 𝜑 is a solution of the initial value problem for (4) with 𝜑(1) = 𝑥1.

2. 𝜑 is a fixed point of the operator 𝑇𝑥1 .

Next we show some estimates on 𝑇𝑥 in particular we will show that 𝑇𝑥 :
𝑙∞(N1) → 𝑙∞(N1).

Proposition 2. Consider system (4) and suppose that 𝜎(𝐴) ⊂ 𝑆𝛼 . Then for each
𝜑 ∈ 𝑙∞(N1) and 𝑥 ∈ R𝑑 we have 𝑇𝑥𝜑 ∈ 𝑙∞(N1), moreover there exists a constant
𝐶 (𝛼, 𝐴) > 0 such that for each 𝑥1, 𝑥2 ∈ R𝑑 and 𝜑1, 𝜑2 ∈ 𝑙∞(N1) the following
inequality holds𝑇𝑥1𝜑1 − 𝑇𝑥2𝜑2


∞ ¬ 𝐶 (𝛼, 𝐴)

(
∥𝑥1 − 𝑥2∥

+ 𝑙 𝑓 (max {∥𝜑1∥∞ , ∥𝜑2∥∞}) ∥𝜑1 − 𝜑2∥∞
)
. (13)

In particular

∥𝑇𝑥𝜑1 − 𝑇𝑥𝜑2∥∞ ¬ 𝐶 (𝛼, 𝐴)𝑙 𝑓 (max {∥𝜑1∥∞ , ∥𝜑2∥∞}) ∥𝜑1 − 𝜑2∥∞ (14)

for all 𝑥 ∈ R𝑑 .
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Proof. Let us fix 𝑥1, 𝑥2 ∈ R𝑑 and 𝜑1, 𝜑2 ∈ 𝑙∞(N1). We have(𝑇𝑥1𝜑1
)
(𝑛) −

(
𝑇𝑥2𝜑2

)
(𝑛)

 ¬ ∥𝜑 (𝑛, 𝑥1)R−L − 𝜑 (𝑛, 𝑥2)∥

+
(𝐼𝑑 − 𝐴)−1 𝑛−1∑︁

𝑘=1
𝜑
(
𝑘, 𝑓 (𝜑1(𝑛 − 𝑘 + 1))

)
−

𝑛−1∑︁
𝑘=1

𝜑
(
𝑘, 𝑓 (𝜑2(𝑛 − 𝑘 + 1))

)
= ∥𝜑 (𝑛, 𝑥1 − 𝑥2)∥

+
(𝐼𝑑 − 𝐴)−1 𝑛−1∑︁

𝑘=1
𝜑 (𝑘, 𝑓 (𝜑1(𝑛 − 𝑘 + 1)) − 𝑓 (𝜑2(𝑛 − 𝑘 + 1)))


¬ ∥𝜑 (𝑛, 𝑥1 − 𝑥2)∥

+
(𝐼𝑑 − 𝐴)−1 𝑛−1∑︁

𝑘=1
∥𝜑 (𝑘, 𝑓 (𝜑1(𝑛 − 𝑘 + 1)) − 𝑓 (𝜑2(𝑛 − 𝑘 + 1)))∥ . (15)

Consider any basis {𝑒1, . . . , 𝑒𝑑} of R𝑑 . Then for any 𝑥1 ∈ R𝑑 , 𝑥1 =

𝑑∑︁
𝑖=1

𝑎𝑖𝑒𝑖,

∥𝑥1∥ = 1, we have
max

𝑖=1,...,𝑑
|𝑎𝑖 | ¬ 1

and therefore

∥𝜑 (𝑛, 𝑥1)∥ =
 𝑑∑︁
𝑖=1

𝑎𝑖𝜑 (𝑛, 𝑒𝑖)
 ¬ 𝑑∑︁

𝑖=1
|𝑎𝑖 | ∥𝜑 (𝑛, 𝑒𝑖)∥ ¬

𝑑∑︁
𝑖=1

∥𝜑 (𝑛, 𝑒𝑖)∥ .

Applying the last inequality to 𝑥1 = 𝑥1/∥𝑥1∥ , where 𝑥1 ∈ R𝑑 , 𝑥1 ≠ 0, we get

∥𝜑 (𝑛, 𝑥1)∥ ¬
𝑑∑︁
𝑖=1

∥𝜑 (𝑛, 𝑒𝑖)∥ ∥𝑥1∥ . (16)

Since 𝜎(𝐴) ⊂ 𝑆𝛼, then by point 3 of Theorem 1 the sequences 𝜑 (·, 𝑒𝑖),
𝑖 = 1, . . . , 𝑑 are in 𝑙1(N1,R𝑑) and therefore from (16) we get

∥𝜑 (𝑛, 𝑥1)∥ ¬ 𝐶1(𝛼, 𝐴) ∥𝑥1∥ (17)

for any 𝑛 ∈ N1 and any 𝑥1 ∈ R𝑑 , where

𝐶1(𝛼, 𝐴) =
𝑑∑︁
𝑖=1

sup
𝑛∈N1

∥𝜑 (𝑛, 𝑒𝑖)∥ .

From the point 3 of Theorem 1 we know that 𝜑 (·, 𝑒𝑖) ∈ 𝑙1(N1,R𝑑). Using the
same arguments as above we can show that there is a constant 𝐶2 (𝛼, 𝐴) > 0 such
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that
𝑛∑︁

𝑘=1
∥𝜑 (𝑘, 𝑥1)∥ ¬ 𝐶2(𝛼, 𝐴) ∥𝑥1∥ (18)

for all 𝑥1 ∈ R𝑑 and 𝑛 ∈ N1. Using (17) and (18) in (15) we obtain (
𝑇𝑥1𝜑1

)
(𝑛) −

(
𝑇𝑥2𝜑2

)
(𝑛)

 ¬ 𝐶1(𝛼, 𝐴) ∥𝑥1 − 𝑥2∥

+
(𝐼𝑑 − 𝐴)−1𝐶2(𝛼, 𝐴) sup

𝑛∈N1

∥ 𝑓 (𝜑1(𝑛)) − 𝑓 (𝜑2(𝑛))∥ .

The definition (11) of 𝑙 𝑓 (𝑟) gives

sup
𝑛∈N1

(𝑇𝑥1𝜑1
)
(𝑛) −

(
𝑇𝑥2𝜑2

)
(𝑛)

 ¬ 𝐶1(𝛼, 𝐴) ∥𝑥1 − 𝑥2∥

+
(𝐼𝑑 − 𝐴)−1 𝑙 𝑓 (max {∥𝜑1∥∞ , ∥𝜑2∥∞}) ∥𝜑1 − 𝜑2∥∞𝐶2(𝛼, 𝐴).

From the last inequality with 𝑥2 = 0 and 𝜑2 = 0 we obtain that 𝑇𝑥1𝜑1 ∈ 𝑙∞(N1).
The last inequality implies also (13) and (14) with

𝐶 (𝛼, 𝐴) = max {𝐶1(𝛼, 𝐴), 𝐶2(𝛼, 𝐴)} .

Now we are in position to prove Theorem 3.
Proof. [Proof of Theorem 3] At first observe that 𝜎(𝐴) ⊂ 𝑆𝛼 implies that 𝐼𝑑 − 𝐴

is invertible and therefore the initial value problem for equation has a unique
global solution for all 𝑥1 ∈ R𝑑 . Let us fix 𝑟 > 0 such that 𝐶 (𝛼, 𝐴)𝑙 𝑓 (𝑟) < 1

2 ,
define

𝜀 =
𝑟

2𝐶 (𝛼, 𝐴)

and consider any 𝑥 ∈ R𝑑 with ∥𝑥∥ ¬ 𝜀 and 𝜑 ∈ 𝑙∞(N1) with ∥𝜑∥∞ ¬ 𝑟.According
to (13) we get

∥𝑇𝑥𝜑∥∞ ¬ 𝐶 (𝛼, 𝐴) ∥𝑥∥ + 𝐶 (𝛼, 𝐴)𝑙 𝑓 (𝑟) ∥𝜑∥∞ ¬ 𝐶 (𝛼, 𝐴) 𝑟

2𝐶 (𝛼, 𝐴) +
𝑟

2
= 𝑟.

The last inequality proves that

𝑇𝑥 (𝐵∞(𝑟)) ⊂ 𝐵∞(𝑟),

where
𝐵∞(𝑟) := {𝜑 ∈ 𝑙∞(N1) : ∥𝜑∥∞ ¬ 𝑟} .

We get that for all 𝑥 ∈ 𝐵R𝑑 (0,𝜀) and 𝜑1, 𝜑2 ∈ 𝐵∞(𝑟) we have

∥𝑇𝑥𝑥1 − 𝑇𝑥𝑥2∥∞ ¬ 𝐶 (𝛼, 𝐴)𝑙 𝑓 (𝑟) ∥𝜑1 − 𝜑2∥∞ = 𝑞 ∥𝜑1 − 𝜑2∥∞ ,
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where 𝑞 = 𝐶 (𝛼, 𝜆)𝑙 𝑓 (𝑟) =
1
2

. By the Contraction Mapping Principle, there exists
a unique fixed point 𝜑 ∈ 𝐵∞(𝑟) of 𝑇𝑥 , which is by Theorem 1, the unique solution
of (4) with initial condition 𝑥(1) = 𝑥. The uniqueness of initial value problem
for (4) implies the stability of trivial solution. To complete the proof we have to
show that the trivial solution is attractive.

For arbitrary 𝑥 ∈ 𝐵R𝑑 (0,𝜀) let 𝜑 ∈ 𝐵∞(𝑟) be the unique solution of (4) satisfying
𝑥(1) = 𝑥. Put

𝑎 := lim sup
𝑛→∞

∥𝜑(𝑛)∥ ¬ 𝑟

and fix a 𝜂 > 0. Then there exists 𝑛0 ∈ N1 such that

∥𝜑(𝑛)∥ ¬ 𝑎 + 𝜂

for all 𝑛 ∈ N𝑛0 . We will estimate

lim sup
𝑛→∞

∥𝜑(𝑛)∥ .

To do this, we use the variation of constants formula (7) which gives

𝑥(𝑛) = 𝜑(𝑛, 𝑥) + (𝐼𝑑 − 𝐴)−1
𝑛−1∑︁
𝑘=1

𝜑 (𝑘, 𝑓 (𝜑(𝑛 − 𝑘 + 1)))

or equivalently

𝑥(𝑛) = 𝜑(𝑛, 𝑥) + (𝐼𝑑 − 𝐴)−1
𝑛−1∑︁
𝑙=1

𝜑 (𝑛 − 𝑙, 𝑓 (𝜑(𝑙 + 1))) .

Since (4) is asymptotically stable, then

lim
𝑛→∞

(𝐼𝑑 − 𝐴)−1
𝑛0−1∑︁
𝑙=1

𝜑 (𝑛 − 𝑙, 𝑓 (𝑥(𝑙 + 1)))
 = 0.

Therefore, from the fact that

lim
𝑛→∞

𝜑(𝑛, 𝑥) = 0

and
𝜑(𝑛) = 𝑇𝑥𝜑(𝑛)

we have

lim sup
𝑛→∞

∥𝜑(𝑛)∥ ¬ lim sup
𝑛→∞

(𝐼𝑑 − 𝐴)−1 𝑛−1∑︁
𝑙=𝑛0

𝜑 (𝑛 − 𝑙, 𝑓 (𝜑(𝑙 + 1)))


¬ 𝐶 (𝛼, 𝑐𝜆)𝑙 𝑓 (𝑟) (𝑎 + 𝜂).
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Thus
𝑎 ¬ 𝐶 (𝛼, 𝜆)𝑙 𝑓 (𝑟) (𝑎 + 𝜂).

By letting 𝜂 → 0+ and due to the assumption 𝐶 (𝛼, 𝜆)𝑙 𝑓 (𝑟) <
1
2

we get that 𝑎 = 0
and the proof is complete. 2
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