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ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

Design of fuzzy dynamic decoupler for a class
of two-inputs two-outputs nonlinear systems

Szymon KRÓL∗ and Paweł DWORAK

West Pomeranian University of Technology, Szczecin, Poland

Abstract. This paper deals with the problem of designing a dynamic decoupler for a class of two-inputs two-outputs nonlinear MIMO systems
with experimentally modeled dynamics. The work describes the well-known linear theory of dynamic decoupling of TITO plants and discusses
problems related to its application to nonlinear systems. The solution of constructing a fuzzy dynamic decoupler with two possible approaches is
proposed. The paper gives a practical example of the synthesis of such a system for the air heater, which is an example of nonlinear thermal plant.

Keywords: dynamic decoupling; TITO plant; nonlinear plant; experimental modeling; fuzzy logic.

1. INTRODUCTION
Dynamic decoupling of multidimensional multiple-inputs, mul-
tiple-outputs MIMO dynamic plants is a demanding objective
in control systems design, studied by many researchers over the
past years. Achieving so-called autonomization of the system,
i.e. eliminating the coupling effects between the inputs and the
outputs, is one of the main requirements for the control system
and proves to be a challenging task in case of nonlinear plants.
In [1] the problem of decoupling the multidimensional nonlinear
system was studied, where many linear controllers were derived
and adaptive controller structure was discussed. The controllers
were designed for different linear models obtained from the
linearization of the nonlinear model around adopted operat-
ing points of the plant. The possible methods of switching the
controllers were proposed in [2], utilizing Takagi-Sugeno fuzzy
rules. These studies proved, that the decoupling of nonlinear sys-
tems requires such adaptive controller structure, since classical
approaches to this task base on linear systems theory. Moreover,
for nonlinear systems it is more likely to consider minimizing
cross-coupling influences rather than obtaining complete decou-
pling.

Due to their uncomplicated structure, the very common and
widely studied subgroup of two-inputs, two-outputs TITO mul-
tidimensional systems allows for much simpler decoupling tech-
niques, compared to general MIMO decoupling algorithms [3].
It is still an open question how to apply linear decoupling meth-
ods to nonlinear TITO systems, whose dynamics have been
experimentally identified as a set of linear models and the pro-
posal of such an adaptive system is the main motivation of this
paper, in which the fuzzy dynamic decoupler is proposed. The
work describes a suitable method for experimental identification
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of the nonlinear TITO plant as well as the fuzzy decoupler struc-
ture with possible intuitive or simplified approach for the design
of the fuzzy logic systems. The two methods differ in terms of
performance, with the simplified approach being slightly worse.
The proposed algorithm and its effectiveness are further illus-
trated with an application for the air heater system, which is an
example of nonlinear thermal plant. The rest of this paper is
organized as follows. Section 2 presents other approaches re-
lated to the problem. Section 3 describes the theory of dynamic
decoupling of TITO dynamic plants. Section 4 presents the gen-
eral idea of synthesizing the fuzzy decoupler. Finally, Section 5
gives a practical example of the implementation of the air heater
system. Final conclusions are included in Section 6.

2. RELATED WORKS

The possible ways of achieving desired input/output indepen-
dence were discussed e.g. in [4] with the centralized inverted
controllers structure, [5] with the intuitive fuzzy decoupler, [6]
with the Elman’s neural network, [7] with variable structure
model following control or in [8] with the internal model con-
trol. Still, the most popular approach is to design a so-called de-
coupler, i.e. linear dynamic compensator of the cross-couplings
interferences. This approach includes three possible methods:
ideal, simplified and inverted, that were presented e.g. in [9–18].
The decoupler structure and achieved level of the decoupling de-
pend strictly on the linear model of the plant and its accuracy.
Since one deals mostly with the nonlinear systems, such lin-
ear model can be derived either from linearization of nonlinear
state equations or with experimental modeling in the case of
more complicated systems, where establishing an acceptable
nonlinear model would be too problematic. In such cases the
experimental modeling method can be used, which involves ob-
taining a large amount of experimental data to establish the set
of linear models at desired operating points. This approach was
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profitably used in works [19] for the resistance furnace, [20] for
the photo-reactive biological apparatus and [12, 21] for the air
heater. Since the decoupler dynamics is linear, its parameters
must change smoothly with the operating point of the plant.
Among many ways of switching the coefficient values, the ap-
plication of fuzzy logic systems seems to be convenient, as they
are many possible approaches to their design.

Work [22] presents various ways of developing fuzzy mem-
bership functions and rules set, from an intuitive approach, based
on designer’s experience, to an optimal approach to approximate
a given data set, e.g. input-output relationship. While an intu-
itive approach might be suited to the majority of the problems, it
is also worth considering an optimal approach for more complex
ones. Papers [23–25] describe the possibility of simultaneous
optimization of the membership functions as well as the rules
set using well-known genetic algorithm (GA) for the purpose of
designing a fuzzy controller. The authors encoded fuzzy mem-
bership functions and rules set as series of vectors, which formed
an individual. The individuals were later compared in the con-
trol of a nonlinear dynamic system. The algorithm evolved over
time, as each individual had defined time window to perform
the control task. However, GA has some disadvantages, namely,
it is computationally expensive, especially when dealing with
multidimensional optimization problem, such as fuzzy logic
system optimization. A better optimization algorithm may be
the imperialist competitive algorithm (ICA), inspired by world
empires and their rivalries. The basic ICA is presented in pa-
per [26]. In work [27] ICA was compared with GA in terms
of optimization of PI controller gains and better results were
obtained. Paper [28] introduces adaptive differential mutation
variation, which proved its superiority over other ICA varia-
tions in solving high-dimensional optimization problems, i.e.
faster convergence.

The presented bibliography describes many possibilities for
dynamic decoupling of TITO dynamic plants. However, the
discussed optimization as well as knowledge engineering meth-
ods can be profitably used to propose a practical and easy-to-
implement method of designing an adaptive fuzzy-logic based
dynamic decoupler for nonlinear TITO plants with experimen-
tally modeled dynamics. Moreover, the flexibility of fuzzy logic
systems gives the designer two possible approaches, the appli-
cation of which will be presented in the following Sections of
this paper.

3. DYNAMIC DECOUPLING OF TITO DYNAMIC PLANTS

The two-inputs, two-outputs TITO dynamic plant can be de-
scribed with the following state-space equation

¤x(𝑡) = Ax(𝑡) +Bu(𝑡),
y(𝑡) = Cx(𝑡) +Du(𝑡),

(1)

where A ∈ R𝑛×𝑛, B ∈ R𝑛×2, C ∈ R2×𝑛, D ∈ R2×2 are the state,
input, output and feed-trough numerical matrix, respectively
and x(𝑡) ∈ R𝑛×1, u(𝑡) = [𝑢1 (𝑡) 𝑢2 (𝑡)]𝑇 , y(𝑡) = [𝑦1 (𝑡) 𝑦2 (𝑡)]𝑇 are
state, input and output vector functions, respectively. However,

in many works [9–18] the most common representation is the
transfer function matrix, resulting from

Ĝ(𝑠) = C(𝑠I𝑛 −A)−1B+D =

[
�̂�11 (𝑠) �̂�12 (𝑠)
�̂�21 (𝑠) �̂�22 (𝑠)

]
, (2)

where each element is usually a 𝑛-th order inertia with dead time

�̂�𝑖 𝑗 =
𝑘𝑖 𝑗

𝑛∏
𝑝

𝑇𝑝𝑖 𝑗 𝑠+1
𝑒−𝑠𝜏𝑖 𝑗 , 𝑖, 𝑗 = {1,2}. (3)

The block diagram of model from equation (2) is presented in
Fig. 1. One may instantly notice, that each input influences each
output trough cross-coupling dynamics �̂�12 (𝑠) and �̂�21 (𝑠). The
transforms of the TITO outputs are given as

�̂�1 (𝑠) = �̂�11 (𝑠)�̂�1 (𝑠) + �̂�12 (𝑠)�̂�2 (𝑠),
�̂�2 (𝑠) = �̂�21 (𝑠)�̂�1 (𝑠) + �̂�22 (𝑠)�̂�2 (𝑠).

(4)

Fig. 1. Block diagram of TITO plant

The main goal of dynamic decoupling is to cancel out
�̂�12 (𝑠)�̂�2 (𝑠) and �̂�21 (𝑠)�̂�1 (𝑠) terms in equation (4). The most
common way of achieving such independence between outputs
and inputs is to design a dynamic decoupler D̂(𝑠), such that

Ĝ(𝑠)D̂(𝑠) = Ĥ(𝑠) =
[
ℎ̂11 (𝑠) 0

0 ℎ̂22 (𝑠)

]
. (5)

Note, that the decoupled system Ĥ(𝑠) has new input vector q(𝑡) =
[𝑞1 (𝑡) 𝑞2 (𝑡)]𝑇 . By rearranging equation (5), the decoupler is
given as

D̂(𝑠) = Ĝ−1 (𝑠)Ĥ(𝑠)

=
1

|Ĝ(𝑠) |

[
�̂�22 (𝑠) ℎ̂11 (𝑠) −�̂�12 (𝑠) ℎ̂22 (𝑠)
−�̂�21 (𝑠) ℎ̂11 (𝑠) �̂�11 (𝑠) ℎ̂22 (𝑠)

]
=

[
𝑑11 (𝑠) 𝑑12 (𝑠)
𝑑21 (𝑠) 𝑑22 (𝑠)

]
. (6)
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Taking into account ℎ̂11 (𝑠) = �̂�11 (𝑠) and ℎ̂22 (𝑠) = �̂�22 (𝑠) yields
the ideal decoupler formula

D̂(𝑠) =


�̂�11 (𝑠) �̂�22(𝑠)
�̂�11 (𝑠) �̂�22 (𝑠)−�̂�12 (𝑠) �̂�21 (𝑠) − �̂�12 (𝑠) �̂�22 (𝑠)

�̂�11 (𝑠) �̂�22 (𝑠)−�̂�12 (𝑠) �̂�21 (𝑠)

− �̂�11 (𝑠) �̂�21(𝑠)
�̂�11 (𝑠) �̂�22 (𝑠)−�̂�12 (𝑠) �̂�21 (𝑠)

�̂�11 (𝑠) �̂�22 (𝑠)
�̂�11 (𝑠) �̂�22 (𝑠)−�̂�12 (𝑠) �̂�21 (𝑠)

 .
(7)

In theory the dynamics of ideally decoupled system matches
perfectly the main diagonal dynamics of the plant’s model from
equation (2). However, one may notice high complexity of such
solution and particular difficulty in the dead time calculation,
therefore the ideal decoupling is rarely used in practice. More-
over, the resulting dynamics of the decoupled system is of little
importance in terms of closed-loop control system design. Thus,
considering 𝑑11 (𝑠) = 𝑑22 (𝑠) = 1 in equation (6) results in

D̂(𝑠) =


1 − �̂�12 (𝑠)

�̂�11 (𝑠)
− �̂�21 (𝑠)
�̂�22 (𝑠)

1

 , (8)

which is the simplified decoupler formula. To prevent negative
dead time values, a solution was proposed in [13] by adopting
function 𝑣(·), such that

𝑣(𝐿) = max(0, 𝐿). (9)

Thus, the decoupler delays are given as

𝜏𝑑11 = 𝑣(𝜏22 − 𝜏22), 𝜏𝑑12 = 𝑣(𝜏12 − 𝜏11),
𝜏𝑑21 = 𝑣(𝜏21 − 𝜏22), 𝜏𝑑22 = 𝑣(𝜏11 − 𝜏12).

(10)

Finally, by inverting simplified decoupler one can establish the
inverted decoupler, which combines ideal decoupling effective-
ness with the simplicity of simplified decoupler. Figure 2 illus-
trates the general structure of a decoupled system.

Fig. 2. General structure of a decoupled system

Although the dynamic decoupler design seems indeed to be
relatively easy, the problems occur when dealing with nonlin-
ear plants, such as for instance thermal systems. Single linear
decoupler will allow for achieving satisfactory results in a sin-
gle operating point of the decoupled plant, but its performance
will decrease in every other unknown region due to the parame-
ters mismatch. Therefore one has to seek for adaptive solution,
which will cover the whole state space of the plant.

4. PROPOSED ADAPTIVE FUZZY DYNAMIC DECOUPLER

Consider a nonlinear TITO system with inertial dynamics, that
was experimentally modeled at chosen operating points with
model from equation (2), where each element is a first order plus
dead time (FOPDT) transfer function, i.e. equation (3) for 𝑛 = 1.
Because experimental modeling procedure depends strictly on
the behavior of the system, it is covered in more details in
Section 4. With the identification process a set of coefficients
was established, i.e. main paths gains 𝑘11, 𝑘22, time constants
𝑇11,𝑇22, delays 𝜏11, 𝜏22 as well as cross-couplings gains 𝑘12, 𝑘21,
time constants𝑇12,𝑇21 and delays 𝜏12, 𝜏21. As the decoupler itself
operates in the open-loop, the adequate values of the coefficients
depend on the current values of the new decoupled system inputs
𝑞1 (𝑡), 𝑞2 (𝑡), i.e. each coefficient can be described as a function
of inputs

𝑐𝑖 𝑗 = 𝑓𝑖 𝑗 (𝑞1 (𝑡), 𝑞2 (𝑡)), 𝑖, 𝑗 ∈ {1, 2}, (11)

where 𝑐𝑖 𝑗 stands for one of 𝑘𝑖 𝑗 ,𝑇𝑖 𝑗 , 𝜏𝑖 𝑗 parameters. Now, for each
operating point the dynamic decoupler can be calculated. For the
sake of simplicity, the simplified decoupler from equation (8)
will be discussed. The decoupler elements are given as

𝑑11 (𝑠) = 𝑒−𝜏𝑑11 𝑠 ,

𝑑12 (𝑠) = − 𝑘12 (𝑇11𝑠+1)
𝑘11 (𝑇12𝑠+1) 𝑒

−𝜏𝑑12 𝑠 =
𝑏12

0 𝑠+ 𝑏12
1

𝑠+ 𝑎12
𝑒−𝜏𝑑12 𝑠 ,

𝑑21 (𝑠) = − 𝑘21 (𝑇22𝑠+1)
𝑘22 (𝑇21𝑠+1) 𝑒

−𝜏𝑑21 𝑠 =
𝑏21

0 𝑠+ 𝑏21
1

𝑠+ 𝑎21
1

𝑒−𝜏𝑑21 𝑠 ,

𝑑22 (𝑠) = 𝑒−𝜏𝑑22 𝑠 ,

(12)

and can be simply rearranged into state space representation

¤x𝐷 (𝑡) = Ax𝐷 (𝑡) +Bq(𝑡),
u(𝑡) = Cx𝐷 (𝑡) +Dq(𝑡),

(13)

where x𝐷 (𝑡) = [𝑥11 (𝑡) 𝑥12 (𝑡) 𝑥21 (𝑡) 𝑥22 (𝑡)]𝑇 is the decoupler
state vector, q(𝑡) = [𝑞1 (𝑡) 𝑞2 (𝑡)]𝑇 is the decoupled system input
vector and u𝐷 = [𝑢1 (𝑡) 𝑢2 (𝑡)]𝑇 is the decoupler output vector.
The state, input, output and feed-trough matrices are given as

A =


0 0 0 0
0 −𝑎12

1 0 0
0 0 −𝑎21

1 0
0 0 0 0


,

B =


0 0
0 𝑒−𝜏𝑑12 𝑠

𝑒−𝜏𝑑21 𝑠 0
0 0


,

C =

[
0 𝑏12

1 − 𝑎12
1 𝑏12

0 0 0
0 0 𝑏21

1 − 𝑎21
1 𝑏21

0 0

]
,

D =

[
𝑒−𝜏𝑑11 𝑠 𝑏12

0 𝑒−𝜏𝑑12 𝑠

𝑏21
0 𝑒−𝜏𝑑21 𝑠 𝑒−𝜏𝑑22 𝑠

]
,

(14)
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where 𝑒−𝜏𝑑𝑖 𝑗 denotes the delay. Note, that the state matrix A has
two unstable poles. However, since ¤𝑥11 (𝑡) = ¤𝑥22 (𝑡) = 0, the de-
coupler remains internally stable with two uncontrollable states.
To smoothly change the values of decoupler coefficient, i.e. ap-
proximate the functions from equation (11), in the proposed
method the fuzzy logic systems were utilized. The matrices A,
B, C, D are constantly changed depending on current input
value. The block schematic of the proposed fuzzy decoupler is
presented in Fig. 3. The main part of the design concentrates on
developing the fuzzy logic system, i.e. assigning fuzzy mem-
bership functions and fuzzy rules set. In this framework the
designer is left with two potential methods, covered in details in
the following subsections.

Fig. 3. Proposed adaptive fuzzy decoupler, where A, B, C, D are
decoupler matrices,𝑇𝑖 𝑗 , 𝑘𝑖 𝑗 , 𝜏𝑖 𝑗 are model parameters and q(𝑡), x𝐷 (𝑡),

u(𝑡) are decoupler input, state and output vectors, respectively

4.1. The intuitive approach for fuzzy logic systems design

Since the intuitive approach depends on the designer’s knowl-
edge and experience, Mamdani type fuzzy systems will be the
most appropriate, as this type employs the linguistic rules set.
For more convenient implementation, the general fuzzy sys-
tem in Fig. 3 can be divided into 8 fuzzy subsystems, each of
which is responsible for different coefficient. The number of the
subsystems depends on the model adopted in the identification
process. Consider the symbolic part of the set of model coef-
ficient 𝑐 in Table 1. Without loss of generality, the coefficient
𝑐 can refer to any coefficient in equation (12) and the values
𝑎𝑖 , 𝑏𝑖 are sorted in ascending order. To assign the fuzzy sets,
the triangular membership functions will be used. Triangular
membership function has three parameters [𝑠,𝑀, 𝑒], that define

Table 1
Part of the set of coefficients

.

.

.

𝑞1 𝑞2 𝑐

𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

𝑎3 𝑏3 𝑐3
.
.
.

the feet of the fuzzy set and its peak. The membership value of
the variable 𝑥 is given as

𝜇
(
𝑥 | [𝑠,𝑀, 𝑒]

)
= max

(
min

( 𝑥− 𝑠

𝑀 − 𝑠
,
𝑒− 𝑥

𝑒−𝑀

)
, 0

)
. (15)

Now, on the example of input 𝑞1, each input value is assigned
to a separate fuzzy set 𝐴𝑖 in such a way, that the parameter 𝑀
is the exact input value 𝑎𝑖 , while the parameters 𝑠 and 𝑒 have
the previous 𝑎𝑖−1 and next 𝑎𝑖+1 values respectively. The output
fuzzy sets 𝐶𝑖 are arranged in the same way. The methodology
for constructing both input and output fuzzy sets is illustrated in
Fig. 4, where 𝑋 𝑖 can be either 𝐴𝑖 , 𝐵𝑖 or𝐶𝑖 , while 𝑥𝑖 corresponds
to 𝑎𝑖 , 𝑏𝑖 or 𝑐𝑖 , respectively. Finally, the fuzzy rules set describes
the relationship between inputs and coefficients values:

(1) IF 𝑞1 IS 𝐴1 AND 𝑞2 IS 𝐵1 THEN 𝑐 IS 𝐶1,

(2) IF 𝑞1 IS 𝐴2 AND 𝑞2 IS 𝐵2 THEN 𝑐 IS 𝐶2,

(3) IF 𝑞1 IS 𝐴3 AND 𝑞2 IS 𝐵3 THEN 𝑐 IS 𝐶3.

...

Nevertheless, the large experimental data set may result in an
excessive number of fuzzy rules and sets. In such cases the
simplified approach described in the next subsection may be
suitable.

Fig. 4. General idea of assigning intuitive fuzzy sets

4.2. The simplified approach for fuzzy logic systems
design

When the coefficient set is large enough, the intuitive approach
for the design may result in an excessive number of fuzzy sets and
rules, making the fuzzy logic system over-complicated. There-
fore, the fuzzy system can be encoded as a series of vectors, de-
scribing the parameters of the membership functions and rules,
and optimized. For this purpose, Takagi-Sugeno type is more
suitable, as its output is given as a linear combination of the
inputs fuzzy sets, i.e.:

(1) IF 𝑞1 IS 𝐴𝑖 AND 𝑞2 IS 𝐵 𝑗 THEN 𝑐 = 𝑤11𝐴
𝑖

+ 𝑤12𝐵
𝑗 +𝑤13 ,

...

(𝑝) IF 𝑞1 IS 𝐴𝑛 AND 𝑞2 IS 𝐵𝑚 THEN 𝑐 = 𝑤𝑝1𝐴
𝑛

+ 𝑤𝑝2𝐵
𝑚 +𝑤𝑝3 .
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To reduce the length of the encoded vectors, i.e. the dimension of
the searching space, the following Gaussian membership func-
tion was selected

𝜇
(
𝑥 | [𝜎,𝑀]

)
= 𝑒−

1
2 ( 𝑐−𝑀

𝜎 )2
, (16)

where 𝑀 and 𝜎 define the center and spread, the membership
value of the variable. For further simplification it is assumed,
that the number of fuzzy sets for both inputs is equal and the set
of rules is fixed and limited to the following form

(1) IF 𝑞1 IS 𝐴1 AND 𝑞2 IS 𝐵1 THEN 𝑐=𝑤11𝐴
1+𝑤12𝐵

1+𝑤13,

(2) IF 𝑞1 IS 𝐴2 AND 𝑞2 IS 𝐵2 THEN 𝑐=𝑤21𝐴
2+𝑤22𝐵

2+𝑤23,

(3) IF 𝑞1 IS 𝐴3 AND 𝑞2 IS 𝐵3 THEN 𝑐=𝑤31𝐴
3+𝑤32𝐵

3+𝑤33,

...

(𝑝) IF 𝑞1 IS 𝐴𝑝 AND 𝑞2 IS 𝐵𝑝 THEN 𝑐=𝑤𝑝1𝐴
𝑝+𝑤𝑝2𝐵

𝑝+𝑤𝑝3.

Thus, the number of fuzzy rules 𝑝 is equal to the number of input
fuzzy sets. Finally, the membership functions parameters and
output weights can be represented as a single vector 𝑥 ∈ R1×𝑑 ,
which forms an individual in the optimization algorithm. The
encoding of the fuzzy logic system is illustrated in Fig. 5. In
solving optimization problems it is most common to treat 𝑀 as
a relative value, i.e.

𝑀𝑖 =

𝑖∑︁
𝑘=1

𝑀𝑘 , 𝑖 = 1,2, . . . , 𝑝. (17)

In the selected optimization algorithm, each individual can be
evaluated with the following fitness function

𝐹𝑐 = ∥e∥ 𝑝 ,
e = c𝑑 − cout ,

(18)

where c𝑑 is the desired coefficient values vector and cout is
the fuzzy system output vector. The norm 𝑝 depends on the
coefficient values and it is recommended to choose 1-norm for
fractional values and 2-norm for larger values. Since the fuzzy
systems optimization is a high-dimensional problem, one may
consider the imperialist competitive algorithm and/or adaptive
differential mutation variation of this algorithm described in the
next Section.

Fig. 5. Encoded fuzzy logic system

4.3. Imperialist competitive algorithm

Imperialist competitive algorithm (ICA) is a stochastic opti-
mization algorithm, inspired by the imperialistic empires in the
world and their competition over colonies. It is suitable for high-
dimensional optimization problems and is known for its quick
convergence [26–28]. The optimization problem can be formu-
lated as follows

min
x𝑖

𝐹𝑐 (x𝑖), (19)

where 𝐹𝑐 is the cost function and

x𝑖 = [𝑥𝑖1, 𝑥𝑖2, ..., 𝑥id] (20)

is the solution called country, bounded to given intervals. The
value of the cost function 𝑐𝑖 = 𝐹𝑐 (x𝑖) is the power of a country.
In the first stage of ICA 𝑁 countries are randomly generated in
the searching space.

Remark 1. All random numbers in ICA have uniform distribu-
tion 𝑈 (𝑙𝑏, 𝑢𝑏) in order to increase exploring capabilities.

The best 𝑁imp countries become the imperialists, while the
rest 𝑁col countries become colonies. In the second stage the
algorithm determines imperialist normalized power as

𝑝𝑛 =

����� 𝐶𝑛∑𝑁imp
𝑖=1 𝐶𝑖

����� ≤ 1,

𝑁imp∑︁
𝑝=1

𝑝𝑛 = 1,

(21)

where 𝐶𝑛 = 𝑐𝑛 −max
𝑖

𝑐𝑖 and 𝑛 denotes 𝑛th imperialist.
Based on imperialist normalized power, the colonies are ran-

domly divided. Each imperialist possesses 𝑁𝐶𝑛 colonies, which
is calculated as follows

𝑁𝐶𝑛 ≈ 𝑝𝑛 ·𝑁col . (22)

Divided colonies move toward their imperialist in the process
called assimilation. In classical ICA variant each colony moves
a Δx𝑖 distance along the direction toward the imperialist with
the deviation angle 𝜃. Both movement values are calculated as

Δx𝑖 ∼𝑈 (0, 𝛽 · 𝐿),
Δ𝜃 ∼𝑈 (−𝛾, 𝛾),

(23)

where 𝛽 > 1 is the assimilation coefficient, 𝛾 is the assimilation
angle coefficient and 𝐿 is the distance between 𝑖th colony and
its imperialist, given as

𝐿 = ∥x𝑛 −x𝑖 ∥2. (24)

Final colony position can be denoted as

x′𝑖 = (x𝑖 +Δx𝑖) · 𝑅 · sign(x𝑛 −x𝑖), (25)

where 𝑅 is the rotation matrix, which depends on the dimension
of the searching space. The movement of the colony towards
its imperialist is illustrated in Fig. 6. Work [28] introduces new
ICA-ADM variant with adaptive differential mutation assimi-
lation strategy, which has proven superiority in solving high-
dimensional problems compared to other ICA variants. ICA-
ADM calculates mutated colony position as

x𝑚𝑖 = x𝑛 +𝐹 (x𝑟1 −x𝑟2 ), (26)

Bull. Pol. Acad. Sci. Tech. Sci., vol. 73, no. 1, p. e152218, 2025 5



S. Król and P. Dworak

Fig. 6. Assimilation process

where x𝑟1 , x𝑟2 are randomly selected colonies from the empire
and 𝐹 is the mutation rate calculated as

𝐹 = 𝐹𝑢 + (𝐹𝑙 −𝐹𝑙)
𝐹𝑐 (x𝑟1 ) −𝐹𝑐 (x𝑛)
𝐹𝑐 (x𝑟2 ) −𝐹𝑐 (x𝑛)

, (27)

where 𝐹𝑙 and 𝐹𝑢 are the lower and upper boundaries of the
mutation rate, respectively. In order to increase the diversity
of the population, the crossover operation is performed. The
crossover position u𝑖 = [𝑢𝑖1, 𝑢𝑖2, ..., 𝑢𝑖𝑑] is established as

𝑢𝑖 𝑗 =

{
𝑥′
𝑖 𝑗

if 𝜓 < 𝐶𝑅,

𝑥𝑖 𝑗 if 𝜓 ≥ 𝐶𝑅,
(28)

where 𝜓 ∼𝑈 (0,1) and 𝐶𝑅 is the crossover rate, given as

𝐶𝑅 = 𝐶𝑅𝑙 + (𝐶𝑅𝑢 −𝐶𝑅𝑙)
𝐹𝑐 (x𝑖) −𝐹𝑐 (xworst)
𝐹𝑐 (x𝑛) −𝐹𝑐 (xworst)

. (29)

Constants 𝐶𝑅𝑙 and 𝐶𝑅𝑢 denote the lower and upper boundaries
of the crossover rate, respectively. To maintain good balance
between exploration and exploitation both 𝐹 and 𝐶𝑅 parame-
ters depend on current iteration. Therefore two indicators 𝐼1, 𝐼2
control when mutation and crossover vary adaptively. When cur-
rent iteration exceeds one of the indicators, the corresponding
parameter has fixed value.

Assimilated colony, which has lower cost function value then
the imperialist, becomes new imperialist in the empire, while
the old imperialist becomes a colony. During assimilation the
revolution process may occur with some determined probabil-
ity 𝑃rev. Revolution means, that a randomly selected colony is
replaced with a newly generated one.

After assimilation the empires compete for the weakest colony
of the weakest empire or for the collapsing empire. Each empire
has an assigned total power

𝑇𝐶𝑛 = 𝑐𝑛 + 𝜁
∑𝑁𝐶𝑛

𝑖=1 𝑐𝑖

𝑁𝐶𝑛

, (30)

where 0 < 𝜁 < 1 is the cost ratio coefficient. Then the normalized
cost of each empire is established as

𝑁𝑇𝐶𝑛 = 𝑇𝐶𝑛 −max
𝑖

𝑇𝐶𝑖 . (31)

Remark 2. According to equation (31), normalized cost of the
weakest empire must be equal to zero. Moreover, normalized

cost has the most diverse values when comparing empires prop-
erties, therefore it is a convenient indicator when searching for
the weakest empire.

The possession probability of each empire is defined as

𝑃𝑛 =

����� 𝑁𝑇𝐶𝑛∑𝑁𝑖𝑚𝑝

𝑖=1 𝑁𝑇𝐶𝑖

����� , (32)

which is analogous to equation (21). Possession probabilities
form a vector P, from which randomly generated vector r ∼
𝑈 (0,1) of the same size is later subtracted. The subtraction
forms a new vector m and the empire with the maximum 𝑚𝑛

value wins the competition.
An empire without any colonies collapses, becomes a colony

and is divided in the next competition. The algorithm proceeds
until the certain number of iterations is completed or until one
empire remains.

5. PRACTICAL EXAMPLE

The proposed fuzzy dynamic decoupler was implemented for the
air heater system, which is a nonlinear thermal plant. It consists
of two inputs [𝑢1 (𝑡) 𝑢2 (𝑡)]𝑇 to control fan and heating coil
respectively. The outputs are the exhaust air pressure 𝑦1 (𝑡) and
temperature 𝑦2 (𝑡). The air heater system is presented in Fig. 7.
The current signals are converted to the proportional voltage
signals and sampled by the DAQ card, that passes the data to the
PC. Control is performed within the MATLAB/Simulink Real-
Time Workshop environment, where input and output signals
are normalized to [0; 1] interval and in such form are presented
in the following experiments.

Fig. 7. The air heater system

5.1. Experimental modeling

The air heater was experimentally modeled at 32 operating
points, as this number was sufficient to obtain satisfactory accu-
racy. Because temperature changes have no effect on the pressure
level, while high pressure cools down the exhaust air, the LTI
model adopted at every operating point is given as

Ĝ(𝑠) =
[
�̂�11 (𝑠) 0
�̂�21 (𝑠) �̂�22 (𝑠)

]
. (33)

To minimize the future size of the fuzzy decoupler, each element
in equation (33) is assumed to be a FOPDT, where 𝑘11, 𝑇11, and
𝜏11 are the air pressure gain, time constant and delay, 𝑘22, 𝑇22
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and 𝜏22 are the air temperature gain, time constant and delay and
𝑘21, 𝑇21 and 𝜏21 are the cross-coupling gain, time constant and
delay. In this example such form is accurate enough to model the
dynamics. It turns out, that for such a model both ideal decoupler
from equation (7) and simplified decoupler from equation (8)
converge to one simple form[

1 0
𝑑21 (𝑠) 1

]
, (34)

where

𝑑21 (𝑠) =
�̂�21(𝑠)
�̂�22 (𝑠)

=
𝑘21𝑇22𝑠+ 𝑘21
𝑘22𝑇21𝑠+ 𝑘22

𝑒−𝑣 (𝜏21−𝜏22 ) (35)

and each parameter 𝑘21, 𝑘22, 𝑇21, 𝑇22, 𝜏21, 𝜏22 changes with
the operating point as a function of the input values from equa-
tion (11). The block diagram of the decoupled model is presented
in Fig. 8.

Fig. 8. Block diagram of the decoupled air heater model

The cross-coupling dynamics �̂�21 (𝑠) tend to be faster than �̂�22 (𝑠)
temperature dynamics, thus it is possible to assume, that 𝜏21 ≤
𝜏22 in all cases. As a result, the delay in equation (35) will
always be zero. To further simplify the decoupler structure,
the following linear relationship between time constants can be
presumed

𝑇21 = 𝛼𝑇22, 𝛼 = 0.95 . (36)

Note, that the described simplifications require some experience
with the system and result from a series of experiments, hence,
they may not be appropriate in every case. The identification
procedure can be divided into following steps:
1. The fan control signal 𝑢1 (𝑡) was set to zero. The heating

coil control signal 𝑢2 (𝑡) was increased step-wise by some
valueΔ𝑢2 each time the temperature entered the steady state,
which resulted in a set of step responses. 𝑢2 (𝑡) was increased
until the measurement boundary was reached, which took 4
𝑢2 (𝑡) increments. In this step the dynamics �̂�22 (𝑠) = ℎ̂22 (𝑠)
of the decoupled system from equation (5) was modeled.

2. The fan control signal 𝑢1 (𝑡) range was divided into 7 chosen
intervals

𝑢1 (𝑡) = 𝑘 (𝑡), 𝑘 ∈ {Δ𝑢1,2Δ𝑢1, ..., 7Δ𝑢1}. (37)

The experiment from Step 1 was repeated for nonzero values
of 𝑢1 (𝑡).

3. By comparing steady-state values from Step 2 with the de-
sired values from Step 1, the cross-coupling gains can be
calculated as

𝑘21 =
Δ𝑦2
Δ𝑢1

. (38)

Note, that the choice of Δ𝑢1, Δ𝑢2 and number of intervals is
arbitrary and larger number of intervals may result in more ac-
curate model. The idea of the experimental modeling procedure
is presented in Fig. 9. With the series of experiments, shown
in Fig. 10, the set of experimentally modeled coefficients was
created for 32 operating points.

Fig. 9. Identification idea

Fig. 10. Sequences of the identification experiments

5.2. Fuzzy dynamic decoupler

The decoupler transfer function in equation (35) was trans-
formed into the state-space representation as described in Sec-
tion 3. Every coefficient of the model was approximated by a
separate fuzzy logic system. The intuitive fuzzy logic systems
were created with the methodology described in Section 3.1
and resulted in 3 fuzzy systems with 7 𝑞1 sets, 4 𝑞2 sets, 32
output sets and a set of 32 rules. In the simplified approach,
the ICA-ADM ran for 𝑁𝑖𝑡𝑒𝑟 = 500 iterations. 𝑁𝑖𝑚𝑝 = 4 imperi-
alists were chosen from 𝑁 = 400 countries. Mutation rate was
bounded to [𝐹𝑙 = 0.1, 𝐹𝑢 = 0.9] interval and changed to fixed
value 𝐹 = 0.5 after 𝐼2 = 150 iterations, while crossover rate was
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bounded to [𝐶𝑅𝑙 = 0.1,𝐶𝑅𝑢 = 0.6] interval and had fixed value
𝐶𝑅 = 0.5 after 𝐼1 = 100 iterations. Revolution probability was
set to 𝑃𝑟𝑒𝑣 = 15%. The countries were evaluated with the fit-
ness function from equation (18) for 𝑝 = 1. Algorithm stopped
after 𝑁𝑖𝑡𝑒𝑟 iterations or if only one empire left. The adopted
constraints of the fuzzy logic systems properties are listed in
Table 2.

Table 2
Adopted constraints of the fuzzy logic systems properties

Parameter 𝑘22 FLS 𝑇22 FLS 𝑘21 FLS

𝑞1 MFs lower boundaries [𝜎,𝑀] [10−3,0] [10−3,0] [10−3,0]
𝑞1 MFs upper boundaries [𝜎,𝑀] [0.3,0.3] [0.3,0.3] [0.3,0.3]
𝑞2 MFs lower boundaries [𝜎,𝑀] [10−3,0] [10−3,0] [10−3,0]
𝑞2 MFs upper boundaries [𝜎,𝑀] [0.1,0.2] [0.1,0.2] [0.1,0.2]
𝑐 MFs lower boundaries [𝜎,𝑀] [10−3,−5] [10−3,0] [10−3,−5]
𝑐 MFs upper boundaries [𝜎,𝑀] [1,5] [20,100] [1,5]
No. MFs 8 12 8

5.3. Experimental results

Both intuitive and simplified decouplers were compared with
the coupled system in terms of performance. The responses of
the systems to the following input signals were recorded

𝑞1 (𝑡) = 0.3(𝑡) −0.2(𝑡 −500) +0.4(𝑡 −1000)
+ 0.15(𝑡 −1500) −0.45(𝑡 −2000),

𝑞2 (𝑡) = const. = 0.25(𝑡).
(39)

It is expected, that the temperature should not change and its
dynamics is given as

ℎ̂22 (𝑠) =
𝑘22

𝑇22𝑠+1
𝑒−𝜏22𝑠 . (40)

The step response of model from equation (40) to the 𝑞2 (𝑡)
signal in equation (39) is given as

ℎ22 (𝑡) = 0.25𝑘22

(
1− 𝑒

− 𝑡−𝜏22
𝑇22

)
. (41)

It is assumed, that the nominal values of the parameters in
equation (40) are the averaged output values of intuitive and
simplified fuzzy systems for the input values [𝑞1 = 0(𝑡) 𝑞2 =

0.25(𝑡)]𝑇 , i.e. 𝑘22 = 2.2796, 𝑇22 = 94.8403. The experimental
results are presented in Figs. 11–13, where (a) shows the fan
input 𝑢1 (𝑡), which is equal to the decoupler input 𝑞1 (𝑡) (blue),
the air pressure 𝑦1 (𝑡) (red), while (b) shows the decoupler input
𝑞2 (𝑡) (blue), the decoupler output and heating coil input 𝑢2 (𝑡)
(purple or blue), the air temperature 𝑦2 (𝑡) (red) and the desired
temperature dynamics ℎ22 (𝑡) (green).

The performance of both coupled and decoupled systems can
be evaluated in terms of similarity to the expected temperature

Fig. 11. Time responses of the coupled system

Fig. 12. Time responses of the decoupled system with intuitive
fuzzy systems

Fig. 13. Time responses of the decoupled system with simplified
fuzzy systems

changes ℎ22 (𝑡) with the following integral criterion

𝐽 =

𝑡 𝑓∫
0

|ℎ22 (𝑡) − 𝑦2 (𝑡) |d𝑡. (42)

However, the criterion from equation (42) does not give a
complete understanding of the influence of the cross-coupling.
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The performance of the decouplers can also be evaluated in
terms of achieved invariability of the temperature. The temper-
ature is expected to stay on the level 𝑦𝑠2, reached in the first
steady-state before 𝑡 = 500 s. Thus, the second evaluation crite-
rion 𝐼 can be defined as the maximum deviation from this steady-
state for 𝑡 > 500 s, expressed as a percentage of the steady-state
value 𝑦𝑠2, i.e.

𝐼 =
max( |𝑦2 (𝑡) − 𝑦𝑠2 |)

𝑦𝑠2
100%. (43)

The corresponding values of the criteria from equation (42) and
equation (43) are listed in Table 3.

Table 3
Values of the criteria 𝐽 and 𝐼

System 𝐽 𝐼

Coupled 404.0630 35.5%

Decoupled with intuitive FLS 55.5460 11.7%

Decoupled with simplified FLS 151.0528 22.4%

6. CONCLUSIONS

In this paper the structure of fuzzy dynamic decoupler was pro-
posed. The described method is suitable for a class of nonlinear
TITO systems with an unknown model, where the experimental
modeling is required. The presented method yields two different
approaches to designing the fuzzy logic systems, both of which
gave some promising results.

The intuitive approach seems to be well-suited for small sets
of identification data, but may result in an excessive number of
the fuzzy rules and sets. In the case of large sets of coefficients,
the simplified approach may be more convenient. The use of a
ICA-ADM is not necessary, although this algorithm is a proper
choice for high-dimensional optimization problems. Simplified
fuzzy systems seem to have smoother output surfaces, which is
due to the use of Gaussian membership functions.

As shown in the practical example, high performance and
significant reduction of the cross-coupling interferences were
achieved with the proposed fuzzy dynamic decoupler, with the
simplified system being slightly worse, which leaves the proper-
ties of the used Takagi-Sugeno systems to be reconsidered. The
overall choice of the fuzzy logic system design is, however, a
trade-off between accuracy and size of the fuzzy logic system
itself. The performance of the fuzzy decoupler can be improved
by gathering more identification data in the modeling process,
i.e. increasing the number of selected operating points, which
would result in a more accurate model.

The proposed structure of the fuzzy dynamic decoupler and
the described optimization method leave a chance for future
development, i.e. online optimization of fuzzy systems, which
would result in a self-tuning adaptive dynamic decoupler. Such
a system may be the subject of future work.
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