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Abstract. The application of the Internet of Things(IoT) is increasing exponentially, the dynamic data flow and distributive operation over 

low resource devices possesses huge threat to sensitive human data. This paper introduces an artificial immune system (AIS) based approach 

to intrusion detection in IoT network ecosystems, the proposed approach implements dual-layered AIS; which is robust to zero-day attacks and 

designed to adapt new types of attack classes in the form of antibodies.In this paper, a Hybrid method has been presented which uses Hybrid 

of Clonal Selection using Variation auto-encoders as Innate Immune Layer and Apaptive Dentritic Model for identifying intrusions over IoT 

Specific Datasets.Moreover we present extensive empirical analysis over six IoT network benchmark datasets for semi-supervised multi-class 

classification task and obtain superior performance compared to five state-of-the-art baselines. Finally, VC-ADIS achieves 99.83% accuracy
over MQTT-set dataset.
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1. INTRODUCTION

The Internet of Things (IoT) has experienced substantial
growth in recent years. With the increasing number of devices
integrated into daily life, there has been a rapid surge in the col-
lection, transmission, and sharing of data from these devices.
Ensuring the security of the IoT environment is a formidable
challenge [1]. The IoT network functions on the principle of
data exchange among compact devices, rendering it suscepti-
ble to advanced and zero-day attacks. While many existing
security systems can handle common attacks, the unique na-
ture of the IoT network involves multifaceted data streams and
intricate devices optimized for energy efficiency.

1.1. Intrusion detection in IoT Network Ecosystem

An intrusion is characterized as any form of questionable activ-
ity that disrupts the normal data flow, aimed at compromising
the network and illicitly acquiring data from the data stream
[2]. Identifying intrusions in IoT environments involves vari-
ous methods, including graph-based anomaly detection meth-
ods within the network, conventional machine learning tech-
niques for classifying intrusion packets, and approaches based
on matrix manipulation, among others. IoT network environ-
ments exhibit a multitude of vulnerabilities due to their com-
plex layered structure and the energy-efficient nature of the de-
vices they incorporate.

• Perception Layer: This Layer encompasses physical hard-
ware like sensors and transmitters. T

• Network Layer: Responsible for managing message and
data transmission throughout the network ecosystem,

• Application Layer: T The Application Layer plays a crucial
role in offering essential services to users and facilitating
user-IoT interactions within the environment.

Each layer contributes distinct functionalities to the IoT sys-
tem and is susceptible to exploitation for network attacks [3].
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Nonetheless, the surge in data-centric techniques, including
machine learning and deep learning, introduces novel strate-
gies for identifying intrusions within real-time network oper-
ations. AIS draws inspiration from natural immune systems
[4] to establish resilient platforms capable of defending against
advanced attacks. This paper utilizes an artificial immune sys-
tem based on variational auto-encoders [5]. The objective is
to leverage data representation learning and construct an ef-
ficient and robust security framework for IoT networks. The
paper is organized as follows; starts with introducing back-
ground works and a relevant literature survey of the Immune
system approaches in cyber-security, then our approach of
variational clonal selection has been proposed with the self-
adaptive mechanism which employs a self-learning paradigm
for the adaption of new attacks. Finally, it compares with the
standard data sets and other ML algorithms.

2. PRELIMINARIES, BACKGROUND AND RELATED WORK

Artificial Immune System (AIS) [6] Components and proper-
ties of AIS make it adaptable and efficiently secure data against
potential attacks. Here are descriptions of some key AIS algo-
rithms and their underlying mechanisms:

2.0.1. Negative Selection for anomaly detection: The Neg-
ative selection (NS) algorithm [7] draws inspiration from the
acquired immunity mechanism of self-non-self discrimination.

The NS algorithm’s primary goal is to establish a clear dis-
tinction between self and non-self entities. It achieves this by
generating detector objects, akin to T-cells, that interact with
and bind to non-self objects, thus enhancing system security.

2.0.2. Clonal Selection Algorithm: Built upon the principles
of acquired immunity theory, the Clonal Selection Algorithm
[8] focuses on creating receptors that progressively learn to
respond to antigens over time. This process involves a deli-
cate balance between receptor mutation and cloning. The al-
gorithm effectively refines the receptor population, discarding
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those that compromise the environment’s autoimmunity. .

2.0.3. Artificial Immune Networks:Artificial Immune Net-
works (AIN) [6] are inspired by immunology’s antibody theory
and borrowing concepts from the clonal selection algorithm,
this approach introduces antibodies present in pairs. These
antibody pairs sustain immune memory regarding cellular in-
teractions, even without external antigens. This enables the
system to recognize potential threats and maintain a proactive
stance. Unlike the basic Clonal Selection Algorithm, AIN fo-
cus on the interactions between antibodies themselves, not just
between antibodies and antigens.

2.0.4. Danger Theory AlgorithmIn biological terms, the
Danger Theory suggests that the immune response is triggered
not solely by the presence of foreign entities (non self) but by
the danger or damage they cause to the host organism. This
theory was proposed to explain certain immune responses that
do not neatly fit into the self/non-self paradigm. This allows
the system to become more or less sensitive to threats over
time [9].These AIS algorithms encapsulate sophisticated im-
munological concepts within computationally efficient frame-
works, aiming to enhance data security within the context of
IoT networks. Through abstracting and adapting natural im-
mune mechanisms [10].

3. PROPOSED SELF-ADAPTIVE ARTIFICIAL IMMUNE SYS-
TEM

This paper introduces a novel approach that revolves around
prioritizing data-centric strategies for constructing a self-
adaptive AIS. In Figure 1, offers an overview of the data path-
way involved in securing the IoT landscape and surveilling po-
tential attacks.

The proposed artificial immune system operates through two
distinct layers of immunity: the innate layer and the adaptive
immune layer. The underlying process of fortifying the IoT
network ecosystem with this Artificial Immune System unfolds
as follows:

3.0.1. Data Capture and Preprocessing:The regular data
flow is captured utilizing a tap connection between network
nodes, and this data can be stored as a pcap file using wire-
shark [9]. This initial pcap file is then directed through a con-
tent feature extractor. The aim here is to derive a mapping of
feature values that encapsulate the essence of the characteris-
tics of Data. The left section of the figure delineates an IoT
network cloud comprising multiple devices (D1-D5) and an
identified Attacker Node, indicating the presence of potential
security threats within the network topology. The data flow is
captured in real-time, where it is subject to scrutiny by a Packet
Capture (PCAP) Tap. This component’s role in the architecture
is critical as it enables the acquisition of network traffic data,
which is essential for the subsequent analysis and identification
of potential security breaches.

3.0.2. Innate Layer Processing:The processed data, now
carrying the feature-value mapping, is subsequently channeled

through the innate layer module of the AIS. This layer mimics
the innate immunity found in natural systems [?], seeking to
promptly recognize and respond to general patterns of intru-
sion or abnormal behavior. An integral part of the framework
that categorizes network packets into ’Normal’ and ’Antigen’
packets. After classification, the Network Feature Extractor
component extracts relevant features from the traffic data. The
Preprocessing Network Data component suggests a refinement
process to prepare the input for the Intrusion Detection System
(IDS).

3.0.3. Adaptive Layer Processing:Following the innate
layer, the processed data progresses into the adaptive immune
layer module. Comparable to the adaptive immunity in natural
systems [10], this layer evolves to discern and counter more
specific threats, adjusting its responses as new challenges
arise. The Self Adaptive IPS (Intrusion Prevention System),
processes the ’Antigen Data’ through what is labeled as the
’Primary Layer of Adaptive Security.’ This nomenclature
suggests that the system is capable of evolving its defensive
mechanisms based on historical antigen data, indicative of a
learning system that fine-tunes its responses to continually
emerging threats. The Monitoring component is likely to
provide essential feedback on the system’s performance,
including the efficacy of threat detection and the robustness of
the adaptive responses [6].

3.1. Variational clonal selection as Innate Immune System

We introduce a novel approach for generating clones of anti-
gen features using a combination of variational autoencoders
(VAEs) and regression of latent embeddings [11]. This process
involves encoding the essential characteristics of antigens into
a latent space using a VAE, followed by regression to produce
accurate clones that capture the underlying patterns and varia-
tions. Figure 2 illustrates an innovative computational frame-
work for generation of antigen clones using a hybrid method
that combines the principles of Variational autoencoding and
regression analysis. This framework is posited as an integral
component of an artificial innate immune system, designed to
enhance the recognition and response capabilities in digital se-
curity, health informatics, or other fields necessitating sophis-
ticated pattern recognition and replication of complex features.
Here we describe the components of the Variational Clonal se-
lection mechanism as follows:

3.1.1. Encoding and Latent Space Representation:The
process commences with the preparation of a dataset com-
prised of antigen features that encapsulate essential attributes
pertinent to the domain of application. An encoder neural
network is then employed to ingest these features and map
them into a compressed, lower-dimensional latent space. This
transformation is a probabilistic distribution, characterized by
mean (µ) and variance (σ ) parameters. This distribution rep-
resents the inherent uncertainty and variability in the data,that
allows for the subsequent generation of a diverse array of anti-
gen clones. Latent Space Distribution: In a VAE, the encoder
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Fig. 1. A schematic diagram of our proposed architecture, VC-ADIS.

Fig. 2. Variational Clonal Selection in VC-AIS architecture

network produces a distribution (mean and variance) that de-
scribes the uncertainty of the encoding.

3.1.2. Decoding and Clone Generation: The decoder com-
ponent of the VAE is tasked with the reconstruction of antigen
features from the latent representations. To generate clones,
the latent space is sampled, drawing vectors that represent the
’genetic code’ of potential antigen variants. The decoder net-
work then interprets these vectors, translating the encoded in-
formation back into a tangible feature set that closely resem-
bles the original antigen, thereby producing viable clones.

3.1.3. Regression-Enhanced Clonal Precision To refine the
cloning process, a regression model is introduced. This model
is trained to predict latent space encodings of antigens based
on a chosen reference antigen’s encoding. When presented
with a new antigen’s encoding, the regression model outputs
a predicted latent encoding, which acts as the blueprint for the
clone’s features. These clones are not mere replicas but are
nuanced variations of the reference antigen, capturing the un-
derlying patterns and intricacies of the original features. The

process for clonal preparation is employed as follows:

• Target Selection: we choose a reference antigen from the
dataset for clone.

• Feature Regression: we train a regression model (a neural
network) that takes the reference antigen’s latent space en-
coding as input and aims to predict the latent space encoding
of other antigens.

• Cloning Procedure: Given a new antigen’s latent space en-
coding, we use the trained regression model to predict its
corresponding latent space encoding based on the reference
antigen’s encoding. This predicted encoding serves as the
"genetic code" for the clone.

• Decode Clones: Finally, decode the predicted latent space
encoding through the decoder network to generate clones of
the original antigen with characteristics similar to the refer-
ence antigen.

The algorithm 1 presents the pseudo-code for the variational
clonal section.
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Fig. 3. Architecture for the training process of ADM.

Algorithm 1 Training method for variational clonal selection

Input Process feature representations X = x1,x2, ....,xn

Training class labels C = c1,c2, ....,cn

Output Learned representations i.e. Antigen clones at time t

for i = 1 to num_epochs do
Step 1: Compute likelihood distribution of x assoc. with

latent z
p(x) =

∫
z p(x,z,c), where p(x,z,c) = p(x|z)p(z|c)p(c)

Step 2: Compute regressor variables i using auxiliary func-
tion q : q(zi,ci|xi)

Step 3: Compute pseudo variation for two time steps
logp(x) = DKL(q(zi,ci|xi)||p(zi,ci|xi))

Step 4: Approximate latent representations for time step
t + 1 q(z|x) ∼ N(z; f (x;φ),g(x;φ)) where φ are network pa-
rameters

Step 5: Compute Loss
L(x) =−Ez∼q(z|x)[logp(x)]+DKL(q(zi|xi)||p(zi))

Step 6: Back-propagate weights

end for

3.2. Adaptive Dendritic Module (ADM) for network anomaly
adaptation and classification

We propose a self-adaptive dendritic module for learning rep-
resentations of antigens and the population cultivated by the
variational clonal selection module. Figure 3 portrays an ad-
vanced self-adaptive dendritic cell (DC) [12] mechanism de-
signed for the dynamic analysis and classification of network
traffic, a core component of a cyber security framework. In
the depicted module, the process initiates with the collection
of standard network traffic data, represented here as ’Normal
pcap’. This data encapsulates regular traffic patterns and serves
as a baseline for comparison against potential threats. Simulta-
neously, the module receives an input stream of ’Antigen’ data,
which is a set of features identified by the variational clonal
selection module as potential indicators of anomalies or secu-
rity threats within the network. These antigen features, des-
ignated as X1, X2, and X3, are then integrated with the ’Nor-
mal pcap’ to update the DC population, effectively merging the
baseline of network behavior with the newly identified antigen

characteristics. This neural network is tasked with classifying
the combined features using cross-entropy loss [?], The out-
come of this process is evaluated against a predefined thresh-
old, which determines whether the traffic patterns are deemed
normal or suspicious. If the classification score, termed ’Popu-
lation Migration Score’, exceeds the threshold, the traffic data
is considered anomalous and is forwarded to the Central Man-
agement Facility (CMF). This implies that the system has iden-
tified a significant deviation from the normal traffic pattern,
warranting further investigation or immediate action. Con-
versely, if the score falls below the threshold, the data is used
to augment the ’Antigen Repository’. This repository serves
as a knowledge base, contributing to the ongoing learning and
adaptation of the system by updating the DC population with
new antigen profiles. This iterative process allows the system
to continuously refine its understanding of network behavior,
adapting to new and evolving threats in real time. The elegance
of this self-adaptive mechanism lies in its capacity to learn
from the network environment actively and adaptively. This
dendritic cell algorithm represents a significant step towards
creating autonomous, intelligent systems are capable of safe-
guarding digital infrastructure against an ever-changing land-
scape of cyber vulnerabilities. The algorithm 2 presents the
pseudocode for the ADM mechanism.

4. EXPERIMENTS

This section presents benchmark datasets, baseline methods,
comparative analyses and ablation studies of our model. In
figure 4 introduces a sophisticated self-adaptive dendritic cell
(DC) algorithm that underpins an artificial immune system
(AIS) for network security.Variable clonal selection mod-
ules improve the detection and response to network ’anti-
gens’—like foreign pathogens—that present security risks.
The operational flow within the self-adaptive DC mechanism
commences with the acquisition of pcap (packet capture) data
serves as a baseline for identifying deviations indicative of
security threats. Concurrently, the variational clonal selec-
tion module processes data to identify unique or aberrant fea-
tures—referred to as ’antigens’—that signify potential intru-
sions or anomalies in the network. These antigens, encoded
as features X1, X2, and X3, are amalgamated with the nor-
mal pcap data to update the DC population, mirroring the bi-
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Table 1
Performance comparison on the Bot-IoT and UNSW-NB15.

Dataset The BoT-IoT UNSW-NB15
Models Mean Acc Macro F1 Mean Acc Macro F1
VC-ADIS 0.8906 0.8648 0.7512 0.6844
TabNet 0.8900 0.8492 0.7489 0.6755
CNN-BiLSTM 0.8636 0.8333 0.7211 0.5801
LSTM 0.8215 0.7824 0.6804 0.4315
Deep NNs 0.8824 0.8603 0.7254 0.5726
Random Forest 0.8797 0.8537 0.7248 0.5869
Naive Bayes 0.6532 0.6109 0.6528 0.5411
Decision Tree 0.8466 0.8134 0.7168 0.5731

[]
Table 2
Performance comparison on the MQTT-IoT-IDS and UNSW dataset.

Dataset MQTT-IoT-IDS UNSW-NB15
Models Precision Recall Precision Recall
VC-ADIS 0.8915 0.8802 0.6733 0.6904
TabNet 0.8701 0.8505 0.5347 0.5935
CNN-BiLSTM 0.8799 0.8433 0.6508 0.5504
LSTM 0.8305 0.7836 0.6001 0.5284
Deep NNs 0.8824 0.8603 0.7254 0.5726
Random Forest 0.8402 0.8655 0.5602 0.5829
Naive Bayes 0.5933 0.6237 0.5828 0.5108
Decision Trees 0.7824 0.8305 0.5534 0.6025

Table 3
Performance comparison on the benchmark IoT intrusion detection datasets.

Dataset MQTT-IoT-IDS KDD-CUP-99 MQTTset UFPI-NCAD
Models Mean Acc Macro F1 Mean Acc Macro F1 Mean Acc Macro F1 Mean Acc Macro F1
VC-ADIS 0.9211 0.9206 0.8764 0.8498 0.9983 0.9971 0.9592 0.9564
TabNet 0.9125 0.8966 0.8502 0.8375 0.9901 0.9925 0.9501 0.9463
CNN-BiLSTM 0.8801 0.7826 0.7911 0.8545 0.9628 0.9105 0.9274 0.9055
LSTM 0.8647 0.7405 0.7636 0.8205 0.9527 0.9148 0.8653 0.8155
Deep NNs 0.9184 0.917 0.8702 0.8311 0.9935 0.9943 0.9244 0.9188
Random Forest 0.8801 0.8732 0.8535 0.8472 0.9724 0.9967 0.9036 0.8961
Naive Bayes 0.9027 0.8946 0.8672 0.8568 0.9883 0.9910 0.9182 0.9134
Decision Tree 0.8632 0.8591 0.8592 0.8154 0.9689 0.9862 0.8942 0.8826

[]
Table 4
Performance comparison on the benchmark IoT intrusion detection datasets over Precision and Recall Values.

Dataset The Bot-IoT KDD-CUP-99 MQTTset UFPI-NCAD
Models Precision Recall Precision Recall Precision Recall Precision Recall
VC-ADIS 0.84 0.87 0.82 0.85 0.95 0.99 0.93 0.96
TabNet 0.83 0.78 0.80 0.74 0.94 0.96 0.91 0.83
CNN-BiLSTM 0.75 0.61 0.78 0.53 0.91 0.83 0.72 0.65
LSTM 0.80 0.43 0.65 0.48 0.82 0.71 0.64 0.57
Deep NNs 0.82 0.85 0.79 0.85 0.97 0.95 0.89 0.92
Random Forest 0.81 0.82 0.84 0.86 0.92 0.93 0.88 0.90
Naive Bayes 0.58 0.63 0.83 0.85 0.95 0.96 0.92 0.87
Decision Tree 0.80 0.78 0.77 0.80 0.88 0.92 0.86 0.89
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Table 5
Ablation study to measure the impact of three blocks of – Feature Processing, Innate Immunity, and Adaptive Immunity

Datasets Performance w/o Feature Processing w/o Innate Immunity w/o Adaptive Immunity
MQTT-IoT-IDS2020 92.11 89.62 90.54 91.84
KDD-CUP- 99 dataset 87.64 83.45 82.12 87.02
MQTTset dataset 99.83 91.22 95.78 99.35
UFPI-NCAD-IoT-Attacks 95.92 90.84 91.64 92.44
The Bot-IoT 89.06 82.57 84.91 82.44
UNSW-NB15 75.12 70.64 71.45 72.54

Algorithm 2 Self-adaptive dendritic cell algorithm

Input True legitimate pcap feature P = p1, p2, ...., pn

Updated DC representations X = x1,x2, ....,xn

True class labels C = c1,c2, ....,cn

Threshold e Output pcap label classification score

for i = 1 to num_epochs do
Step 1: Concatenate input pcap with DC population

x̂ = p1, p2, ...., pn ∪ x1,x2, ....,xn

Step 2:Compute classification score using FC layer assign
x̂

Step 3: Compute pseudo variation for two time steps
logp(x) = DKL(q(zi,ci|xi)||p(zi,ci|xi))

Step 4: Approximate latent representations for time step
t + 1 q(z|x) ∼ N(z; f (x;φ),g(x;φ)) where φ are network pa-
rameters

Step 5: Compute Loss
L(x) =−Ez∼q(z|x)[logp(x)]+DKL(q(zi|xi)||p(zi))

Step 6: Backpropagate weights

end for

ological process whereby dendritic cells capture and process
antigens. Once integrated, the data traverses a fully connected
neural network, emulating the dendritic structures in the im-
mune system, where it undergoes classification. This classi-
fication employs a cross-entropy loss function to evaluate the
probability of the data belonging to a class of normal or anoma-
lous traffic. The outcome, manifested as a ’Population Mi-
gration Score’, is compared against a predetermined thresh-
old to ascertain the nature of the traffic. If the score is below
the threshold, it indicates normality, and the data is relegated
to the Antigen Repository. This repository acts as a cumula-
tive knowledge base that informs the ongoing re-calibration of
the DC population, fostering the AIS’s capability to evolve its
recognition and response patterns dynamically. By iterating
this process, the system becomes increasingly sophisticated in
recognizing and responding to complex and evolving cyberse-
curity threats, thereby enhancing the resilience and integrity of
the network it protects.

4.0.1. Experimental Setup

4.0.2. Benchmark DatasetsWe evaluate the proposed ap-
proach extensively on six publicly available datasets for in-
trusion detection. Here we provide a brief description of the
datasets used for experiments:

• MQTT-IoT-IDS2020
• KDD-CUP- 99 dataset
• MQTTset dataset
• UFPI-NCAD-IoT-Attacks
• The BoT-IoT Dataset
• UNSW-NB15 Dataset

4.0.3. Baseline Methods. We compare VC-ADIS with stan-
dard baselines designed for semi-supervised multi-class classi-
fication tasks in machine learning-based approaches. (i) Deep
Neural Networks (DeepNNs) [9]: DNNs employ intercon-
nected layers of neurons with weighted connections and ac-
tivation functions. Back-propagation modifies these weights
during training to reduce a loss function [9]. (ii) Random For-
est [13]: A reliable and adaptable machine learning ensemble
technique is random forests. During training, they build sev-
eral decision trees [14], The end outcome is often an average or
majority vote of the predictions from individual trees (regres-
sion or classification, respectively), with each individual tree
then jointly contributing to creating predictions. (iii) Naive
Bayes [15]: Naive Bayes is a straightforward probabilistic al-
gorithm that is used for classification and text analysis.It com-
putes the likelihood of a data point belonging to a specific class
based on the conditional probabilities of each feature within
that class. (iv) Decision Tree [14]: It is a tree-like model used
in machine learning for classification and regression. Decision
trees are frequently used due to their simplicity and capacity
to handle both categorical and numerical data,but if not rig-
orously pruned or limited, they can be prone to over-fitting.
(v) TabNet [16]: TabNet is a deep learning model designed
specifically for tabular data, which uses sequential attention to
choose which features to reason from at each decision step.
This leads to improved interpretability and efficiency in han-
dling high-dimensional data. (vi) CNN-BiLSTM [17]: This
model combines Convolutional Neural Networks (CNNs) with
Bidirectional Long Short-Term Memory (BiLSTM) networks.
The CNN layers are used for feature extraction from the input
data, while the BiLSTM layers capture temporal dependencies,
making this architecture suitable for tasks requiring both spa-
tial and sequential data analysis. (vii) LSTM [17]: Long Short-
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Fig. 4. Block diagram of the proposed VC-AIS algorithm

Term Memory (LSTM) networks are a type of recurrent neural
network (RNN) capable of learning long-term dependencies.
They are well-suited for sequence prediction problems because
they can maintain information over long periods, making them
useful for tasks where context and order are important.

4.1. Performance Comparison

We evaluate the model performance based on mean accuracy,
macro F1-score, and micro F1-score. We report the average
performance of the model over ten runs, along with the stan-
dard deviation as shown in table 1 and 2.

4.1.1. Comparative Analysis:The table 3 presents a com-
parative analysis of the Variational Clonal-Artificial Dendritic
Immune System (VC-ADIS) against several established ma-
chine learning models in IoT intrusion detection Domain.The
datasets employed for this study are MQTT-IoT-IDS, KDD-
CUP-99, MQTTset, and UFPI-NCAD, each representing a
standard benchmark in the intrusion detection landscape.

VC-ADIS demonstrates superior performance across both
metrics on the MQTT-IoT-IDS dataset, with a mean accuracy
of 92.11% and a macro F1-score of 92.06%, closely followed
by Deep Neural Networks (NNs) which showcase a slight
decrement in performance. On the KDD-CUP-99 dataset, the
performance of VC-AIS is competitive, achieving a mean ac-
curacy of 87.64% and a macro F1-score of 84.98%, once again
outperforming the alternative models. Notably, the margin of
performance improvement with VC-ADIS is more pronounced
on the MQTTset and UFPI-NCAD datasets, with mean accu-
racies of 99.83% and 95.92% and macro F1-scores of 99.71%

and 95.64%, respectively as shown in table 3 and 4. These re-
sults underscore the robustness of VC-AIS in identifying and
classifying network intrusions with high precision. The vari-
ational clonal approach allows VC-ADIS to adaptively learn
and recognize diverse patterns of network traffic, which are
crucial in the context of IoT security where the network be-
havior is highly dynamic and the threat landscape is continu-
ally evolving. The inclusion of dendritic mechanisms enables
the VC-ADIS to efficiently process and integrate complex data
representations, enhancing its detection capabilities.

When contrasted with traditional machine learning models
such as Random Forests, Naive Bayes, and Decision Trees,
VC-AIS not only achieves higher accuracy and F1-scores but
also demonstrates an advanced ability to generalize across dif-
ferent types of network environments and attack vectors. Deep
NNs, while performing comparably well, lack the biological
inspiration that provides VC-AIS with its self-adaptive prop-
erties, essential for the rapidly changing domain of cyber-
security.

Moreover from the table 1 it is evident that VC-ADIS out-
performs the other models across both datasets. Specifically,
on The Bot-IoT dataset, VC-AIS achieves a mean accuracy
of 89.06% and a macro F1-score of 86.48%. This is a no-
table improvement over traditional machine learning models
such as Deep Neural Networks (NNs), Random Forests, Naive
Bayes, and Decision Trees. The performance margin is partic-
ularly significant when compared to the Decision Tree model,
which shows the lowest mean accuracy and macro F1-score of
84.66% and 81.34% respectively as shown in figure 5. Sim-
ilarly, on the UNSW-NB15 dataset, VC-AIS again tops the
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[a] [b]

[c] [d]
Fig. 5. Performance comparison of evaluation metrics and moving average of accuracy over (a) KDD-CUP-99 (b) MQTT-IoT-IDS-2020 (c)
MQTTset (d) UFPI-NCAD-IoT Attacks.

[a] [b]

[c] [d]

[e] [f]
Fig. 6. Ablation study accuracy over (a) KDD-CUP-99 (b) MQTT-IoT-IDS-2020 (c) MQTTset (d) UFPI-NCAD-IoT Attacks (e) UNSW-NB15 (f) The
Bot-IoT

chart with a mean accuracy of 75.12% and a macro F1-score of
68.44%, whereas the other models exhibit substantially lower

performance metrics.
The superior performance of VC-ADIS can be attributed to
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its advanced design, which incorporates concepts from the bio-
logical immune system, particularly the functionalities of den-
dritic cells. These cells are critical to the immune response,
and adept at identifying and presenting antigens. In the VC-
AIS model, this biological analogy is used to create a system
that can effectively learn and recognize the complex patterns
associated with network intrusions. The variational aspect of
the model allows for the handling of uncertainties inherent in
network traffic, providing a robust means to adapt to the dy-
namic nature of cyber threats, which is crucial in the rapidly
evolving landscape of IoT security.

The comparative results underscore the effectiveness of VC-
ADIS in accurately detecting a wide range of intrusions. Its
biologically inspired components confer a strategic advantage
over more traditional models, enabling it to dynamically adapt
and maintain high performance even in the face of sophisti-
cated and novel attack strategies. This study highlights the
potential of leveraging biological mechanisms within artificial
intelligence frameworks to enhance cyber security measures in
complex network environments. VC-ADIS emerges as a po-
tent solution, demonstrating that the integration of variational
and clonal principles with dendritic cell-inspired algorithms
can significantly advance intrusion detection systems’ capabil-
ities.

The study emphasizes the efficacy of VC-AIS in accurately
detecting diverse intrusions. Its biologically inspired elements
provide a strategic edge, enabling dynamic adaptation and sus-
tained high performance against sophisticated attacks. By
leveraging biological mechanisms in AI frameworks, this re-
search underscores the potential for enhancing cyber security
in complex networks. VC-ADIS stands out as a powerful so-
lution, showcasing how integrating variational and clonal prin-
ciples with dendritic cell-inspired algorithms can significantly
boost intrusion detection system capabilities.

4.1.2. Comparative analysis over recent baselines: The
VC-ADIS model demonstrated superior performance across
all datasets, consistently achieving Mean Accuracy and Macro
F1-scores exceeding 0.90. Notably, for the MQTT-IoT-IDS
dataset, VC-ADIS attained a Mean Accuracy of 0.9211 and
a Macro F1-score of 0.9206, underscoring its robustness and
generalization capabilities. In contrast, traditional algorithms
such as Decision Trees and Naive Bayes exhibited compara-
tively lower performance metrics. The observed performance
variability among different models highlighted the challenges
posed by imbalanced datasets in the domain of network in-
trusion detection. Models like TabNet and CNN-BiLSTM
demonstrated moderate performance, with Mean Accuracy and
Macro F1-scores typically ranging from 0.80 to 0.90. How-
ever, their Precision and Recall metrics showed significant
variability across datasets, suggesting potential overfitting is-
sues. For instance, the CNN-BiLSTM model achieved a Pre-
cision of 0.91 and Recall of 0.83 on the MQTTset dataset, but
its performance declined on the KDD-CUP-99 dataset, with
Precision and Recall values of 0.78 and 0.53, respectively as
shown in table 4. These discrepancies emphasize the critical
need for robust data processing techniques and judicious fea-

ture selection to mitigate overfitting and enhance model gener-
alization across diverse network intrusion datasets.

4.1.3. Ablation Study:The table 5 shows that the ablation
study quantifies the contribution of feature processing, innate
immunity, and adaptive immunity components by comparing
the performance of the complete system against versions with
each of these elements removed (Fig. 6). The datasets used
for this evaluation include MQTT-IoT-TDS2020, KDD-CUP-
99, MQTTset, UFPI-NCAD-IoT-Attacks, The Bot-IoT, and
UNSW-NB15, which are benchmark datasets in the domain of
network security, particularly focusing on intrusion detection
in IoT environments.

The ’Performance’ column indicates the effectiveness of the
full VC-ADIS module, with all features and mechanisms op-
erational. The subsequent columns show the system’s perfor-
mance without feature processing, without innate and adaptive
immunity, Adaptive immunity respectively. A noticeable de-
cline in performance across all datasets when these modules
are disabled demonstrates their individual and collective im-
portance to the system’s overall effectiveness.

For instance, the MQTT-IoT-TDS2020 dataset shows a
marked decrease in performance from 92.11% with the full
system to 89.62% when feature processing is omitted, sug-
gesting that pre-processing of input data plays a significant
role in preparing the data for effective pattern recognition and
anomaly detection. The further reduction to 90.54% without
innate immunity indicates that the system’s ability to rapidly
identify and respond to known threats based on predefined
rules is crucial. The performance drop to 91.84% without
adaptive immunity underscores the importance of the system’s
ability to learn and adapt over time to evolving threats.

Similarly, on the KDD-CUP-99 dataset, there is a significant
performance decline from the full system’s 87.64% to 83.45%
without feature processing, illustrating that raw data may con-
tain noise or irrelevant information that, unless processed, can
hinder the system’s detection capabilities. The innate im-
munity’s impact is also notable, with performance falling to
82.12%, which could indicate the importance of having pre-
defined rules or patterns for quick identification of common
threats. The adaptive immunity’s contribution is confirmed by
a decrease to 87.02%, suggesting that learning from past ex-
periences and adapting to new types of attacks is essential for
maintaining high performance in anomaly detection.

The variations in performance across different datasets also
provide insights into the nature of each dataset and the types of
attacks or anomalies present within them. For datasets where
the decline is less pronounced when a module is removed, it
may suggest that the specific threats present in that dataset are
less reliant on the capabilities provided by the removed mod-
ule.

In conclusion, the ablation study within this table illustrates
the vital roles that feature processing, innate immunity, and
adaptive immunity play in the VC-AIS module’s operation.
Each component contributes to the system’s robustness and ac-
curacy, ensuring comprehensive threat detection and enhanc-
ing the VC-ADIS module’s reliability as a security mechanism
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in IoT networks.

5. CONCLUSION AND FUTURE DIRECTIONS

VC-ADIS’s Variational Clonal Selection Method may adapt to
different network traffic patterns. Dendritic processes help the
VC-ADIS interpret and integrate complicated data representa-
tions, improving detection and make it adaptive for the new
types of attacks.In comparison with Random Forests, Naive
Bayes, and Decision Trees, VC-ADIS has greater accuracy,
F1-scores, and generalization across network settings and at-
tack vectors. Deep NNs operate similarly but lack in VC-
ADIS’s self-adaptive features, important for Security in a Dy-
namic IoT Environment.

Experimental Results show VC-ADIS demonstrates su-
perior performance compared to the other models in Dif-
ferent Benchmark Datasets dataset such as KDD-CUP- 99
dataset,MQTT-IoT-IDS2020, MQTTset dataset, UFPI-NCAD-
IoT-Attacks and UNFW-NB-15 mainly for MQTT-IOT-IDS
2020 and The Bot-IoT dataset, VC-ADIS gets a mean accu-
racy of 89.06% and a macro F1-score of 86.48%.

We are also trying to develop a more efficient non-data-
based innate immunity mechanism so that intrusion in the nor-
mal data flow can be flagged in O(1) time and monitored in
real-time by a moderator. Our research aims to improve the ar-
chitecture of IoT devices to provide a low-cost security module
based on cached memory mechanisms [18], reducing the time
between AIS layers and ensuring data security without human
intervention.
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