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Abstract.. The  development  of automated driving  vehicles  aims  to  provide  safer,  comfortable,  and  more  efficient mobility 
options.  However,  the  decision-making  control  of  autonomous  vehicles  still embraces limitations on  human  performance 
mimicry.  These  limitations  become  particularly  evident  in  complex  and  unfamiliar  driving scenarios,  where  weak  decision- 
making abilities and poor adaptation of vehicle behaviour are prominent issues. This paper proposes a game-theoretic decision- 
making algorithm for human-like driving in the vehicle lane change scenario. Firstly, an inverse reinforcement learning (IRL)

model is used to quantitatively analyse the lane change trajectories of the natural driving dataset, establishing the human-like 
human cost function. Subsequently, joint safety, comfort to build the comprehensive decision cost function. Use the combined 
decision cost function to conduct a non-cooperative game of vehicle lane changing decision to solve the optimal decision of host 
vehicle  lane  changing. The  host vehicle  lane-changing  decision  problem is  formulated  as  a  Stackelberg  game  optimization 
problem. To verify the feasibility and effectiveness of the algorithm proposed in this study, a lane change test scenario has been 
established. Firstly, we analyse the human-like decision-making model derived by the maximum entropy inverse reinforcement 
learning algorithm to verify the effectiveness and robustness of the IRL algorithm. Secondly, the human-like game decision- 
making algorithm in this paper is validated by conducting an interactive lane-changing experiment with obstacle vehicles of 
different  driving  styles.  The  experimental  results  prove  that  the human-like driving  decision-making  model  proposed  in  this 
study can make lane-changing behaviours in line with human driving patterns in lane-changing scenarios of expressway.

Key words: expressway lane-changing scenarios; inverse reinforcement learning; Stackelberg game theory;

human-like decision-making; interaction model.  

1. INTRODUCTION 

Autonomous driving decision-making methods have 

advanced significantly. In simple driving scenarios, vehicles 

can achieve safe passage. However, many challenges remain 

in achieving efficient and human-like driving decisions. 

vehicle decision planning in dynamic environments involves 

complex interactions among multiple traffic participants, 

especially in mixed-traffic situations where self-driving and 

human-driven vehicles coexist. Therefore, decision-planning 

algorithms must consider the human-likeness of autonomous 

driving vehicles' behaviour in addition to satisfying the basic 

requirements of safety and efficiency. This consideration is 

essential in dynamic environments with multiple traffic 

participants. As shown in Fig. 1, when faced with scenarios in 

which the surrounding vehicles (white vehicles) have 

uncertain motion states and random interaction behaviours, 

the host vehicle (purple vehicle) needs to have the ability to 

effectively deal with uncertainty in dynamic environments. 

The human-like decision-making algorithms for autonomous 

vehicles in this traffic state must incorporate the intentions of 

other drivers. 

 
Fig.1. Example of high dynamic lane change interaction scenario 

 

At present, interaction-based decision-making methods 

for uncertain scenarios are primarily classified into 

probabilistic reasoning-based methods, learning-based 

methods, game theory, and others. Firstly, probabilistic *e-mail: jiangyl@sues.edu.cn 
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reasoning is a more traditional method, mainly outputting the 

behavioural probability of interacting vehicles. However, it 

struggles to handle highly dynamic, multi-participant traffic 

situations effectively. With the rapid development of machine 

learning technology, researchers have employed learning-

based methods to model the interaction of obstacle vehicles. 

However, the learning-based method has the disadvantage of 

poor interpretation and cannot even deal with the algorithm 

failure in the scenario of high dynamic lane change. 

Consequently, researchers have turned to game theory 

approaches, which offer simple modelling and stable 

convergence, to address driving decision problems in 

interactive environments. Game theory-based methods are 

widely used to assess uncertainties in driving environments 

and can account for interactions among multiple participants.  

1.1. Probability-based approaches 

In previous studies, the behavioural uncertainty of other 

participants in highly dynamic interactive driving 

environments is usually expressed in terms of probabilities. 

This is the most traditional solution but cannot properly 

handle highly dynamic, multi-participant traffic situations. 

Probability-based decision-making methods include 

probabilistic graphical models, Bayesian networks, and 

Gaussian mixture models. Probabilistic graphical modelling 

approaches describe interaction characteristics by building 

functions that map to numbers with output probabilities of the 

behaviour of interacting vehicles[1]. Bayesian changepoint 

detection was used to estimate the possible strategies and 

behaviours performed by the surrounding vehicles [2], but the 

computational complexity of the algorithm skyrockets when 

confronted with a large number of random variables. To 

reduce the complexity of the model parameters and the 

dependence on prior knowledge, the researcher used Bayesian 

networks to model the uncertainty, such as potential strategy 

distribution of driving behaviour [3] and human psychology 

at multiple levels of abstraction [4]. Gaussian mixture models 

can also make inferences about the joint probability 

distribution for the future trajectory of vehicles based on the 

driver's intention [5]. During inference using Bayesian 

networks, uncertainty is continuously quantified during the 

prediction process to provide more reliable predictions. 

1.2. Learning-based approaches 

With the rapid development of machine learning in recent 

years, researchers have started to use learning-based 

approaches, such as deep learning and reinforcement learning, 

to solve vehicle-driving decision-making problems in highly 

dynamic environments. Long Short-Term Memory (LSTM) 

networks are effective in dealing with long-term dependencies, 

taking into account the behaviour and style of surrounding 

vehicles and the interrelationships between vehicles [6]. 

LSTM networks can also be used for pedestrian trajectory 

prediction in combination with attention mechanisms [7]. The 

PPO algorithm learns control strategies in a continuous 

motion planning space[8], simulates interactions with other 

vehicles, and solves the motion planning problem with 

multimodal driving intentions [9], and was used at 

unsignalised intersections in mixed traffic environments [10]. 

Raphael et al. proposed to learn pedestrian collision mitigation 

decision-making strategies for autonomous vehicles via deep 

reinforcement learning (DRL) to learn pedestrian collision 

mitigation decision-making strategies for autonomous 

vehicles [11]. However, deep learning has the drawbacks of 

inefficient sample usage and low robustness.  

Reinforcement learning usually models the problem as a 

Markov Decision Process (MDP), which is used to solve 

sequential decision problems. The optimal policy for the host 

vehicle can be obtained by evaluating the behaviour of the 

other participants in the MDP framework [12].The high 

dynamics and uncertainty of the driving environment mainly 

stem from the uncertainty of human drivers' intentions and 

noise from sensors, so the driving task is usually described as 

a partially observable Markov Decision Process (POMDP). 

Uncertain driving intentions of surrounding vehicles are often 

used as a hidden variable of POMDP to address the impact of 

prediction uncertainty on the driving strategy of the auto-

vehicle, which can be applied to intersection scenarios [13], 

expressway driving scenarios [14], and urban through-

congestion scenarios [15]. POMDP has difficulties in solving 

Markov decision processes involving multiple spaces or 

multiple behaviours. Moreover, reinforcement learning is 

prone to overfitting or local optimal solutions due to the 

disadvantage of reward function setting. 

Imitation learning enables fast optimisation of strategies 

by imitating expert demonstrations and is often used to solve 

problems where the reward function is difficult to define. Zhu 

et al. modelled pedestrian interaction at intersections and 

proposed a multi-task imitation learning framework for safe 

and efficient crossing at intersections [16]. Huang et al. 

proposed a vehicle interaction model by inverse 

reinforcement learning (IRL) to achieve accurate prediction of 

surrounding vehicle trajectories [17]. Wen et al. used IRL to 

derive reward learning for following driving behaviour and 

behavioural strategies that consider driving style in following 

behaviour [18]. 

1.3. Game theory-based approaches 

Game-theoretic approaches have been extensively studied in 

modelling vehicle interactions due to their stability and 

convergence. The decisions of host vehicle is influenced not 

only by the cost functions but also by the future strategies of 

interacting vehicles [19]. The host vehicle decision problem 

in lane changing scenarios usually uses game theory to 

analyse and model the interaction behaviour of vehicles[20-

22]. Zhang et al. establishes a game model using fusion model 

predictive control for forced lane change scenarios and 

proposes a method to evaluate the aggressiveness of other 

drivers, thereby maintaining a good balance between driving 

safety and intelligent decision-making [23]. In [24], an 

adaptive robust control strategy using the level-k game 

framework was used to model uncertainty during vehicle 

interaction in order to increase the safety of lane-changing 

behaviours in hybrid driving scenarios. Li et al. established a 

hierarchical inference game theory formulation that can be 

extended to multiple vehicles to model interactions between 

drivers and other participants in various driving scenarios [25].  
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In the process of gaming, the vehicle decision cost 

function directly affects the decision tendency of the game 

method. The challenge in modelling human-like decision-

making lies primarily in the complex interplay of uncertainties 

in human driving behaviour. In highly dynamic traffic 

scenarios, interactions among traffic participants increase the 

uncertainty in human driving behaviour.  

1.4. Contributions. 

The paper aims to design a human-like decision-making game 

theory method that incorporates human driving behaviour 

models for expressway lane change scenarios and enables 

vehicles to perform safe and efficient human-like decision-

making behaviours. For the quantitative analysis of human-

like behaviour, this paper combines a human-like driver 

model derived from maximum entropy inverse reinforcement 

learning with the Stackleberg game theory to establish a 

decision-making model that simulates more realistic traffic 

flow interaction behaviour. The main contributions of this 

paper are as follows: 

• Modelling human driving behaviour using maximum 

entropy inverse reinforcement learning algorithm on 

next generation simulation (NGSIM). 

• Establish the cost function of human-like lane change 

behaviour based on the derived real human driving 

behaviour model and construct the comprehensive 

decision-making cost function using the Stackleberg 

non-cooperative game. 

• Implement human-like driving decision-making 

behaviour in expressway lane-changing scenarios 

using the Stackelberg game. 

1.5. Paper Organization 

The remainder of the paper is organized as follows: Section 

2 introduces the general architecture of the human-like 

driving decision-making model. In Section 3, the human-like 

driving behaviour model based on maximum entropy inverse 

reinforcement learning is presented. Subsequently, Section 4 

discusses the Stackelberg game theory interaction model. 

Section 5 covers the evaluation and analysis of the proposed 

model's performance. Finally, the summary of this research 

work is drawn in Section 6. 

2. FRAMEWORK 

Figure 2 describes the proposed human-like decision-making 

framework for autonomous vehicles in expressway lane 

change scenarios, considering vehicle interactions. First, key 

information such as ID, position, and state of the interacting 

vehicles is obtained from the natural driving dataset NGSIM. 

Then, the interaction scenario's key data is calibrated and 

preprocessed, and a probability-based inverse reinforcement 

learning method (maximum entropy inverse reinforcement 

learning) is used to model real lane change behaviours. This 

method learns human lane change behaviours under multi-

participant interactions and derives the parameters of human 

feature vectors. Thirdly, a non-cooperative game optimisation 

problem is constructed based on the interaction process 

between the main vehicle and the obstacle vehicle during lane-

changing. The design constructs a comprehensive decision 

cost function based on safety, comfort, and human-like 

characteristics for Nash equilibrium solving. This results in 

human-like lane change decision-making behaviour for 

autonomous vehicles in expressway scenarios. 

 
Fig.2. Algorithmic framework for human-like driving decisions 

3. HUMAN-LIKE DRIVING MODEL 

The inverse reinforcement learning method interprets the 

Markov decision-making process as the interaction between the 

agent and the environment, aiming to solve the mapping 

relationship between the driver's behavioural characteristics 

and the driving environment, which is essentially the agent's 

behavioural strategy. We assume that the reward function for 

the vehicle expressway lane change behavior is linear and is a 

weighted sum of the selected features. So that the reward 

function 𝑟(𝑠𝑡) for the 𝑠𝑡 state can be set as: 

𝑟(𝑠𝑡) = 𝛌
𝑇𝐟(𝑠𝑡), (1) 

where 𝛌𝑇 = [𝜆1, 𝜆2, 𝜆3, . . . 𝜆𝐾]
 is a k-dimensional weight 

vector, f( 𝑠𝑡 )= [𝑓1(𝑠𝑡), 𝑓2(𝑠𝑡), … , 𝑓𝐾(𝑠𝑡)]
𝑇  are the feature 

vector extracted in the state 𝑠𝑡 . The selection of feature 

vectors is based on the definition of the internal reward 

function for driving behavioura. Therefore, the reward 

function of the trajectory is: 

𝑅(𝜏) = ∑𝑟(𝑠𝑡)

𝑡

= 𝛌𝑇 ∑𝐟(𝑠𝑡)

𝑠𝑡∈𝜏

, (2) 

where 𝐟𝜏  denotes the accumulative characteristics of 

trajectory 𝜏. The feature information is specified in Section 4. 

The natural dataset 𝒟 = {𝜏1, 𝜏2, … 𝜏𝑁} contains information 

about N trajectories. The problem of solving the maximum 

entropy model is equivalent to solving the optimization 

problems. The optimization problem is formulated as follows: 

max
𝑝
∑ − 𝑃(τ|𝛌)log𝑃(τ|𝛌)

 

𝜏∈𝒟

,

subject to：

{
 
 

 
 ∑𝑃(τ|𝛌)𝐟𝜏

 

𝜏

= 𝐟

∑𝑃(τ|𝛌)

 

𝜏

= 1

, (3)

 

where P(𝜏|𝛌) represents the state τ = {𝑠1, 𝑠2, 𝑠3, ⋯ , 𝑠𝑇} 
probability of a trajectory under the parameter 𝛌 . 𝐟𝜏 =
∑ 𝐟(𝑠𝑡)𝜏  represents the feature expectation of this trajectory，

𝐟  represents the characteristic expectation of the expert 
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trajectory. Thus, the optimization problem of Eq. (3) can be 

transformed into the following expression: 

min
𝑝
∑𝑃(𝜏|𝝀)log𝑃(𝜏|𝝀).

𝜏∈𝒟

(4) 

The solution of the optimization problem is the solution 

of the maximum entropy inverse reinforcement learning 

model and also the solution of the reward function sought. We 

define a Lagrange function 𝐿(𝑃, 𝝁): 

𝐿(𝑃, 𝝁) =∑𝑃(𝜏|𝝀) log𝑃(𝜏|𝝀)

𝜏∈𝒟

+ 𝜇0 (1 −∑ 𝑃(𝜏|𝝀)
𝜏

)

+∑ 𝜇𝑖 (𝑓𝑖 −∑ 𝑃(𝜏|𝝀)𝑓𝜏,𝑖
𝜏

)
𝑛

𝑖=1
, (5)

 

where 𝜇0, 𝜇1, 𝜇2, … , 𝜇𝑛  is the Lagrange operator, and n 

denotes the number of features in the feature vector 𝑓(𝜏). The 

original optimization problem of Eq. (4) is expressed as: 
min
𝑝

max
𝝁
𝐿(𝑃, 𝝁) . (6)

Its dyadic expression is： 

max
𝝁

min
𝑝
𝐿(𝑃, 𝝁) . (7) 

The Lagrange function 𝐿(𝑃, 𝝁)is convex function which 

can be used to solve the dual problem. 

Ψ(𝝁) = min
𝑝
𝐿(𝑃, 𝝁) = 𝐿(𝑃𝝁, 𝝁). (8) 

𝑃𝝁 = argmin
𝑝

 𝐿(𝑃, 𝝁) = 𝑃𝝁(𝜏). (9) 

Combined with the formula ∑ 𝑃(𝜏|𝝀) = 1𝜏 ，the partial 

derivative of the Lagrange function 𝐿(𝑃, 𝝁) with respect to 

𝑃(𝜏|𝝀): 
𝜕𝐿(𝑃, 𝝁)

𝜕𝑃(𝜏|𝝀)
= ∑(log𝑃(𝜏|𝝀) + 1)

𝜏∈𝒟

−

∑𝜇0 −∑ 𝜇𝑖∑𝑓𝜏,𝑖
𝜏

𝑁

𝑖=1
𝜏

=∑(log𝑃(𝜏|𝝀) + 1 − 𝜇0 − 𝜇𝑖∑𝑓𝜏,𝑖
𝜏

)

𝜏∈𝒟

. (10)

 

𝑃(𝜏|𝝀) = exp(𝜇0 − 1) ⋅ exp(∑𝝁𝑖𝑓𝜏,𝑖
𝜏

) . (11) 

𝑍𝝁(𝜏) =∑ exp (∑ 𝜇𝑖𝑓𝜏,𝑖
𝑛

𝑖=1
)

𝜏

≈∑ exp(𝝁𝑇𝑓
𝜏
𝑖)

𝑁

𝑖=1
. (12) 

𝑃(𝜏|𝝀) =
1

𝑍𝝁(𝜏)
exp (∑ 𝝁𝑖𝑓𝜏,𝑖

𝑁

𝑖=1
) . (13) 

𝑃(𝜏|𝝀) =
1

∑ exp(𝝀𝑇𝑓
𝜏
𝑖)𝑁

𝑖=1  
exp(𝝀𝑇f(𝑠𝑡)) . (14) 

Where 𝑃(𝜏|𝝀)  denotes the probability of trajectory 𝜏 
under parameter 𝝀, 𝑍𝝁(𝜏) denotes normalization factor，𝑓

𝜆
𝑖 

denotes the eigenvectors of the trajectory, N denotes the 

number of generated trajectories. Note that the partition 

function is easy to solve when the space in which it is located 

is low-dimensional and predictable. However, the state space 

in which it is located is high-dimensional and dynamic, 

making solving the partition function very complicated. 

The solution problem of maximum entropy inverse 

reinforcement learning is equivalent to the constrained 

optimization problem. The maximum entropy model is 

subjected to great likelihood estimation: 

max
𝝁
Ψ(𝝁) = max

𝝁
∑ log

𝜏∈𝒟
𝑃(𝜏|𝝀) . (15) 

Combine Eq. (14) and Eq. (15) to obtain the objective 

function: 

ℒ(𝝀) =∑[𝝀𝑻𝑓𝜏  −  log∑ exp ((𝝀𝑻𝑓
𝜏
𝑖)

𝑁

𝑖=1

]

𝜏∈𝒟

. (16) 

We optimize Eq. (16) via the gradient approach. 

▽𝝀 ℒ(𝝀) = ∑ [𝑓𝜏  −  ∑
exp ((𝜆𝑇𝑓

𝜏
𝑖)

∑ exp ((𝜆𝑇𝑓
𝜏
𝑖)

𝑀
𝑖=1

𝑀
𝑖=1 𝑓

𝜏
𝑖]𝜏∈𝒟 . (17) 

▽𝝀 ℒ(𝝀) =∑[𝑓𝜏  −  ∑𝑃 (𝜏
𝑖
|𝝀)

𝑀

𝑖=1

𝑓
𝜏
𝑖]

𝜏∈𝒟

. (18) 

Where 𝑓𝜏  is the trajectory feature vector of the human 

driver’s driving, and 𝜏
𝑖
 is the trajectory generated based on 

the initial conditions of the trajectory 𝜏. In the gradient update, 

we add L2 regularization on the weights into the objective 

function. L1 regularization is suitable for sparse coding and 

feature selection. However, L2 regularization reduces the 

model parameter complexity and slows down overfitting. 

Then, the objective function and gradient are: 

ℒ(𝝀) =∑[𝝀𝑇𝑓𝜏  −  log∑exp ((𝝀𝑇𝑓
𝜏
𝑖)

𝑀

𝑖=1

]

𝜏∈𝒟

− 𝛾𝝀2, (19) 

▽𝝀 ℒ(𝝀) =∑[𝑓𝜏  −  ∑𝑃 (𝜏
𝑖
|𝝀)

𝑀

𝑖=1

𝑓
𝜏
𝑖]

𝜏∈𝒟

− 2𝛾𝝀, (20) 

where 𝛾  is the regularization parameter and 𝛾 > 0 . 

objective function gradient is expressed as the sum of the 

expected eigenvalue difference and the regularization gradient. 

4. INTERACTIVE HUMAN-LIKE DECISION-MAKING 

The human driver's lane changing behaviour is the drivers' 

decision-making behaviour after considering the host vehicle 

state (including speed, acceleration, heading angle, etc.), the 

state of the surrounding vehicles, the predicted trajectory 

information. This process is recognised as the interaction 

process between the host vehicle and the environment. The 

decision-making process made by the vehicles during the 

interaction is equivalent to the optimal solution process of the 

game model between the vehicles. 

We choose the Stackelberg game method to model the 

dynamic game between the interacting parties in the non-

cooperative game method. In this paper, according to the 

vehicle location information and driving environment, we 

designate the vehicle identity as either a leader or a follower in 

the game. The game process is dynamic, and the decision-

making process of each vehicle adjusts according to the changes 

in revenue. The Nash equilibrium is eventually reached through 

the iterative process, forming the optimal strategy that 

minimizes the cost (or maximizes the benefit) for multiple 

participants. 
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Fig.3. Lane Change Scenario 

TABLE 1. Cost magnitude of different interaction behaviours 

action cost 
obstacle vehicle 

accelerate yield 

host 

vehicle 

change lane 5,1 3,2 

stay 6,2 4,3 

 

Figure 3 shows a simple driving environment we set up for 

the lane-changing behaviour. A low-speed vehicle is assumed 

to exist in front of the host vehicle, which needs to decide 

whether to change lanes or not. Usually, we consider the host 

vehicle as car 1, and the obstacle vehicle as car 2. Table 1 lists 

the example gains for all scenarios during the game between the 

host vehicle and the obstacle vehicle, with specific number of 

costs. The host vehicle chooses the optimal strategy by 

predicting the action of the obstacle vehicle. The host vehicle is 

the leader in the Stackelberg game and can choose to make the 

left lane change or stay in lane. The obstacle car is the follower 

and responds to the leader. It is important that the driving 

strategies of both vehicles are rational and based on the 

principle of cost minimization. For example, when the host 

vehicle chooses to stay in lane, the obstacle vehicle chooses to 

accelerate in response. Similarly, when the host vehicle chooses 

to change lanes, the obstacle vehicle chooses to yield. In this 

example, the optimal strategy of the game is for the host vehicle 

to change lanes, and for the obstacle vehicle to yield, which is 

the result of the predictions made by the main vehicle about the 

behaviours of the obstacle vehicle. 

4.1. Cost function design. 

The feasibility evaluation of the host vehicle lane change 

behaviour is quantified through a cost function, typically 

encompassing driving factors such as safety, traffic efficiency, 

ride comfort, and spatial benefits of lane-changing. The 

dynamic decision-making process of lane-changing can be 

seen as a dynamic game among participants with varying 

driving strategies. This study considers a combined cost 

function incorporating driving safety, ride comfort, and 

human likeness in driving behaviour for Nash equilibrium 

determination. 

The safety cost function of vehicle travel during lane-

changing behaviour is manifested in both lateral and 

longitudinal directions. When the vehicle opts to keep the lane, 

the cost function primarily concerns the longitudinal cost. The 

formula for the safety cost function is: 
𝑈saf = 𝛼𝑈lat + 𝑈log. (21) 

𝑈log  and 𝑈lat  in the above equation denote the 

longitudinal and lateral safety cost functions, respectively. 𝛼 

denotes the driving decision-making behaviour of the host 

vehicle, 𝛼 ∈ {1,0}: = {𝑐ℎ𝑎𝑛𝑔𝑒 𝑙𝑎𝑛𝑒, 𝑘𝑒𝑒𝑝 𝑙𝑎𝑛𝑒}. 
The safety cost function in the transverse direction is 

defined utilizing the split-axis theorem. Vehicles are 

presumed to be rectangles of specific length and width, and 

lateral safety cost function between vehicles is evaluated 

based on the overlap between these two rectangles. The 

positions of the rectangles representing the two vehicles are 

illustrated in Fig.4. The probability of collision is computed 

as: 

𝑈lat = exp(−√
𝐷col,v

2 + 𝐷col,u
2

2
) . (22) 

𝐷col,v = √𝐷proj(v,1)
2 + 𝐷proj(v,2)

2. (23) 

𝐷col,u = √𝐷proj(u,1)
2 + 𝐷proj(u,2)

2. (24) 

𝐷proj(v,i) =

{
 
 

 
 min (|

𝑣𝑖 ∙ 𝑣

𝑣𝑖
|)            𝑖𝑓∀

𝑣𝑖 ∙ 𝑣

|𝑣𝑖|
< 0

min (|
𝑣𝑖 ∙ 𝑣

𝑣𝑖
| − |v𝑖|)   𝑖𝑓∀

𝑣𝑖 ∙ 𝑣

|𝑣𝑖|
> |𝑣𝑖|

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (25) 

Where 𝐷proj(v,i)  denotes the gaps along the separating 

axis, 𝑣𝑖  represents a vector defining the rectangle and 𝑣 

represents the vector to the opposite corner. Similarly, 

𝐷proj(u,i)  is calculated in the same way. 𝑈lat  in the above 

equation represents the index value of the collision with 

𝑈lat ∈ [0,1]. A larger separation axle clearance of the vehicle 

corresponds to a Ulat value close to 0, indicating greater safety.  

 
Fig.4. Vehicle position diagram 

 

We define the longitudinal safety cost function based on 

information such as relative speed of interacting vehicles and 

longitudinal gap. 

𝑈log = 𝑘saf
v 𝜆𝑣(∆𝑣x)

2 +
𝑘saf
x

[(∆𝑋x)
2 + 𝜖]

. (26) 

∆𝑣𝑥 = 𝑣f,x − 𝑣r,x. (27) 
∆𝑋𝑥 = 𝑋f − 𝑋r − 𝐿f. (28) 

𝜆𝑣 = {
0  𝑣f,x ≥ 𝑣r,x
1  𝑣f,x < 𝑣r,x

. (29) 

where 𝑣f,x and 𝑣r,x denote the longitudinal velocities of 

the front and rear vehicles, 𝑋f and 𝑋r denote the longitudinal 

positions of the front and rear vehicles, respectively. 𝑘saf
v  and 

𝑘saf
x  are the correlation weight coefficients of speed and 

distance. 𝜖 is a very small value to avoid the case where the 

denominator is zero; 𝐿f is the length of the front vehicle. The 

longitudinal positional relationship of the vehicle is shown in 

Fig. 5. 

 
Fig.5. Vehicle longitudinal position relationship 
 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

https://context.reverso.net/%E7%BF%BB%E8%AF%91/%E8%8B%B1%E8%AF%AD-%E4%B8%AD%E6%96%87/principle
https://context.reverso.net/%E7%BF%BB%E8%AF%91/%E8%8B%B1%E8%AF%AD-%E4%B8%AD%E6%96%87/minimization


6 

The ride comfort is related to lateral and longitudinal 

acceleration, and the cost function expression for comfort is: 

𝑈com = 𝑘x,com(𝑎x)
2 + 𝑘y,com(𝑎y)

2
, (30) 

where 𝑘x,com  and 𝑘y,com  are the weight coefficients of 

transverse and longitudinal acceleration, 𝑎x  and 𝑎y  are the 

magnitude of transverse and longitudinal acceleration. 

Referring to the trajectory reward function in Eq. (2), we 

define the human-like cost function as: 

𝑈hum = 𝝀𝑇∑𝐟(𝑠𝑡)

𝑠𝑡∈𝜏

. (31) 

𝐟(𝑠𝑡) = [𝑓𝑣, 𝑓𝑎𝑥, 𝑓𝑎𝑦 , 𝑓𝑗𝑥, 𝑓𝑇𝐻𝑊𝐹 , 𝑓𝑇𝐻𝑊𝐵, 𝑓𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛]
𝑇
. (32) 

The selection of the trajectory features is based on the 

human driving state. The selection and definition of features 

is presented in section 5.1.  

In summary, the cost function of the host vehicle is a 

linear combination of integrated driving safety and human-

like properties, expressed as:   
𝑈1 = 𝑤saf𝑈saf + 𝑤com𝑈com +𝑤eff𝑈eff + 𝑤hum𝑈ℎ𝑢𝑚 . (33)  

𝑈2 = 𝑤saf𝑈saf + 𝑤com𝑈com + 𝑤eff𝑈eff. (34) 

where 𝑤saf , 𝑤com , 𝑤eff ,𝑤hum  represent the weighting 

coefficients of the safety, comfort, effective and human-like 

cost functions, respectively. 𝑈1  represents the integrated 

decision cost function containing the human-like cost function. 

And 𝑈2 is the cost function considering without human-like 

cost function. 

4.2. Non-cooperative decision making based on 
Stackelberg equilibrium. 

In the Stackelberg game, vehicles adhere to the principle of 

cost minimization when making lane change decisions. The 

followers respond to the leader's actions based on their cost 

functions and the influence of the leader's behaviour. 

Therefore, the Stackelberg game problem is transformed into 

a two-layer optimization problem. The decision made by the 

leader affects the behaviour of the follower, but the leader 

cannot intervene in the follower's behavioural decision. 

Similarly, the follower's choice of strategy cannot alter the 

leader's decision. 

A common lane-change scenario involves an interaction 

game between two participants, with the vehicle lane-change 

interaction game illustrated in Fig. 3. The optimization 

problem for the two-vehicle game is formulated as: 

𝛾1
∗
= (𝑎1

∗, 𝑐1
∗) = argmax

( min
(ax2
hv,c2)∈γ

2
𝑈1(𝑎1, 𝑐𝑙 , 𝑎2)) . (35)

 

 

𝛾2(𝑎1, 𝑐1) ≜ {𝜉 ∈ 𝛤
2:

𝑈2(𝑎1, 𝑐𝑙 , 𝜉) ≥ 𝑈2(𝑎1, 𝑐𝑙 , 𝑎2), ∀𝑎2, 𝑐2) ∈ 𝛤
2}. (36)

 

subject to： 

0 ≤ 𝑉𝑥,𝑖 ≤ 𝑉x,max, 𝑖 = 1,2. (37) 
𝑎min ≤ 𝑎𝑥,𝑖 ≤ 𝑎max, 𝑖 = 1,2. (38) 

Where 𝑎1 denotes the possible acceleration, 𝑎1
∗ denotes 

the optimal acceleration of the host vehicle, 𝑐𝑙 shows if car 1is 

changing lane, 𝑐𝑙
∗ shows if changing lanes is beneficial for car 

1. 𝛾𝑖 , 𝑖 = 1,2 denotes the behavioural decision of the vehicle. 

𝑈𝑖 , 𝑖 = 1,2  denotes the total cost function of the vehicle. 

𝛾2(𝑎1, 𝑐𝑙)  denotes the optimal decision of car 2 under the 

influence of car 1. 𝛤𝑖 , 𝑖 = 1,2 is the set of possible actions of 

the vehicle.  

5. TESTING RESULTS AND PERFORMANCE 

EVALUATION  

This section focuses on verifying the feasibility and 

effectiveness of the human-like driving decision-making 

algorithm. We first perform data preprocessing. Next, we use 

the dataset to validate the effectiveness of the maximum 

entropy inverse reinforcement learning algorithm. Finally, we 

test and evaluate the human-like driving decision-making 

algorithm in a typical interaction scenario. 

5.1. Data preparation and processing. 

The NGSIM dataset is a publicly available dataset developed 

and released by the National Highway Traffic Safety 

Administration (NHTSA) of the U.S. Department of 

Transportation for the study of road traffic flow and driving 

behaviour. The dataset provides researchers with real road 

traffic information that can be used to simulate and analyse 

issues related to driving behaviour, traffic flow, and road 

safety, which is one of the indispensable fundamentals for the 

study of human-like driving decision-making algorithms. 

In this paper, we use the NGSIM dataset to process and 

analyse the U.S. Highway 101. The structure and area 

recorded in the US-101 dataset are schematically shown in 

Fig.6. The highway section recorded by the dataset is about 

2100 foot (about 640 m) and contains five lanes (lanes 1 to 5), 

with lane 6 connecting lanes 7 and 8 at both ends, which are 

the merge-in and merge-out lanes, respectively. The camera 

used for data acquisition records the traffic state of vehicles 

travelling in the form of snapshots according to a sampling 

period of 100ms (10 Hz). The dataset records information, 

including global and local position information, speed, and 

type of vehicles. This paper focuses on the human-like 

decision-making problem in the vehicle lane change scenario. 

Thus, the driving behaviour of vehicles on ramps is not 

considered. We randomly selected three hundred vehicle 

trajectories from the five main lanes as a secondary sampling 

dataset to serve as reward function learning samples for 

human-like driving. 

 
a) 

 
b) 

Fig.6. Dataset Preparation: a) US-101 dataset; b) Road structure schematic 

 

Human driving trajectories are influenced by the driver's 

conscious control and the surrounding environment. For 

example, during driving, the driver's intent to accelerate and 

the level of safety threat from surrounding vehicles affect the 
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magnitude of vehicle acceleration. Therefore, the selection of 

trajectory characteristic variables will be considered in terms 

of efficiency, safety and comfort of the vehicle. Specifically, 

we chose speed 𝑣 to represent vehicle travelling efficiency, 

lateral acceleration 𝑎𝑥 , longitudinal acceleration 𝑎𝑦  and 

longitudinal jerk 𝑗𝑥to represent comfort; and safety indicator 

was represented by the headways (THWB and THWF) and 

collision. 
𝑓𝑣(𝑠𝑡) = 𝑣(𝑡) (39) 

𝑓𝑎𝑥(𝑠𝑡) = |𝑎𝑥(𝑡)| (40) 

𝑓𝑎𝑦(𝑠𝑡) = |𝑎𝑦(𝑡)| (41) 
𝑓𝑗𝑥(𝑠𝑡) = |𝑗𝑒𝑟𝑘𝑥(𝑡)| = |𝑎�̇�(𝑡)| (42) 

𝑓𝑇𝐻𝑊𝐹(𝑠𝑡) =
𝑋𝑓(𝑡) − 𝑋ℎ𝑜𝑠𝑡(𝑡)

𝑣ℎ𝑜𝑠𝑡(𝑡)
(43) 

𝑓𝑇𝐻𝑊𝐵(𝑠𝑡) =
𝑋ℎ𝑜𝑠𝑡(𝑡) − 𝑋𝑟(𝑡)

𝑣𝑟(𝑡)
(44) 

𝑓𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(𝑠𝑡) = {
1   𝑖𝑓 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(45) 

Where 𝑥𝑓(𝑡) is the longitudinal position of the nearest 

front vehicle, 𝑋ℎ𝑜𝑠𝑡(𝑡)  and 𝑣ℎ𝑜𝑠𝑡(𝑡)  are the position and 

speed of the host vehicle, 𝑋𝑟(𝑡) and 𝑣𝑟(𝑡) are the longitudinal 

position and speed of the nearest rear vehicle, respectively. 

𝑓𝑇𝐻𝑊𝐹  and 𝑓𝑇𝐻𝑊𝐵  represent the time headway between the 

host vehicle and the front and rear vehicles, respectively.  

Note that the transverse and longitudinal driving models 

of surrounding vehicles use MOBIL (minimize overall 

braking induced by lane change) and IDM (intelligent driving 

model) to predict their future behaviours.  

5.2. IRL model analysis. 

In the process of vehicle lane-changing, we focus on lateral 

position change and longitudinal speed change to simplify the 

algorithm. Therefore, the vehicle decision sampling space is 

denoted as Φ = { 𝑣𝑥𝑜 , 𝑦𝑜  } .And the transverse information 

collection only records its lane change information. The 

sample of the lateral lane change is {𝑦𝐿 , 𝑦, 𝑦𝑅 }, where 𝑦 

represents the initial lateral position, 𝑦𝐿 and 𝑦𝑅  are the 

position of the left lane and right lane, respectively. The 

simulated trajectories of the vehicle are generated using 

polynomial curves, where the trajectory horizons are 5 s. The 

driving model IDM parameters of the surrounding vehicles 

are set as follows: desired velocity 𝑣 = 𝑣current m/s, 

maximum acceleration 𝑎max = 5 m/s2, and comfortable 

acceleration 𝑎com = 3m/s2, minimum desired spacing 𝑠0 =
1m. 

The initial values of the parameter vectors of the IRL 

algorithm are randomly sampled using a normal distribution 

with a mean of 0 and a standard deviation of 0.5. The 

performance of traditional deep learning optimization 

algorithms, such as gradient descent and stochastic gradient 

descent, is often limited by fixed learning rates and parameter 

update strategies. The parameter optimization in this study 

uses an adaptive learning rate optimization algorithm, in 

which the optimization algorithm parameters are: the 

regularization parameter 𝛾 = 0.01, the learning rate 𝛼=0.05, 

the exponential decay rate of the first and second order 𝛽1=0.9, 

𝛽2 = 0.99.  

The raw data of a vehicle’s driving trajectory is divided 

into multiple short trajectories with horizons of 5 seconds for 

learning. Thirty-five trajectory data will be randomly selected 

from the short trajectories to train the parameters of the reward 

function. In contrast, the remaining trajectory data will be 

used as the test data. During the training process, the 

difference between the feature expectations of the human 

driving trajectory and the simulated trajectory is used to 

establish the gradient for the iterative updating of the cost 

function parameters. The final displacement error (FDE) and 

the average displacement error (ADE) between the human 

driving trajectory and the simulated trajectories are used as the 

human-likeness evaluation indexes. The training process is 

illustrated in Figure 7. 

 
a)                                                        b) 

Fig.7. Training process: a) plot of trajectory feature expectation difference; b) 

plot of human-likeness. 

 

Fig. 7(a) plots the trajectory feature expectation 

difference curves between the IRL model and the real 

trajectory during the iteration process. The human-like driving 

strategy obtained by IRL model could be close to the real 

trajectory data and the differences between them converge to 

0. Fig. 7(b) plots the human-likeness of trajectories curve, 

where the parameters of the learned reward function are 

gradually adjusted as the training period increases, allowing 

the IRL model to better fit human driver behaviour. Fig.7 

indicate that the IRL algorithm is learning human-like 

strategies that increasingly resemble human-driving strategies 

with more iterations. The experimental results demonstrate 

the feasibility of the IRL algorithm in enabling the learning of 

human-like decisions.  

5.3. Human-like driving decision-making algorithms 

In this paper, we designed two simple expressway lane-

change scenarios to analyse and evaluate the effectiveness and 

human-like nature of the lane-change behaviour of this 

algorithm. The scenario 1 is a two-lane highway with a lane 

width of 4 meters. The scenario 2 is a merger scenario. The 

initial positions and initial speeds of each vehicle are shown 

in Fig.8. As shown in Fig. 8(a), the driver of the host vehicle 

intends to change to the adjacent lane and interact with the 

obstacle vehicle, when the ahead vehicle moves slowly. 

Similarly, scenario 2 is the ramp import where the host vehicle 

interacts with the obstacle vehicle on the main road when it 

cuts into the adjacent lane. All driving scenarios were 

constructed and tested on the MATLAB-Simulink platform. 

 
a) 
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b) 

Fig.8. Expressway lane change scenario traffic information map: a) scenario 

1; b) scenario 2. 
 

The longest common subsequence (LCSS) judging 

metric is introduced to quantify the similarity of lane change 

trajectories. Define two trajectories 𝜏1 = {𝑝1, 𝑝2, . . . , 𝑝𝑛} and 

𝜏2 = {𝑝1
, , 𝑝2

, , . . . , 𝑝𝑚
, }  between the similarity function SF as 

 

 

 

well as for:
𝐿𝐶𝑆𝑆𝜀(𝜏1, 𝜏2)

𝑆𝐹(𝜀, 𝜏1, 𝜏2) = , (46)
min(𝑛, 𝑚)

where
𝐿𝐶𝑆𝑆𝜀(𝜏1, 𝜏2) =

{

0，𝑖𝑓 𝑛 = 0 𝑜𝑟 𝑚 = 0

1 + 𝐿𝐶𝑆𝑆(𝑅𝑒𝑠𝑡(𝜏1), 𝑅𝑒𝑠𝑡(𝜏2)), 𝑖𝑓𝑑(𝐻𝑒𝑎𝑑(𝜏1),𝐻𝑒𝑎𝑑(𝜏2)) ≤ 𝜀

max(𝐿𝐶𝑆𝑆𝜀(𝜏1, 𝐻𝑒𝑎𝑑(𝜏2)), 𝐿𝐶𝑆𝑆𝜀(𝐻𝑒𝑎𝑑(𝜏1), 𝜏2)), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (47)
 

where(𝐻𝑒𝑎𝑑(𝜏1), 𝐻𝑒𝑎𝑑(𝜏2)) = √(𝑥𝑛 − 𝑥𝑚)2 + (𝑦𝑛 − 𝑦𝑚)2 
represents the distance between two points 𝑝𝑛 = (𝑥𝑛 , 𝑦𝑛) and 

𝑝𝑚
, = (𝑥𝑚 , 𝑦𝑚)on the trajectory. 𝜀  represents the matching 

similarity threshold. The output result interval of the similarity 

function SF is [0,1], which represents the trajectories have no 

similarity at all and are identical, respectively. 

In this study, we select 10 volunteers with driver's 

licenses and driving experience to conduct lane change 

driving experiments in scenario 1 and scenario 2. Each 

volunteer performs 10 repetitions of lane changing behavior, 

and formed a comprehensive lane changing trajectory curve 

used to reflect the lane changing driving behavior of each 

volunteer, as shown in Fig. 9.  

 
Fig.9. synthetic trajectory 

 

 
a)                                                          b) 

Fig.10. Track diagram of lane change driving experiment: a) scenario 1; b) 
scenario 2. 

 

The results of the lane-changing experiments in the two 

scenarios are shown in Figure 10, where the synthetic 

trajectories of 10 volunteers are represented by dashed lines 

of 10 different colors.as shown in Fig. 10. We record each 

trajectory location information and calculate similar function 

separately.  

In real traffic driving environments, the social behaviour 

of the obstacle vehicle affects the decision-making and 

planning of the host vehicle. Therefore, this study simulates 

the obstacle vehicle interaction in a real traffic environment 

by defining different driving styles for the obstacle vehicle. In 

obstacle vehicle modelling, different driving styles are 

expressed by setting different parameter weights 

𝑤𝑠𝑎𝑓 , 𝑤𝑒𝑓𝑓 , 𝑤𝑐𝑜𝑚. The details of the three driving styles are 

shown in Table 2. 

TABLE 2. Weighting coefficients of the cost function for different 
driving styles 

Weighting 

coefficients 

Driving style 

aggressive normal cautions 

𝑤𝑠𝑎𝑓 20% 50% 75% 

𝑤𝑒𝑓𝑓 70% 25% 10% 

𝑤𝑐𝑜𝑚 10% 25% 15% 

 

To verify the driving ability of the human-like driving 

decision-making algorithm in expressway lane change 

scenarios under the influence of social vehicles with different 

driving styles, we use 𝑈1 and 𝑈2 from Eq. (33) and Eq. (34), 

respectively, for the lane-changing decision-making in 

expressway scenarios. Table 3 show the human-like 

experimental results. 

TABLE 3. Results of simulation 

Driving style 

Cost 

funct

ion 

SF (scenario 1) SF (scenario 2) 

range average range average 

Aggressive 
𝑈1 0.65~0.70 0.68 0.62~0.70 0.65 

𝑈2 0.62~0.68 0.65 0.61~0.66 0.63 

Normal 
𝑈1 0.69~0.78 0.73 0.65~0.74 0.69 

𝑈2 0.65~0.71 0.69 0.62~0.68 0.64 

Conservative 
𝑈1 0.65~0.72 0.71 0.63~0.73 0.68 

𝑈2 0.61~0.69 0.65 0.60~0.68 0.62 

 

Faced with three driving styles in lane-changing 

experiments, 10 volunteers performed lane-changing driving 

experiments respectively. The experimental results show that 

different driving styles of the obstacle vehicle led to different 

interaction outcomes for the main vehicle, resulting in various 

lane-changing behaviours. According to the lane-changing 

trajectories of the main vehicle under the influence of the three 

driving styles, it can be seen that the lane-changing 

trajectories account for risk aversion. The aggressive driving 

style prioritizes efficiency and reduces the comfort and safety 

weighting in the cost function. In contrast, obstacle vehicles 

with conservative driving styles focus more on safety and 

driving comfort, leading to interaction lane-change results 

where the primary vehicle has faster lane-change acceleration. 

The interaction results of the obstacle vehicle with a normal 

driving style fall between the aggressive and conservative 

types.  

As shown in the experimental results, the host vehicle 

can achieve make safe and efficient lane-changing decisions 

under the influence of the different social behaviours of 

surrounding vehicles. Moreover, the game algorithm, which 
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includes the human-like driving decision cost function, can 

realize human-like trajectories in lane-changing decisions. 

6. CONCLUSIONS 

In this paper, we set out to find a driving decision algorithm 

that is more human-like and applicable to highly dynamic, 

multi-participant interaction highway lane-changing scenarios. 

The method is validated and analysed for effectiveness 

through simulation. We use the inverse reinforcement 

learning algorithm to construct the cost function for human-

like decision-making and combine the safety, comfort, and 

other basic cost functions to form a comprehensive decision 

in a lane change decision game. The Stackelberg game 

approach is employed to address the non-cooperative 

decision-making challenges posed by varying driving styles 

in social vehicle interactions. The algorithm demonstrates 

strong effectiveness and robustness in handling different 

interaction vehicle styles.  
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