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1. INTRODUCTION 

1.1. Motivation 

In recent years, both academia and industry have made 
significant efforts to develop verifiable and safe autonomous 
driving systems. Artificial intelligence (AI), in this context, 
refers to the capability of machines to perform tasks that would 
normally require human intelligence, such as visual perception, 
decision-making, and real-time response to dynamic 
environments. In autonomous driving, AI models are trained to 
observe and analyze traffic conditions[1], understand the 
behavior of other road users, and adjust their own speed and 
path accordingly. These models rely on large-scale data and 
computational power to simulate human-like decision-making 
processes. 
In urban road scenarios, both human drivers and self-driving 
cars need to continuously analyze and adapt to the changing 
traffic environment. There are complex dynamic interactions 
between vehicles, often characterized by uncertainty and 
variability. Therefore, effectively modeling both the explicit 
and implicit spatiotemporal interactions between vehicles is 
essential for accurately predicting future vehicle movements[2], 
which is a key challenge that AI helps to address in autonomous 
driving.  

Traditional vehicle trajectory prediction methods typically rely 
on handcrafted features or simplified assumptions. However, 
these methods often exhibit limitations in complex dynamic 
environments. For example, rule-based prediction methods 
(e.g.,[3]) and statistical models (e.g.,[4]) fail to fully capture the 
non-linear and diverse interactions in traffic, leading to lower 
prediction accuracy. Recently, the widespread adoption of deep 
learning techniques has led to new advancements in vehicle 
trajectory prediction, utilizing methods such as Recurrent 
Neural Networks (RNNs), attention mechanisms, and Graph 
Neural Networks (GNNs). However, most existing deep 
learning-based methods focus primarily on either spatial or 
temporal dependencies, neglecting the intrinsic coupling 
between them[5,6]. 
To address this gap, we propose a novel Graph-Temporal 
Convolutional with Dynamic Adjacency Network(GTC-DAN) 
that effectively captures both spatial and temporal dependencies 
in vehicle trajectory prediction. Our model integrates Graph 
Convolutional Networks (GCNs) and Temporal Convolutional 
Networks (TCNs) to jointly study the spatial interactions 
between vehicles and the temporal dynamics in historical 
trajectories[7]. Additionally, we introduce a dynamic adjacency 
matrix mechanism to adaptively adjust the spatial relationships 
between nodes, enabling our model to handle the dynamic 
changes in traffic scenarios.  
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1.2.  Problem Definition 

In this study, the task we need to accomplish is to within a 
traffic flow of N vehicles, given each vehicle's historical 
trajectory over the previous T  seconds, study the historical 
trajectories of vehicles {1,2,3,..., }V n  and the 
interactions that occur between them in space, and predict the 
ego vehicle future positions iY 

 for the next   seconds. Where 
{ 1 2 ... }t t t pred    ， ，， ，with the true trajectory 

denoted by 
tY   and the predicted trajectory denoted by Y  . 

1.3. RELATED WORK 

1.3.1. Based on physical model method. 

Traditional prediction methods are based on physical models, 
with mainstream approaches using Kalman filtering prediction 
models and Monte Carlo methods. Barth et al.[8] achieved high 
accuracy in short-term vehicle prediction by using Kalman 
filtering with image data input. Carvalho et al.[9] used an 
Interactive Multiple Model Kalman Filter (IMM-KF) combined 
with dedicated filters related to specific road directions at 
intersections. Danielsson et al.[10] employed Monte Carlo 
methods to predict potential hazards in a scene, enabling 
vehicles to choose more reasonable paths. Sepideh et al.[11]  
utilized Gaussian Process Regression to learn motion patterns 
from noisy historical trajectory data collected by static sensors. 
Yijing Wang.[12] used Monte Carlo methods to output 
probabilistic occupancy grids for prediction targets, provided 
mapping from probabilistic occupancy to actual scenarios, and 
then used Model Predictive Control to optimize the reference 
trajectory. 
Physical methods typically consider the kinematic and dynamic 
constraints of vehicles, such as yaw angle, vehicle type, and 
acceleration, as well as environmental factors like road surface 
friction coefficients. Although these methods can achieve short-
term motion prediction, they overlook prior and posterior 
knowledge of the driving scene, such as road structure, traffic 
rules, and the subjective intentions of drivers. 

1.3.2. Based on deep learning methods. 

In recent years, the widespread application of neural networks 
has brought significant attention to deep learning-based 
prediction methods. Based on large datasets, deep learning 
models can consider both physical models and road 
environment structures, as well as train interactions between 
the target and surrounding participants. 
As trajectory prediction is a specific type of sequential 
prediction, temporal prediction networks, represented by 
Recurrent Neural Networks (RNNs), were initially employed 
by researchers. N. Deo et al.[13] proposed Maneuver-LSTM 
model which predicts vehicle trajectories by classifying 
driving maneuvers, enabling the model to adjust its 
predictions based on the identified driving intents, such as 
lane changes and turns. A. Alahi et al.[14] Social-LSTM 
model simulates the interaction between vehicles to account 
for the influence of surrounding vehicles on the trajectory of 
the vehicle. N. Deo et al.[15] designed a model framework 
that combines convolutional neural networks (CNNs) with 
LSTM to capture spatial and temporal features. 
 Zyner et al.[16] collected real vehicle driving data and 
developed an LSTM network model to validate its predictive 

capability for single-lane roundabout behavior in urban 
settings. Dai et al.[17] addressed the issue of low prediction 
accuracy in dense traffic by proposing a spatiotemporal 
LSTM prediction model. Xing et al.[18] utilized an LSTM 
encoder-decoder structure, assigning a decoder to each 
driving style to achieve personalized trajectory predictions. 
Furthermore, some researchers have explored the use of 
Convolutional Neural Networks (CNNs) for better capturing 
spatial features, including interactions among various traffic 
participants. For instance, Cen J et al. proposed using CNNs 
to extract spatiotemporal information from trajectory data, 
followed by Gated Recurrent Units (GRUs) to extract 
temporal relationships in the trajectories.[19] Similarly, 
Semwal et al.[20] designed a model based on an LSTM and 
CNN encoder combination to generate trajectories classified 
by speed. 
In many practical applications of trajectory prediction, 
numerous features are generated in non-Euclidean spaces, 
particularly the interactions between different traffic 
participants. Graph Neural Networks (GNNs) are adept at 
extracting structural and feature information from graphs, 
thereby constructing state-space scene graphs that incorporate 
these interactions. For instance, Sharma et al. [21] proposed a 
model that combines GNN embeddings with Long Short-
Term Memory (LSTM) networks. This model utilizes GNNs 
to capture the spatiotemporal patterns in vehicle trajectory 
prediction, effectively handling spatiotemporal dynamics. 
Similarly, Wu K et al. [22] introduced the Graph-based 
Interaction-aware Multi-modality Trajectory Prediction 
framework. In this framework, vehicle movements are 
conceptualized as nodes in a time-varying graph, aiming to 
predict future vehicle trajectories by effectively capturing 
these interactions. 
Y. Cai et al.[23] proposed a hierarchical network called EA-
Net is a trajectory prediction model that dynamically captures 
the interaction effects between vehicles using GNNs and an 
edge attention mechanism. Liang M et al. [24] utilized vector 
maps to construct lane-to-lane graphs known as LaneGCN. 
This graph can extract structural features and topological 
relationships of high-precision maps. They used 
convolutional networks to capture vehicle historical trajectory 
information, then combined this information with the graph 
for joint processing to ultimately obtain the predicted 
trajectory. Abdelraouf et al. [25] designed a model framework 
that combines Graph Convolutional Networks (GCNs) and 
Long Short-Term Memory (LSTM) networks. This model 
enhances vehicle trajectory prediction by incorporating 
personalized driving patterns, effectively capturing the 
spatiotemporal interactions between the target vehicle and 
surrounding traffic. 

1.4. Contribution 

The main contributions of this paper include: 
1）Proposing a novel Graph-Temporal Convolutional with 
Dynamic Adjacency Network(GTC-DAN) that captures both 
temporal and spatial dependencies in vehicle trajectory 
prediction tasks. This model combines Graph Convolutional 
Networks (GCNs) and Temporal Convolutional Networks 
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(TCNs), effectively learning features from both sequential and 
structured data. 
2）Introducing a dynamic adjacency matrix mechanism that 
dynamically adjusts the spatial topological relationships 
between nodes. This effectively captures the dynamic changes 
in node relationships in spatiotemporal data, enhancing the 
model's applicability to complex scenarios. 
3）Employing an attention-enhanced GRU structure in the 
decoder, which can automatically extract more critical 
information for the prediction target, effectively capturing long-
term dependencies and generating accurate future trajectory 
prediction sequences. 

2. OVERALL STRUCTURE OF THE MODEL 

In real traffic scenarios, there are complex interactions between 
traffic participants such as pedestrians and vehicles. The future 

movement trajectory of a vehicle depends not only on its own 
historical trajectory (i.e., the influence of temporal factors) but 
also on the trajectories of surrounding vehicles (i.e., the 
influence of spatial factors). Therefore, a vehicle trajectory 
prediction model must consider dependencies in both temporal 
and spatial dimensions. Our proposed GTC-DAN model, as 
shown in Figure 1, aims to effectively capture spatiotemporal 
dependencies in vehicle trajectory prediction tasks. This model 
integrates Graph Convolutional Networks (GCN)[26] and 
Temporal Convolutional Networks (TCN)[27] and introduces a 
novel dynamic adjacency matrix mechanism to dynamically 
adapt the spatial topological relationships between nodes. The 
encoder part of the model employs a spatiotemporal 
convolutional structure with shared and independent layers, 
achieving a good balance between feature extraction capability 
and computational efficiency. 
 

 

Fig.1.  GTC-DAN Model.The overall structure of the model consists of an encoder, a dynamic adjacency matrix module, a multi-head attention module, 
and a future trajectory decoder. The encoder is composed of identical layers, each containing shared and independent parts. The spatial convolution 
module and temporal convolution module process the spatial and temporal hidden state vectors, respectively.

 
Specifically, the GCN part of the model captures spatial 
interactions between traffic participants. Through the 
dynamic adjacency matrix mechanism, the model can adjust 
the connection weights between nodes in real-time, adapting 
to dynamic changes in complex traffic scenarios. The TCN 
part focuses on temporal dynamics in historical trajectories, 
capturing both short-term and long-term dependencies 
through convolutional operations. The shared layers of the 
encoder extract common features, while the independent 
layers optimize specific features for different vehicles. 
Additionally, to further improve prediction accuracy, the 
decoder part of the model adopts an attention mechanism-
enhanced Gated Recurrent Unit (GRU) structure, which can 
automatically extract critical information for the prediction 
target, capture long-term dependencies, and generate precise 
future trajectory prediction sequence. 

3. GTC-DAN MODEL 

3.1.  Model introduction. 

Each GTC-DAN layer includes shared and independent parts; 
the shared part shares parameters across layers., which not  
only reduces the number of model parameters but also 
extracts stable feature patterns. The independent part has 
separate parameters for each layer, capturing specific features 
at different levels, enabling the model to better understand 
and represent hierarchical details in the data. 

3.1.1. Input representation. 

The input representation. Raw data is often unstructured or 
semi-structured, making it unsuitable for direct use. Thus, it's  
 
necessary to convert the raw data into a format conducive to 
efficient subsequent computation. Suppose that in the past 𝑇 
time steps, we observed 𝑁  vehicles in the scene. The 
information at the nth layer is represented by an input tensor 
𝑾  of size (𝑁 × 𝑇 × 𝐶)  ,where 𝐶 = 2  represents the *e-mail: smith@university.edu.pl (Remove for evaluation process) 
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coordinates of the vehicles (𝑥௧
, 𝑦௧

) . The input hidden state 
is processed by two modules in the independent part: 

𝑾
ୗ = 𝑓,ୗ(𝑾 ), 𝐖

 = 𝑓,(𝑾 ), (1) 
Where 𝑓,ௌ and 𝑓,் are the spatial and temporal modules of 
the nth layer's independent part, respectively. The input 
hidden state also passes through the shared part: 

𝑾
ୗᇲ

= 𝑓ୗ(𝑾 ), 𝑾
ᇲ

= 𝑓(𝑾 ), (2) 
Where 𝑓ୗ and 𝑓 are the spatial and temporal modules of the 
shared part, respectively, with the same parameters shared 
across different layers. Finally, the hidden states from the 
four modules in this layer are fused: 

𝑾
ᇱ = 𝐏, ∗ ൣ𝑾

ୗ ; 𝑾
; 𝑾

ୗᇲ
; 𝑾

ᇲ
൧ + 𝐛, , (3) 

Where 𝑾
ᇱ  is the fused information of the input 𝑾 of the 

nth layer after non-linear transformation. Then, the residual 
connection and normalization are applied to obtain the input 
for the next layer: 

𝑾ାଵ = Batch norm൫𝑾 + ReLU(𝑾
ᇱ )൯. (4) 

3.2. Dynamic adjacency matrix module. 

In traditional Graph Convolutional Networks (GCNs), the 
adjacency matrix A is usually static and unchanging[28]. 
However, in dynamic spatiotemporal data scenarios, the 
strength of relationships between nodes may change 
dynamically over time. A fixed static adjacency matrix 
cannot accurately capture these dynamic relationship 
changes. To effectively capture the influence of temporal 
changes on the strength of spatial topological relationships 
between nodes, we introduce a dynamic adjacency matrix 
module. As shown in Figure 2. This module dynamically 
adjusts the spatial relationship strength between nodes based 
on time, updating the adjacency matrix to better capture the 
dynamic evolution characteristics in spatiotemporal data, as 
shown in the figure. 

 
Fig.2. Dynamic Adjacency Matrix Construction for Lane Graphs 

 
Specifically, the construction process of the dynamic 
adjacency matrix 𝑨థ(௧) ∈ ℝே×ே is as follows: 

𝐴థ(௧), =
𝑆

∑   𝑆

(5) 

First, the input feature matrix 𝑊 is mapped to a new feature 
space through a linear transformation, resulting in a new 

feature matrix 𝑊
ᇱ . Based on the new feature matrix 𝑊

ᇱ , the 
similarity matrix 𝑆  is calculated. Each element 𝑆  of the 
similarity matrix is computed using the following formula: 

𝑆 = exp ቆ−
∥ 𝑊

ᇱ(𝑖, : ) − 𝑊
ᇱ(𝑗, : ) ∥ଶ

2𝜎ଶ
ቇ (6) 

Here, ∥ 𝑊
ᇱ(𝑖, : ) − 𝑊

ᇱ(𝑗, : ) ∥ଶ represents the Euclidean 
distance between the feature vectors of the i-th and j-th 
nodes, and 𝜎 is a scale parameter that controls the 
similarity calculation. 
The similarity matrix 𝑆  captures the relationship strengths 
between nodes based on their features. By normalizing this 
matrix, we obtain the dynamic adjacency matrix 𝑨థ(௧) , 
which reflects the adjusted spatial relationships between 
nodes over time: 

𝐴ఝ(௧), =
𝑆

∑   𝑆

(7) 

Normalization ensures that the sum of the similarities for 
each node is 1, making 𝑨థ(௧) a proper adjacency matrix for 
the graph convolutional operations. This dynamic adjustment 
allows the model to better capture the evolving spatial 
relationships in the traffic scene, thereby improving the 
accuracy of trajectory predictions. 
By dynamically updating the adjacency matrix, our model 
can adapt to the changing interactions between vehicles, 
reflecting the real-time evolution of traffic scenarios. This 
enhances the model's ability to predict future trajectories 
accurately by incorporating both temporal and spatial 
dependencies effectively. 

3.3. Trajectory Encoder. 

3.3.1. Spatial Convolution Module 

To better represent the dynamic spatial relationships between 
vehicles, we first construct a spatial state scene graph at time 
𝑡 to describe the current traffic scenario 𝐺 = [𝑉௧ , 𝐸௧]: 
𝑉௧ = {𝑣௧

 ∣ ∀𝑖 ∈ {1, … , 𝑁}} This represents the set of all 
vehicles at time t where 𝑣௧

 is the feature vector of the m-th 
vehicle at time step t, including its position, velocity, and 
heading angle. 𝐸௧  represents the set of all edges: 𝐸௧ =
{𝑒௧


|∀𝑖, 𝑗 ∈ {1, … , 𝑁}} ,This represents the potential 

relationship or spatial interaction influence of vehicle i on 
vehicle j. 
Traditional graph convolutions, while capable of extracting 
local spatial information to handle the relationships between 
nodes in space, do not account for features that evolve over 
time. To dynamically model the strength of interactions 
between two nodes, the spatial convolution in the GTC-DAN 
model replaces the normal adjacency matrix with a dynamic 
adjacency matrix, thereby more accurately capturing and 
reflecting the complex spatial dependencies in trajectory data. 
First, the dynamic adjacency matrix 𝑨థ(௧) ∈ ℝே×ே  is 
generated based on the temporal and spatial features of the 
vehicles and can perform spatial convolution operations. 
Below, we introduce the independent and shared parts of the 
spatial convolution module. 
Each layer's spatial convolution has independent parameters 
to extract spatial features at different levels: 
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𝑓,ௌ(𝑾):, =   

ே

ୀଵ

𝑨థ(௧),,
,ௌ 𝑾:,

 , (8) 

Where 𝑓,ௌ(𝑾):,  represents the spatial convolution 
features of the dynamic graph's independent part at the n-th 
layer；𝑾 ∈ ℝே×ௗ is the input feature matrix at the 𝑛-th 
layer, where 𝑁 is the number of nodes and 𝑑 is the feature 
dimension。𝑨థ(௧)

,ௌ ∈ ℝே×ேis the dynamic adjacency matrix 

at the 𝑛-th layer, representing the relationships between 
nodes at time step 𝜙(𝑡). 𝑾:,

  represents the feature vector of 
neighbor node 𝑗. The purpose of the spatial convolution 
module is to aggregate the feature vector information of all 
neighbor nodes to node i based on 𝑨థ(௧). 
In the shared part of the spatial convolution module at the n-
th layer, it is defined as follows: 

𝑓ௌ(𝑾) = 𝑾 ×ଶ 𝑨థ(௧)
ௌ (9) 

Where 𝑨ௌ  represents the dynamic adjacency matrix of the 
shared part, sharing the same parameter set across different 
layers. 

3.3.2. Temporal Convolutional Module 

To capture the temporal dependencies of historical vehicle 
data, we use a temporal convolution module. This module 
mainly extracts temporal domain information between 
vehicles through convolution operations. Similar to the 
spatial convolution module mentioned earlier, the temporal 
graph convolution in the independent part of the n-th layer 
can be defined as: 

𝑓,்(𝑾) =   



ୀଵ

𝑨థ(௧),,
,் 𝑾:,

 (10) 

Where 𝑓,்(𝑾):,  represents the temporal convolution 
features of the dynamic graph in the independent part of the 
n-th layer. In the shared part of the n-th layer, the temporal 
graph convolution module is defined as: 

𝑓்(𝑾) = 𝑾 ×ଵ 𝑨థ(௧)
் (11) 

Where 𝑨் represents the dynamic adjacency matrix shared 
by other layers, sharing the same parameter set across 
different layers. Through this approach, the temporal 
convolution module can dynamically capture the complex 
temporal dependencies between vehicles, thereby 
improving the temporal correlation and accuracy of 
trajectory predictions. 
 

3.4. Future Trajectory Joint Decoder.   

After extracting the spatiotemporal features of trajectory data, 
the vehicle trajectory prediction task can be transformed into 
a typical sequence generation problem. Given the 
computational efficiency and superior performance of the 
Gated Recurrent Unit (GRU) in sequence modeling tasks, 
this paper adopts an attention mechanism-based GRU[29] 
decoder structure to mine critical information from the 
extracted feature data and generate future trajectory 
predictions. 
Specifically, for the trajectory prediction sequence of the i-th 
vehicle 𝐘 = 𝑦

ଵ, 𝑦
ଶ, … , 𝑦

்ᇲ
,where 𝑇ᇱ  represents the 

prediction length, and 𝑦
௧ ∈ ℝᇲ

 is a 𝐶ᇱ  dimensional vector 
that typically includes features such as position coordinates 
and velocity. The hidden state 𝐡

௧ of the decoder at time step 
t is updated by the following formula: 

𝐡
௧ = DecoderGRU(𝐲

௧ିଵ, 𝐡
௧ିଵ, 𝐜) (12) 

Where DecoderGRU denotes the GRU unit of the decoder, 
𝐲

௧ିଵ is the predicted output from the previous time step, 𝐡
௧ିଵ 

is the previous hidden state, and 𝐜  is the context vector 
obtained from the encoder, which remains constant for all 
time steps. The context vector 𝐜  is calculated through a 
multi-head attention mechanism from the hidden states of the 
last layer of the encoder 𝐇

 ∈ ℝே×ௗ  , where N is the 
number of encoder layers and d is the hidden state dimension: 

𝐜 = MultiHeadAttn(𝐇
 , 𝐇

 , 𝐇
) (13) 

MultiHeadAttn denotes the multi-head attention 
mechanism.[23]  By computing attention coefficients, the 
model can dynamically adjust its focus on different historical 
information, thereby better capturing complex 
spatiotemporal dependencies. As shown in Figure 3, the 
weight 𝑎represents the attention coefficient of the decoder 
at the j-th position of the encoder: 

𝛼 =
exp൫𝑒൯

∑  
ୀଵ exp(𝑒)

, 𝑒 = 𝐯ୃ tanh(𝐖ଵ𝐡
௧ + 𝐖ଶ𝐡

) (14) 

Where 𝐡
  is the hidden state of the n-th layer of the 

encoder, and 𝐯, 𝐖ଵ, 𝐖ଶ are learnable parameters. Given the 
hidden state 𝐡

௧ of the decoder, the future trajectory output is: 
𝐲ො

௧ = OutLayer(𝐡
௧ , 𝐜) = 𝐖[𝐡

௧; 𝐜] + 𝐛 (15) 
where OutLayer is a fully connected output layer, and 𝐖 
and 𝐛 are the weight and bias, respectively. 

 
Fig.3. Multi-Head Attention Mechanism 

4. EXPERIMENTS AND ANALYSIS 

4.1. Experimental Setup 

The experiments were conducted on an Ubuntu 20.04.6 
LTS system, with training performed on an Nvidia GTX 
3060Ti GPU. All models were implemented using 
PyTorch. The stochastic gradient descent (SGD) algorithm 
was adopted as the optimizer. The model was trained for 
300 epochs with a batch size of 128. The initial learning 
rate was set to 0.01, and a decay of 0.002 was applied after 
150 epochs. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



6 

For evaluation, we used the Next Generation Simulation 
(NGSIM) dataset, which contains high-resolution vehicle 
trajectory data from real-world highway scenarios. This 
dataset captures various traffic behaviors, such as lane 
changes and vehicle-following patterns, providing a robust 
benchmark for trajectory prediction models. 

4.2. Experimental Results Comparison and Analysis 

4.2.1. Model Prediction Accuracy Comparison 

We conducted comparative experiments between the 
proposed model and existing trajectory prediction models. 
The models were evaluated using the Root Mean Square 
Error (RMSE) to measure prediction accuracy, which 
calculates the square root of the average squared differences 
between the predicted and actual trajectories. Maneuver-
LSTM (M-LSTM)：M-LSTM is an encoder-decoder based 
model where the encoder encodes the trajectories of the 
target and surrounding vehicles. The encoded vector and 
maneuver code are input into the decoder, which decodes 
them to generate multimodal trajectory predictions. 
Social-LSTM(S-LSTM): This model addresses the problem 
by connecting LSTMs corresponding to adjacent sequences 
through a new architecture. It introduces a "social" pooling 
layer, which can automatically learn typical interactions 
occurring between trajectories that overlap in time. 
EA-Net: This model uses Graph Neural Networks (GNNs) 
to extract the interaction relationships between vehicles and 
a Recurrent Neural Network (RNN) decoder to predict the 
future trajectories of target vehicles. 
CS-LSTM: This model combines Convolutional Neural 
Networks (CNNs) and Long Short-Term Memory networks 
(LSTMs). It extracts features from trajectory data through 
convolutional layers and then uses LSTM layers to capture 
dynamic dependencies in the time series. 
The table 1 and Figure 4 lists the comparative experiment 
results of the proposed model and the aforementioned 
trajectory prediction models: 

TABLE 1. Model Prediction Accuracy Comparison 

Datasets Methods Prediction horizon 
1s 2s 3s 4s 5s 

NGSIM 

M-LSTM 0.58 1.26 2.12 3.24 4.56 
S-LSTM 0.84 1.49 2.31 3.32 4.57 
EA-NET 0.42 0.88 1.43 2.15 3.07 

CS-LSTM 0.61 1.27 2.09 3.10 4.37 
GTC-
DAN 
(Our) 

0.41 0.75 1.25 1.88 2.51 

 

 
Fig.4. Model accuracy line chart 

 
Figure 4 visualizes the data from the table 1 which 
comparison of model accuracy within a 5 second prediction 
horizons. From both the table and the figure, it is evident 
that the proposed trajectory prediction model shows 
significant advantages over the listed models through 
experimental comparison. Specifically, compared to the 
EA-Net model, which also uses Graph Neural Networks, 
our model achieves approximately a 15% improvement in 
overall prediction performance on the NGSIM dataset. 
Compared to the CS-LSTM model, which uses 
convolutional pooling to establish interaction relationships, 
our model shows a 40% improvement in prediction 
accuracy. These results indicate that our model has higher 
accuracy and robustness in handling complex traffic 
scenarios and vehicle interactions. Furthermore, compared 
to current existing research, our model shows significant 
improvements at 3s, 4s, and 5s prediction intervals. This 
demonstrates that our model has reliable performance in 
long-term prediction, better capturing the future movement 
trends of vehicles, especially in scenarios that require 
consideration of long-term dependencies. 

4.2.2. Model Time Analysis 

In the previous model comparison experiments, we unified 
the input historical duration to 3 seconds. However, the 
variation in the time domain can also impact prediction 
accuracy. To investigate the influence of different historical 
time domains on prediction accuracy, we tested the models 
using three historical time domains: 1 second, 3 seconds, 
and 5 seconds. As shown in Figure 5, for the same 
prediction duration, the longer the historical trajectory 
relationship between the target vehicle and surrounding 
vehicles utilized by this model, the smaller the root mean 
square error (RMSE). Under the same historical trajectory 
duration, the longer the prediction time, the larger the error. 
This is because driving behavior is uncontrollable, and the 
longer the prediction time, the greater the error. 
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Fig.5. Experimental Results on the Influence of Different 
Historical Time Domains on Prediction Accuracy 

4.2.3. Model Complexity Analysis 

In practical applications, although model performance is 
important, overall model efficiency is even more crucial. To 
explore the efficiency of this model, we compared the 
model size of GTC-DAN with some representative 
baselines. Table 2 shows the total number of parameters for 
each model. For the NGSIM dataset, Figure 6 presents a 
scatter plot of model size versus accuracy. We can observe 
that GTC-DAN strikes a balance between spatial 
complexity and performance. 

TABLE 2. Comparison of Parameter Count, Training Time, and 
Testing Time Across Different Models 

Model 
M-

LST
M 

CS-
LST
M 

S-
LST
M 

EA-
NET 

GTC-
DAN 
(Our) 

Total 
Parameters(Byt

e) 

6734
2 

97821 
15962

8 
185264 128456 

Training time(s) 26 52 72 71 56 
Test time(s) 22 48 70 67 53 

 

 
Fig.6. Total parameters of Model vs RMSE 

 

4.2.4. Model Ablation Experiment 

To further validate the effectiveness of each module in the 
proposed model, we conducted an ablation study on the 
NGSIM dataset. We compared the performance by 
separately removing the independent module without 
utilizing all layers of the encoder, the shared module 
without utilizing all layers of the encoder, replacing with a 
fixed adjacency matrix, and removing the multi-head 
attention mechanism module. 
The results are shown in Table 3 and Figure 7: 

TABLE 3. Model Ablation Study Results 

Method 
RMSE 

T=1s T=2s T=3s T=4s T=5s 
No Sharing blocks 0.63 1.16 1.53 1.95 2.54 

No Independent 
blocks 

0.59 1.12 1.49 1.83 2.32 

Fixed adjacency 
matrix 

0.68 1.15 1.78 2.12 2.66 

No Attention blocks 0.79 1.21 1.90  2.21 2.75 
GTC-DAN(Our) 0.41 0.75 1.25 1.88 2.51 

 

 
Fig.7. Comparison of the impact of different modules on 

model prediction accuracy 
 
The Figure 7 shows the ablation study comparing different 
model variants. GTC-DAN is the proposed model in this 
paper. "No Sharing blocks" is the model without the shared 
module. "No Independent blocks" is the model without the 
independent module. "Fixed adjacency matrix" uses a fixed 
adjacency matrix. "No Attention blocks" is the model where 
the decoder does not use the attention mechanism. 
As shown in the figure, with the increase of prediction time, 
capturing the spatial and temporal dynamic relationships 
becomes increasingly important. Therefore, the impact of 
the dynamic adjacency matrix and independent module 
gradually increases, while the impact of the shared module 
and multi-head attention mechanism is relatively small in 
the short term but also becomes important over a longer 
time period. Compared to the models without independent 
blocks and shared blocks, GTC-DAN demonstrates better 
performance, indicating the importance of hierarchical 
parameter learning at different layers. Additionally, the 
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results suggest that the hierarchical parameter mechanism 
outperforms the shared mechanism. 

4.2.5. Attention Weight Analysis And Visualization 

Attention weights can reflect the importance of one element 
to other elements[30]. To further analyze the performance 
of the proposed model, we visualized the attention 
distribution of the last layer, as shown in Figure 8. Each 
sub-figure represents an attention head, with the horizontal 
axis representing features (including position, velocity, and 
acceleration), and the vertical axis representing time steps 
from the past to the present. Darker colors in the figure 
indicate higher attention weights. It can be observed that 
different heads exhibit varying degrees of attention on 
different features. From the overall trend, the closer to the 
current time step, the higher the attention weight; the farther 
away from the current time step, the lower the attention 
weight. The results indicate that future trajectories depend 
on the driving trajectories at the current moment and a 
period of time in the past. 

 

 
Fig.8. Weight distribution of multi-head attention 

mechanism 
 

 
Fig.9. Before Lane Change: Trajectory Prediction of the ego 

vehicle in Pre-Lane Change Driving Scenario 
 

 
Fig.10. During Lane Change; Trajectory Prediction of the 

ego vehicle in Lane Change Driving Scenario 
 

 
Fig.11. After Lane Change; Trajectory Prediction of the ego 

vehicle in Post-Lane Change Driving Scenario 
 
Next, we will showcase and analyze the learned spatial 
attention weight distribution of the model through 
visualization. The spatial attention mechanism enables the 
model to adaptively capture the dynamic spatial 
dependencies between different vehicle nodes, which is key 
to accurately predicting future vehicle trajectories. 
Figures 9, 10, and 11 illustrate a typical traffic scenario 
before, during, and after a vehicle's lane change. The real-
time complex interactive behaviors between vehicles lead 
to dynamic changes in their spatial relationships. Different 
colors represent different vehicles in the figures. 
The red vehicle is the ego vehicle. The bottom part of Figure 
9 visualizes the real trajectories of vehicles in this scenario, 
where we can clearly observe vehicle behaviors such as lane 
changing and following. In this figure, the yellow curve 
represents the real trajectories, while the deep blue lines 
indicate multiple predicted trajectories generated by the 
proposed model, showcasing the various potential future 
movements based on different contextual factors. The small 
figures at the top of Figure 9 show the distribution of spatial 
attention weights assigned by the model to each pair of 
vehicle nodes at different time steps. Deeper colors indicate 
larger learned spatial attention weights, representing 
stronger spatial dependencies between nodes. 
From the visualization results, we can see that the spatial 
attention weight distribution exhibits noticeable dynamic 
changes. Taking the bule vehicle about to change lanes as 
an example, we can observe that the model automatically 
increases the attention weights between it and nearby 
vehicles in the new lane, as their future trajectories will 
have significant spatial dependencies. Meanwhile, the 
attention weights between the bule vehicle and vehicles in 
its future lane also increase accordingly. 
This dynamic adjustment behavior fully demonstrates our 
model's capability to autonomously learn and capture the 
dynamic spatial topological relationships between nodes in 
complex interactive scenarios. By effectively modeling the 
dynamically changing spatial dependencies, the model can 
more accurately predict future vehicle motion trajectories. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a novel Graph-Temporal 
Convolutional with Dynamic Adjacency Network(GTC-
DAN) that effectively captures spatio-temporal dependencies 
to achieve accurate vehicle trajectory prediction. Our model 
seamlessly integrates Graph Convolutional Networks (GCNs) 
and Temporal Convolutional Networks (TCNs) to jointly 
learn spatial interactions between vehicles and temporal 
dynamics from historical trajectories. Furthermore, we 
introduced a dynamic adjacency matrix mechanism that can 
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adaptively adjust the spatial relationships between nodes, 
enabling our model to handle dynamic changes in complex 
traffic scenarios. 
The encoder part of our model adopts a unique architecture 
with shared and independent components, striking a good 
balance between feature extraction capability and 
computational efficiency. Extensive experiments on real-
world datasets demonstrate that our proposed GTC-DAN 
model outperforms existing popular methods for vehicle 
trajectory prediction. The visualization of spatial attention 
weights further validates our model's ability to dynamically 
capture the constantly changing spatial dependencies. 
The GTC-DAN model paves a new way for spatio-temporal 
modeling and has tremendous application potential in 
autonomous driving and related fields. Possible future 
directions include extending our model to handle more 
complex scenarios with heterogeneous traffic agents, 
incorporating high-level semantic information, and exploring 
more efficient real-time deployment architectures. 
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