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Abstract—In this paper, we compare behaviors of two possible 

descriptions of the sampled signal in the case when the sampling 

period tends to zero, but remains all the time greater than zero. 

Note that this is the case we are dealing with in analog-to-digital 

conversion in microwave photonic systems. From this 

comparison, it follows that the description with the weighted step 

function is superior to the description with the weighted Dirac 

comb. A couple of useful comments and remarks associated with 

the results presented are also provided in the context of 

microwave photonic systems. 

 
Keywords—Modelling of sampled signal in general and in 

microwave photonic systems; behavior of this signal for sampling 

period going to zero description of signals occurring in analog-to-

digital microwave photonic systems. 

I. INTRODUCTION 

T is well known that measured ‘images’ of signals that we 

consider to be functions (signals) of a continuous time t are 

not exact copies (in 100 percent) of the latter ones [1], [2]. This 

is so for many reasons. One of them are inertia of physical 

measuring and recording devices. (In what follows, we focus 

only on this distorting factor.) The above causes that the values 

of a waveform cannot be recorded continuously. They must be 

seen as recorded at intervals, which most often are so short that 

a waveform interpolated on them can be assumed to be 

identical to the ‘true’ signal. Whereby the latter term, we 

understand as that signal through which we ‘see’ a physical 

object or its physical property in time space (described by 

a timeline t that is a set of real numbers R ). In practice, it 

means that we identify this signal with a given physical object, 

and its representation are measurements (which are more or 

less accurate). In other words, this can be also expressed in 

such a way: the ‘true’ signal represents some physical object, 

but the measured one is a more or less accurate representation 

of the former [3]. And this is a commonly used convention. 
Complementing the above observations, let us share one 

more observation. See that in general a relation between the 

‘true’ signal and its measured version is not known (in fact, this 
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is always the case in reality). What we do in practice is to make 

certain assumptions about measurements – among them, most 

importantly, to assume that we make measurements with very 

accurate instruments – which allows us to assume that 

practically the relation mentioned is one to one. (That is the 

relation between the ‘true’ signal and its measured version.) 

And, possibly, some measurement errors (among them also 

those following from the measuring devices) should be taken 

into account (if this point is important). But usually we assume 

that they are small and do not obscure the nature of the 'true' 

signal. Therefore, within the accuracy determined by small 

measurement errors, we identify the ‘true’ signal with its 

measured version. Moreover, because the ‘true’ signal is 

always a continuous one in time t, then its measured version 

should imitate this property and it does. 

We hope that this presented above brief reminder of the 

basic assumptions (axioms) underlying the interpretation of 

signals acquired in measurements will allow us to better 

understand the context of our primary issue addressed in this 

paper, namely the study of how descriptions of sampled signals 

behave in the extreme case of sampling period values going to 

zero. The possibility of interpreting the measurement process 

by means of the signal sampling process has been pointed out 

in publications [4] and [5]. Here, we will use the conceptual 

relations between these processes discussed there in detail. 

They will also prove to be useful here. 

Now, let us present shortly the two possible descriptions of 

the sampled signal (sampled in an ideal way) that are used in 

the literature for describing the continuous time signal at the 

output of an A/D converter, exploited in calculations of its 

spectrum. The first one is via a weighted Dirac comb [6–17], 

but the second through a weighted step function [18], [19]. 

The description that uses the weighted Dirac comb, and 

which we denote here by ( )Dx t , has the following form: 

 

 ( ) ( ) ( ) ( ) ( )D T

k

x t t x t x kT t kT 


=−

=  = − , (1) 

 

where ( )x t  means an analog signal to be sampled and the 

( )x kT ’s are values of its samples at the corresponding 

discrete time instants kT ’s with T standing up for a sampling 
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period. Furthermore, the k’s there belong to the set of integers, 

i.e. kZ . Moreover, the time-dependent object ( )T t  in (1) 

is called the Dirac comb. It is defined as 

 

( ) ( )T

k

t t kT 


=−

= − , (2) 

 

where the ( )t kT − ’s, kZ , mean the time-shifted 

Dirac deltas. 
The second representation for sampled signals via the 

weighted step function, which is denoted here by ( )STEPx t , 

possesses the following form: 

 

 ( ) ( ) ( )rectSTEP

k

x t x kT t kT


=−

= − , (3) 

 

In (3), ( )rect   means the standard rectangular function, 

which is defined as 

 

 ( ) )rect 1 for 0,   and  0 otherwise.t t T=   (4) 

 

We illustrate here with Fig. 1 the description given by (1). 

Fig. 1. Example sampled signal representation (upper curve) in form of a 

weighted Dirac comb and its un-sampled version (lower curve). Figure taken 
from [3]. 

 

Whereas the second description, given by (3), is visualized via 

Fig. 2. 

 
Fig. 2. Example sampled signal representation in form of a weighted step 

function that corresponds with its un-sampled version shown in Fig. 1 (lower 

curve). Figure taken from [18]. 

 

 

Note that a usual way [6–17] of visualization of Dirac deltas 

of a weighted Dirac comb, as in Fig. 1 (upper curve), is via the 

use of arrows of different heights equal to the values of the 

successive signal samples ( )x kT ’s. Whereby all these values 

are finite numbers. But, on the other hand, according to the 

naive theory of Dirac distributions [20], they represent at the 

same time infinities. This is so because any ( )x kT  times 

infinity gives infinity. We get thus a contradiction. 

As an aside, let us note that the visualization of the sampled 

signal shown in Fig. 1, which is commonly used in the 

literature [6–17], is an attempt to use the Dirac delta 

description according to the naive Dirac distribution theory 

[20]. Because if this was not the case, it would mean that the 

Dirac delta understood in a strictly mathematical, 

distributional sense could be somehow visualized, yet this is 

not possible [20]. The Dirac delta is characterized by a 

functional, not by providing a waveform of a continuous time. 

So, concluding, we say that because of the reasons given the 

above attempt does not lead to a satisfactory result. Or, having 

said it more clearly: for the reasons given, this description 

should not be used at all. However, since it is used, let us 

examine (to satisfy our pure curiosity) what one obtains from 

it in the case when the sampling period T tends to zero. (That 

is in the case when any signal sampling becomes invisible to 

us, where we expect the signal to equal approximately ( )x t .) 

We will consider this case in the next section. 

And finally here a remark to Fig. 2: the waveform shown 

there represents a sampled signal according to (3), whose an 

un-sampled version is illustrated in Fig. 1 (lower curve). 

The remainder of the paper is organized as follows. In the 

next section, we compare with each other the descriptions 

given by the formulas (1) and (3) for an extreme case, when 

the value of the sampling period T tends to zero. Additionally, 

this analytical comparison is illustrated by Figs. 4 and 5. 

Section 3 is devoted to discussion of the relevance of different 

general models of signal sampling proposed in the literature in 

correct description of the signals occurring in analog-to-digital 

conversion in microwave photonic systems. The paper ends 

with a conclusion.  

II. COMPARISON OF SAMPLED SIGNAL DESCRIPTIONS VIA (1) 

AND (3) WHEN SAMPLING PERIOD GOES TO ZERO 

Let us note at the beginning of this section that in older 

sampling models, as for example in Bracewell’s [7] (see Fig. 

10.2 (c) and (d), page 221 there), we have the distinction 

between a signal in the form of a function consisting of isolated 

discrete points (i.e. denoting finite sample values of a sampled 

signal) and this sampled signal modelled with the use of a 

weighted Dirac comb, as in Fig. 1 (upper curve). In contrast, 

such a distinction is no longer made by the authors of a 

younger generation, for instance in the textbook of Ingle and 

Proakis [15]. Bracewell speaks about an equivalence of the  

two representations (although it is not clear what this 

equivalence would mean precisely), while in the work of Ingle 

and Proakis [15] it is said only that such a signal as in Fig. 1 

(upper curve) is generated in the path: A/D converter – signal 

processor – D/A converter (as an aside, it is not clear why in 

their work this generation takes place at the input of the D/A 

converter, see [15], page 87 there). 

t  2T  3T  

x(t) 

0  -T  T -2T  -3T  4T  5T  

xD(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  

XSTEP(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  
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This is, in brief, the current state of understanding as well as 

the way of describing the sampling process of analog signals 

commonly used within the signal processing society. The 

model and description that uses the formula (3) has, so far, only 

one advocate [18], [19]. And we would like to highlight just 

these two facts, at this moment, before going to the analysis 

mentioned in the title of this paper. 

Consider now a timeline t with Dirac deltas connected with 

each of the time instants tR  of this axis. Or, in other words, 

let us perceive this as the time instants t’s that possess 

attributes that are Dirac deltas. Further, let us denote such an 

object (set) as 
t , compactly defined by 

 

.  

 (5) 
 

The object 
t  is visualized in Fig. 3. 

 
Fig. 3. Visualization of the object given by (5). The upper half-plane is tightly 

filled with Dirac deltas, which, according to their naive, illustrative model (see 

[20]), 'run' at all time instants to plus infinities. 
 

The author of this paper would like to emphasize at this 

point that he did not invent this strange object defined by (5) 

and illustrated in Fig. 3. It was invented by serious scientists 

working in the field called Network Calculus [21] (see Fig. 3.1, 

page 107 there). And, since it is, and it is used in engineering 

analyses, we will also use it here. 

More precisely, we will show that by using the object given 

by (5) we are able to describe abstractly the process of 

sampling an analog signal, as it is described by (1). So 

approaching this issue in a completely abstract way (embodied 

in (5), i.e. fully detached from the electronics of any A/D 

converter that performs this process), we can explain it as 

follows. The sampling process takes place against the 

background of an object 
t , which however actively 

participates in it. A sampling device selects values of the 

function ( )x t  for the prescribed time instants of sampling and 

multiplies them successively by those ( )t d − ’s, which are 

connected with these sampling time instants. More precisely, 

for an example instant of sampling kT , the value of d 

occurring in ( )t d −  is chosen to be equal to kT . This 

results in the signal given by (1), which consists of the values 

of the signal samples of ( )x t  connected with the background 

elements (via operation of multiplication). And the latter ones 

are obviously usual Dirac deltas shifted on the time axis. That 

is, according to this picture, the sampling operation (let us 

denote it here by the symbol SAMP) can be compactly 

expressed as follows: 

 ( )( ) ( ) ( ) ( )SAMP , t D

k

x t x t x kT t kT


=−

 = = −  . (6) 

 
 

Now, let us see what a sampled signal looks like in this 

abstract signal sampling model outlined above when the 

sampling period T goes to zero. In our reasoning, we will use 

graphical aids to describe this process. And, let us start with 

Fig. 1 (upper curve). See that when the sampling period T tends 

to zero, but remains positive all the time, the arrows in the 

upper curve of Fig. 1 are getting denser. (As an aside, we treat 

then T as an infinitesimal number [20].) Eventually it gets to 

the point where they begin to be indistinguishable from one 

another due to the passage of a resolution threshold (below 

which we are no longer able to distinguish between them). So 

at this point, we can say that we reached such a state as shown 

in Fig. 4.     

Fig. 4. Visualization of the upper curve of Figure 1 for the sampling period T 
tending to zero, but remaining positive all the time. Note that for the sake of 

transparency of this figure, a large arrow in Figure 3 is not repeated here. 

 

Note now that it follows from Fig. 4 that the sampled signal 

in the model via the weighted Dirac comb tends to be 

indistinguishable from the un-sampled signal ( )x t , but it 

occurs against the background of an object 
t  that is 

inextricably connected to it. This is, of course, a somewhat 

bizarre result, because in this case ( ( )0 0T  → ) one would 

expect only ( )x t . Because this case mimics in fact the case of 

a lack of any sampling, where we have only ( )x t , and 

nothing more. There occurs then no background in the form of 

this strange non-physical object 
t . We just do not see it or 

measure it. 

Note that using (6) we can express the above compactly as 

 

( ) ( )( ) ( )( )

( )

SAMP , , 0 0 , 0 0

 on the background of    .

t D

t

x t T x t T

x t

  → =  → →

→ 
      

 (7) 
 

Now, let us check how the second possible description of the 

sampled signal, given by (3), behaves when the sampling 

period T goes to zero, but remains all the time greater than 

Δt 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  


 Δt 

( ) ( )( )SAMP , , 0 0tx t T  →  

t  

  
Δt 
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zero. For this purpose, we also use a graphical method, as 

before, to show the changes taking place in the waveform of 

Fig. 2. And note that in this case the rectangles occurring in 

this figure become thinner and thinner as ( )0 0T  → , and 

their density of occurrence at a given time interval becomes 

greater and greater. But an envelope of these rectangles 

becomes then closer and closer to an un-sampled waveform 

( )x t . This is illustrated in Fig. 5. 

 

Fig. 5. Visualization of the waveform ( )STEPx t  given by (3)  for the sampling 

period T tending to zero, but remaining positive all the time, with the use of an 
example un-sampled signal presented in Fig. 1 (lower curve). 

 

Note further that we can describe compactly the above 

behavior as follows: 

 

 ( )( ) ( ), 0 0STEPx t T x t → → . (8) 

III. RELEVANCE OF MODELS ANALYZED HERE IN CORRECT 

DESCRIPTION OF SIGNALS OCCURRING IN ANALOG-TO-DIGITAL 

CONVERSION IN MICROWAVE PHOTONIC SYSTEMS 

Many people involved in the field of microwave photonic 

systems probably doubt that the issues and models of signals 

in analog-to-digital conversion, which were considered in the 

previous two sections, have any relevance to them. If they 

think so, they are mistaken. We will try to demonstrate this 

briefly with an example discussed below. 

In [22], the ideal sampling of analog signals is described by 

the following equation: 

  

( ) ( ) ( )
( )

( )

, ,   
.

, else
D

k

x kT t kT k
x t x t t kT

x kT




=−

=   
=  − =  

  


Z
  

  (9) 

 

(Remarks: In (9), the same notation as in (1) above is applied. 

Furthermore, equation (9) is a re-written equation (2.3.1) from 

Section 2.3. Electro-optic sampling in [22] on page 7.)  

Note now that the right side of (9) does not really equal to 

the right side of (1), that is to ( ) ( )
k

x kT t kT


=−

−  – 

opposite to what is suggested in [22]. The latter is a weighted 

(by samples of the analog signal sampled) Dirac comb, but the 

right side of (9) is correspondingly a weighted Kronecker 

comb (in this way this function is named in [23] and [24]). 

And obviously, these are two different objects. The Dirac 

comb cannot be considered to be a function, while the 

Kronecker comb is a function (maybe a special one, but a 

function). So they cannot be identified with each other and 

assumed to be the same thing. However, many do so, as for 

example in [22]. That is they consider both of them as the 

same thing. And this, obviously, can lead to computational 

and design errors. 

In other words, the middle part of (9) and its right-hand side 

are analytical descriptions of two different models of the 

sampled signal. In [22], they were unconsciously (we suppose 

so) identified with each other. But in our opinion, when doing 

so, it is better to know what it means and what are the 

consequences. Therefore, concluding this example, we can say 

that problems underlying correct modelling analog-digital 

conversion signals are also relevant for engineers working in 

the field of microwave photonic systems. 

Complementing: note that the identification of the models 

mentioned above means taking the successive weighted Dirac 

impulses (distributions) ( ) ( ) ,  x kT t kT k − Z  to be 

equal to the successive values of the analog signal samples 

( ) ,  x kT kZ . And this is akin to assuming that a given 

number, e.g., 5 is the same as 5j, where 1−  denotes an 

imaginary unit. But this, as we well know, is rather 

unacceptable operation. 

Now, after this initial remark on the truth of the relationship 

(9), it is reasonable to ask which of these two models 

mentioned above would describe better signals we are dealing 

with in analog-to-digital conversion in microwave-photonics 

systems. Whether the one that uses the weighted Dirac comb 

or the second, which is based on the weighted Kronecker 

comb? 

We will try to answer this question in what follows. And to 

this end, we begin with an observation, namely that the 

literature [22, 25–35] on microwave photonic systems shows 

that a model differing from those mentioned above is used in 

this area. This is a model based on a comb of very narrow 

pulses, but always of finite width (that is differing from zero). 

It can be derived from the two discussed above as an effect of 

"smearing" ( ) ( )x kT t kT −  objects via their filtering by a 

low-band filter with a very short impulse response, or as a 

result of "smearing" pulses of zero duration width of a 

weighted Kronecker comb. 

Recently, the author of this paper showed in a series of 

articles [23, 24, 36, 37] that the descriptions of the signal 

sampled: the one with a weighted Dirac comb and the second 

which uses a Kronecker comb, are not the best models (for 

various reasons; details of this fact are analyzed in the works 

cited above). It has been proved by him [18, 19] that in the 

frequency range below microwave frequencies, the best 

description of the reality of the signal sampling process can be 

performed through the use of a step function, as given 

analytically by (3) and illustrated graphically in Fig. 2 in 

Section 1. 

So, knowing this, let us ask the following question: Can be 

the description via a weighted step function also used in 

modelling of the sampled signal in microwave photonic 

systems? In the context of the today’s practice in this area, 

where, as mentioned above, exclusively the description with 

the use of weighted “smeared” (“blurred”) Dirac impulses or 

“smeared” (“blurred”) Kronecker impulses is used, an answer 

to this question seems to be evident. That is it cannot. 

( )( ), 0 0STEPx t T  →  

t  
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Of course, this is a correct answer, because the actual 

photonic impulses, used in sampling the signal at microwave 

frequencies, are very narrow. However, their duration (let us 

denote it as 
rt ) is always greater than zero. And further, 

between the successive (weighted) impulses in their comb 

(which constitutes the sampled signal), we always have 

"holes" (larger or smaller). This is so because the time 
rt  is 

always smaller than the sampling period T (more or less), i.e. 

always 
rt T  or even  holds. Thus, precisely because 

of these "holes" in the comb described above, it would be 

incorrect to approximate it with a weighted step function. 

But, is modelling of a sampled signal with a weighted step 

function completely useless in the area of microwave photonic 

systems? It is not fully true. This means can be useful, for 

example, in modelling the operation of a receiver in a 

transmission path of a microwave photonic system. To show 

this, suppose a receiver in such a system receives a photonic 

signal with "superimposed" samples of a microwave signal on 

it. The values of the microwave signal samples are 

"recovered" from electrical pulses at the output of the receiver 

photodiode and then stored in a buffer, with a given sample 

held at a given address in the buffer only for a time equal to 

the sampling time T. Hence, it follows that what happens in 

the buffer can be accurately described using a weighted step 

function with the values of steps equal to the successive values 

of the samples. And this is the signal that the next part (the 

processing one) of the receiver sees on its input. 

In summary of our above discussion on the usefulness of 

describing the sampled signal with a weighted Dirac comb or 

a weighted Kronecker one, we can say so: these models are 

not suitable for describing the sampled signal either before or 

after the receiver photodiode. 

Let us now go back to the results presented in Section 2 of 

this paper. Behavior of the model based on a weighted Dirac 

comb for very small values of the sampling period T (tending 

to zero) is presented there. On the other hand, see that we deal 

with just very small values of sampling periods in the case of 

analog-to-digital conversion in microwave photonic systems. 

They are of order of picoseconds. So, because of this reason, 

the behavior of the above model as shown in Fig. 4 with the 

object 
t  (defined analytically by (5)) occurring in the 

background seems to be well suited to describe this 

conversion, if, of course, we would want to apply it in this 

case. But the background in form of a strange and superfluous 

object 
t  disqualifies it immediately to be used for modelling 

sampled signals in real microwave-photonics systems.  

Note now that the model based on the use of a weighted 

step function differs significantly from that given by (1). Its 

behavior, visualized in Fig. 5, corresponds very well with that 

what we have in the processing part of the receiver, beginning 

at the aforementioned buffer. See that Fig. 5 suggests even 

that in this part of the receiver it is enough to merely filter out 

the microwave signal from interference, i.e. no any 

complicated digital-to-analog conversion is needed here.  

IV. CONCLUSIONS 

In the case when the effects of the sampling operation of a 

signal ‘become invisible’, which is the case when the 

sampling period T is very small, we would expect that our 

description of the sampled signal mimics the fact that then the 

latter signal is almost indistinguishable from its un-sampled 

version. In this paper, we have shown that the above condition 

is satisfied only by a description that uses a weighted step 

function, i.e. the description given by (3). Moreover, it is 

shown that this result is directly applicable to the description 

of analog-to-digital conversion in microwave photonic 

systems, where sampling periods have very small values. 

There are picosecond values.  
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