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In this paper, the theory of screws is applied to the jerk analysis of the PUMA robot,
one of the most popular serial manipulators in history. The higher order kinematic
analyses of robot manipulators, such as the acceleration and the jerk, become relevant
in improving, among other issues, the performance of robotic manipulators amelio-
rating the generation of impulsive forces, optimizing the path planning trajectory,
reducing the noise, or making it possible to generate smooth trajectories. Numerical
applications are provided with the aim to exemplify the versatility of the method of
kinematic analysis employed in the contribution. As a consideration for non-experts
in the subject, the contribution includes a brief review of the screw theory and its
relationship with Plücker coordinates.

1. Introduction

Let us consider an object, for example a particle, constrained to move according
to the position vector 𝑟𝑟𝑟 (𝑡) that is function of the time 𝑡. The instantaneous velocity
vector 𝑣𝑣𝑣(𝑡) of the object is defined as the first time derivative of 𝑟𝑟𝑟 (𝑡), i.e., 𝑣𝑣𝑣(𝑡) ≡
𝑑𝑟𝑟𝑟 (𝑡)
𝑑𝑡

. Velocity is easily detectable with our natural senses since it is related with the
change of pose of an object with respect to another object which serves as a reference
frame. The acceleration vector 𝑎𝑎𝑎(𝑡) is the rate of change of the velocity vector 𝑣𝑣𝑣(𝑡)

of the object over time. That is to say, 𝑎𝑎𝑎(𝑡) ≡ 𝑑𝑣𝑣𝑣(𝑡)
𝑑𝑡

=
𝑑2𝑟𝑟𝑟 (𝑡)
𝑑𝑡2

. By resorting to
Newton’s second law, the acceleration can be interpreted as that which produces
a static force as long as the moving object has mass and the acceleration remains
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constant. In this sense, acceleration analysis becomes important to determine the
capacity of the servomotors employed in robot manipulators to move bodies.

The velocity and acceleration analyses are an ordinary task for most robot
manipulators. However, nowadays robots need to operate at high speeds following
smooth trajectories minimizing, among other benefits, the acceleration peaks and
thus ameliorating the impulsive shaking forces, if any. In such a scenario, the veloc-
ity and acceleration analyses are insufficient to guarantee the optimal performance
of such automated systems. The time derivative of the acceleration leads to the

jerk 𝑗𝑗𝑗 (𝑡), i.e., 𝑗𝑗𝑗 (𝑡) ≡ 𝑑𝑎𝑎𝑎(𝑡)
𝑑𝑡

=
𝑑3𝑟𝑟𝑟 (𝑡)
𝑑𝑡3

, which by resorting to Newton’s second
law is understood as that which produces an impulsive force on an object as long
as the jerk remains constant. The jerk has been the subject of in-depth studies
with relevant applications such as curve smoothing, path planning trajectory, the
modelling of superficial wear in cams, the evaluation of the performance of biome-
chanical systems, research on dynamical behavior of chaotic memory oscillators,
multistable jerk chaotic systems, the perception of motion in living systems, and
so on [1–12]. To have a simple idea of what jerk is consider that while velocity
is clearly perceived when an object is moving and acceleration is perceived, for
example, as a force that emerges when one is in a moving vehicle, the effects
associated with the jerk are not consciously perceived. For example, the human
body performs its movements minimizing the effects of jerk, a work that the brain
performs automatically and instinctively. In this sense, it is worth mentioning that
while the first serious studies on motion date from more than four centuries ago
thanks to Galileo’s contributions in the analysis of the motion of bodies in inclined
planes, the study of jerk dates from less than half a century ago. This delay is
perhaps because of the inherent difficulty of higher order derivatives when these
are presented as simple derivatives product of a kind of blind mathematics lacking
solid bases in the physical interpretation. For example, it is common in standard
books on dynamics to explain the Coriolis acceleration in a few paragraphs and
yet its extension to the Coriolis jerk can be somewhat obscure to the extent that
the subject is simply excluded. On the other hand, the use of rational algebras
that do not disregard physical sense, such as the screw theory, is essential for a
comprehensive treatise on higher-order analysis of robotic systems. The usefulness
is clear when, for example, in designing the Hubble space telescope, NASA set
limits not only for the jerk but also for the jounce.

Fig. 1 shows the PUMA robot, undoubtedly the most famous serial manipula-
tor in history. The PUMA robot marked the before and after of modern robotics.
PUMA is the acronym for Programmable Universal Assembly Machine or Pro-
grammable Universal Manipulator Arm and was initially developed for General
Motors thanks to the research work of Victor Scheinman sponsored by MIT and
Stanford University. Subsequently, UNIMATION gave the final push for its inclu-
sion in the industry. PUMA is an emblematic robot with which modern robotics
manifested its intention to emulate the movement of the arms of the human body.
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Fig. 1. The PUMA robot

Its potential was immediately recognized in the industry raising great expectations
and quickly went from being an academic research to a real application.

In this work, the jerk analysis of the PUMA robot is approached by means of
the screw theory. As an intermediate step, for the sake of completeness the velocity
and acceleration analyses of the robot are also included. Numerical examples are
included in order to illustrate the versatility of the kinematic analysis method
employed.

2. Preliminaries

For non-experts in the subject, in this section fundamentals of Plücker coordi-
nates and the theory of screws are briefly explained.

2.1. Plücker coordinates of lines

Plücker coordinates were introduced by Julius Plücker as a geometric tool to
assign six homogeneous coordinates to each line in projective 3-space, P3. Plücker
coordinates satisfy a quadratic constraint and therefore it is possible to establish
a one-to-one correspondence between the 4-dimensional space of lines in P3 and
points on a quadric in P5 (projective 5-space). They can be extended to coordinates
for the screws and wrenches employed in screw theory to solve the kinematics and
dynamics of robot manipulators.

Let ℓ be a line segment, see Fig. 2. The line ℓ is characterized by a defined
number of parameters with which it is possible to differentiate it from other lines.
The determination of the parameters associated with a line marks the beginning of
the study of Plücker coordinates. To this end, let us consider that ℓ̂ℓℓ is a unit vector
along the line ℓ while 𝑝 is a point through which the line passes. Furthermore, let
us consider that 𝑝𝑝𝑝 is the position vector of point 𝑝. Hence, it is possible to define a
moment vector𝑚𝑚𝑚 as𝑚𝑚𝑚 = 𝑝𝑝𝑝 × ℓ̂ℓℓ. If we choose another point of the line, for example



4 Jaime GALLARDO-ALVARADO, Jesus H. TINAJERO-CAMPOS

Y

XZ

O

l̂

l
p
p

Fig. 2. A spatial line ℓ

�̄�𝑝𝑝 = 𝑝𝑝𝑝 + 𝜆ℓ̂ℓℓ where 𝜆 ∈ R, then the moment �̄�𝑚𝑚 produced by 𝑝 may be computed
as

�̄�𝑚𝑚 = (𝑝𝑝𝑝 + 𝜆ℓ̂ℓℓ) × ℓ̂ℓℓ = 𝑝𝑝𝑝 × ℓ̂ℓℓ + 𝜆(ℓ̂ℓℓ × ℓ̂ℓℓ) = 𝑝𝑝𝑝 × ℓ̂ℓℓ. (1)

In other words, �̄�𝑚𝑚 = 𝑚𝑚𝑚, which means that any point of the line segment produces
the same moment about the point 𝑂. It is evident that the vectors ℓ̂ℓℓ and 𝑚𝑚𝑚 provide
complete data to characterize a line. In that concern, the Plücker coordinates of
the line ℓ, notated as 𝐿𝐿𝐿, are defined as the concatenation of the vectors ℓ̂ℓℓ and 𝑚𝑚𝑚 as
follows

𝐿𝐿𝐿 =

[
ℓ̂ℓℓ

𝑚𝑚𝑚

]
. (2)

Note that for the general case one would suppose the 𝐿𝐿𝐿 must be a six-dimensional
vector, a redundant assumption that contradicts the first paragraph of this section.
To elucidate this point, let us consider that in geometry a line is an infinitely
long object with no width, depth, or curvature. Thus, to determine the maximum
dimension of 𝐿𝐿𝐿 it is necessary to take into proper account two conditions:

1. The vectors𝑚𝑚𝑚 and ℓ̂ℓℓ are orthogonal. Therefore, we have a constraint equation
given by 𝑚𝑚𝑚 · ℓ̂ℓℓ = (𝑝𝑝𝑝 × ℓ̂ℓℓ) · ℓ̂ℓℓ = 0.

2. The vector ℓ̂ℓℓ is unitary. Thus, the second condition implies that | ℓ̂ℓℓ |= 1.
Even though the correctness of these points, to achieve the compatibility

between Plücker coordinates and the Lie algebra 𝑠𝑒(3) of the Euclidean group
𝑆𝐸 (3), it is necessary to keep the redundancy of the Plücker vector.

2.1.1. Reciprocal product between two lines

The reciprocal product between two lines is one of the highlights of Plücker
coordinates. Referring Fig. 3, let us consider a line ℓ in space passing through point
𝑝. Furthermore, let 𝑞 be an arbitrary point. The handling of points 𝑝 and 𝑞 yields
interesting clues about the reciprocal product concept.
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Fig. 3. A line ℓ in the space passing through point 𝑝

The moment vector 𝑚𝑚𝑚𝑞 produced by the unit vector ℓ̂ℓℓ about point 𝑞 may be
computed as

𝑚𝑚𝑚𝑞 = (𝑝𝑝𝑝 − 𝑞𝑞𝑞) × ℓ̂ℓℓ. (3)

Thus

𝑚𝑚𝑚𝑞 = 𝑚𝑚𝑚𝑂 − 𝑞𝑞𝑞 × ℓ̂ℓℓ, (4)

where𝑚𝑚𝑚𝑂 = 𝑝𝑝𝑝× ℓ̂ℓℓ is the moment produced by ℓ̂ℓℓ about the origin 𝑂 of the reference
frame 𝑂_𝑋𝑌𝑍 . On the other hand, without loss of generality, one can choose a
point 𝑞 in such a way that the relative vector �̄�𝑞𝑞 − 𝑞𝑞𝑞 is perpendicular to the line ℓ.
Then, the vector 𝑚𝑚𝑚𝑞 may be computed as

𝑚𝑚𝑚𝑞 = (�̄�𝑞𝑞 − 𝑞𝑞𝑞) × ℓ̂ℓℓ, (5)

Pre-multiplying both sides of Eq. (5) by the vector ℓ̂ℓℓ it follows that

ℓ̂ℓℓ ×𝑚𝑚𝑚𝑞 = ℓ̂ℓℓ × ((�̄�𝑞𝑞 − 𝑞𝑞𝑞) × ℓ̂ℓℓ). (6)

However

ℓ̂ℓℓ × ((�̄�𝑞𝑞 − 𝑞𝑞𝑞) × ℓ̂ℓℓ) = ℓ̂ℓℓ · ℓ̂ℓℓ(�̄�𝑞𝑞 − 𝑞𝑞𝑞) − ℓ̂ℓℓ · (�̄�𝑞𝑞 − 𝑞𝑞𝑞)ℓ̂ℓℓ. (7)

Hence

ℓ̂ℓℓ ×𝑚𝑚𝑚𝑞 = �̄�𝑞𝑞 − 𝑞𝑞𝑞. (8)

Which lead us

�̄�𝑞𝑞 = 𝑞𝑞𝑞 + ℓ̂ℓℓ ×𝑚𝑚𝑚𝑞 . (9)

Gathering these results we are in a position to define the reciprocal product.
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Theorem 1 Let us consider that ℓ1 and ℓ2 are two lines whose Plücker coordinates,
see Eq. (2), are given by

𝐿𝐿𝐿𝑖 =

[
ℓ̂ℓℓ𝑖

𝑚𝑚𝑚𝑖

]
𝑖 = 1, 2. (10)

The reciprocal product (∗) between 𝐿𝐿𝐿1 and 𝐿𝐿𝐿2 is given by

𝐿𝐿𝐿1 ∗ 𝐿𝐿𝐿2 ≡ ℓ̂ℓℓ1 ·𝑚𝑚𝑚2 + ℓ̂ℓℓ2 ·𝑚𝑚𝑚1. (11)

Proof: according to Eq. (4), the vector 𝑚𝑚𝑚1 associated to the line ℓ1 may be
related with the vector 𝑚𝑚𝑚2 associated to the line ℓ2 as follows

𝑚𝑚𝑚1 = 𝑚𝑚𝑚2 − 𝑝𝑝𝑝1 × ℓ̂ℓℓ2. (12)

Furthermore, from the right side of Eq. (12) one can resort to the unit vector ℓ̂ℓℓ1 in
such a way that

ℓ̂ℓℓ1 · (𝑚𝑚𝑚2 − 𝑝𝑝𝑝1 × ℓ̂ℓℓ2) = ℓ̂ℓℓ1 ·𝑚𝑚𝑚2 + ℓ̂ℓℓ2 · (𝑝𝑝𝑝1 × ℓ̂ℓℓ1), (13)

where evidently 𝑝𝑝𝑝1 × ℓ̂ℓℓ1 = 𝑚𝑚𝑚1. Then, it follows that

ℓ̂ℓℓ1 · (𝑚𝑚𝑚2 − 𝑝𝑝𝑝1 × ℓ̂ℓℓ2) = ℓ̂ℓℓ1 ·𝑚𝑚𝑚2 + ℓ̂ℓℓ2 ·𝑚𝑚𝑚1. (14)

Finally, the left side of Eq. (14) is defined as the reciprocal product between
the lines ℓ1 and ℓ2. That is to say, the reciprocal product is computed as

𝐿𝐿𝐿1 ∗ 𝐿𝐿𝐿2 ≡ ℓ̂ℓℓ1 ·𝑚𝑚𝑚2 + ℓ̂ℓℓ2 ·𝑚𝑚𝑚1. (15)

and thus the proof is completed. □
Dealing with the instantaneous kinematics of robot manipulators, some rele-

vant properties of the reciprocal product between two lines are as follows:
1. Assume that the lines ℓ1 and ℓ2 pass through a common point 𝑝. Then

𝐿𝐿𝐿1 ∗ 𝐿𝐿𝐿2 = ℓ̂ℓℓ1 ·𝑚𝑚𝑚2 + ℓ̂ℓℓ2 ·𝑚𝑚𝑚1

= ℓ̂ℓℓ1 · (𝑝𝑝𝑝 × ℓ̂ℓℓ2) + ℓ̂ℓℓ2 · (𝑝𝑝𝑝 × ℓ̂ℓℓ1)
= ℓ̂ℓℓ1 · (𝑝𝑝𝑝 × ℓ̂ℓℓ2) − ℓ̂ℓℓ1 · (𝑝𝑝𝑝 × ℓ̂ℓℓ2) = 0.

2. Assume that the line ℓ1 passes through point 𝑝 while the line ℓ2 passes
through point 𝑞. If the lines are parallel then ℓ̂ℓℓ1 = ℓ̂ℓℓ2 = ℓ̂ℓℓ. Therefore

𝐿𝐿𝐿1 ∗ 𝐿𝐿𝐿2 = ℓ̂ℓℓ ·𝑚𝑚𝑚2 + ℓ̂ℓℓ ·𝑚𝑚𝑚1 = ℓ̂ℓℓ · (𝑞𝑞𝑞 × ℓ̂ℓℓ) + ℓ̂ℓℓ · (𝑝𝑝𝑝 × ℓ̂ℓℓ) = 0.

3. If the unit vector 𝑙𝑙𝑙1 vanishes and 𝑚𝑚𝑚1 = 𝑙𝑙𝑙2 then we have that

𝐿𝐿𝐿1 ∗ 𝐿𝐿𝐿2 = ℓ̂ℓℓ1 ·𝑚𝑚𝑚2 + ℓ̂ℓℓ2 ·𝑚𝑚𝑚1 = 000 ·𝑚𝑚𝑚2 + ℓ̂ℓℓ2 · ℓ̂ℓℓ2 = 0 + 1 = 1.
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2.2. Fundamentals of screw theory

Chevallier [13] was the first to envision the infinitesimal motion of the rigid
body as the geometrical representation of a field with helical properties. The
importance of this postulate is extraordinary if one takes into account that the
physical space 𝐸 and the three dimensional vector space R3 are related by a helical
vector field as follows

𝑋 : 𝐸 → R3 𝑋 (𝑃) = 𝑋 (𝑃)∀𝑃 ∈ 𝐸, (16)

where 𝑋 (𝑃) ∈ R3. Furthermore, given two points 𝑃,𝑄 ∈ 𝐸 it follows that

𝑋 (𝑄) = 𝑋 (𝑃) + 𝑎𝑎𝑎 × 𝑟𝑟𝑟𝑄/𝑃 , (17)

where the vector 𝑎𝑎𝑎 is the vector of the helical vector field while 𝑟𝑟𝑟𝑄/𝑃 is the position
vector of point 𝑄 with respect to point 𝑃.

2.2.1. Kinematic states of the rigid body

Fig. 4 shows a body 𝑚 in motion with respect to another body 𝑗 . Attached
to body 𝑗 there is a reference frame 𝑂_𝑋𝑌𝑍 where the origin 𝑂 plays the role
of reference pole. Reference pole means that a point of the body 𝑚 coincides
instantaneously with the point 𝑂. From a kinematic point of view, in a mechanism
the connection between its links is relevant but not their shape, so it is always
possible to make a point of the link coincide instantaneously with the point 𝑂
without affecting the infinitesimal kinematic analysis.

The instantaneous rotational motion of body 𝑚 as measured from body 𝑗

ranges from the angular velocity vector 𝑗𝜔𝜔𝜔𝑚 to the angular jerk vector 𝑗𝜁𝜁𝜁𝑚 without
overlooking, naturally, the angular acceleration vector 𝑗𝛼𝛼𝛼𝑚. These vectors do not

Fig. 4. Bodies 𝑚 and 𝑗 in relative motion
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depend on any particular point embedded in the body 𝑚 so they can be considered
as properties of the rigid body. However, the angular properties of the rigid body
alone are insufficient to fully characterize the motion of it. To overcome this point
it is necessary to include the linear motion of the point of interest of the rigid
body. A kinematic state is a vector entity that contains the complete information to
determine the angular and linear kinematic quantities of any point of the moving
body, of course at the desired level of the kinematic analysis. A kinematic state,

notated as 𝑀𝑀𝑀 =

[
𝑝𝑝𝑝∗
𝑑𝑑𝑑∗

]
, consists of a primal part 𝑝𝑝𝑝∗ and a dual part 𝑑𝑑𝑑∗. The primal

part is devoted to the angular vector while the dual part is associated with the
corresponding linear vector.

The first kinematic state to be explained is the velocity state of the rigid body,
notated as 𝑗𝑉𝑉𝑉𝑚

𝑄, also known as the twist about a screw, where 𝑄 is the point of
interest of the rigid body. Ball [14] defined the velocity state of rigid body, see
Fig. 4, as follows

𝑗𝑉𝑉𝑉𝑚
𝑄 =

[
𝑗𝜔𝜔𝜔𝑚

𝑣𝑣𝑣𝑄

]
, (18)

where 𝑣𝑣𝑣𝑄 is the velocity vector of point 𝑄. Expression (18) is the logical vector
to define the velocity state. The correctness of this definition can be validated by
resorting to the theory of helical fields. To this aim, let us consider two points 𝐴

and 𝐵 of body 𝑚. The velocity states of these bodies are given by

𝑗𝑉𝑉𝑉𝑚
𝐴 =

[
𝑗𝜔𝜔𝜔𝑚

𝑣𝑣𝑣𝐴

]
, 𝑗𝑉𝑉𝑉𝑚

𝐵 =

[
𝑗𝜔𝜔𝜔𝑚

𝑣𝑣𝑣𝐵

]
. (19)

Since the primal part of 𝑗𝑉𝑉𝑉𝑚
𝐴 and 𝑗𝑉𝑉𝑉𝑚

𝐵 is the same, then the first condition of a
helical field is satisfied. On the other hand, by resorting to elementary kinematics,
the velocity vector of point 𝐵 may be computed upon the velocity vector of point
𝐴 as follows

𝑣𝑣𝑣𝐵 = 𝑣𝑣𝑣𝐴 + 𝑗𝜔𝜔𝜔𝑚 × 𝑟𝑟𝑟𝐵/𝐴 , (20)

where 𝑟𝑟𝑟𝐵/𝐴 is the relative position vector between 𝐵 and 𝐴. Hence one obtains that

𝑑𝑑𝑑𝐵 = 𝑑𝑑𝑑𝐴 + 𝑗𝜔𝜔𝜔𝑚 × 𝑟𝑟𝑟𝐵/𝐴 , (21)

and the second condition of a helical field is satisfied.
The next kinematic state to be considered is the acceleration state of rigid body.

More than half a century ago, Brand [15] defined the acceleration state of rigid
body as follows

𝑗𝐴𝐴𝐴𝑚
𝑄 =

[
𝑗𝛼𝛼𝛼𝑚

𝑎𝑎𝑎𝑄 − 𝑗𝜔𝜔𝜔𝑚 × 𝑣𝑣𝑣𝑄

]
, (22)
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where 𝑗𝛼𝛼𝛼𝑚 =
𝑗𝑑 𝑗𝜔𝜔𝜔𝑚

𝑑𝑡
is the angular acceleration vector of body 𝑚 as measured

from body 𝑗 while 𝑎𝑎𝑎𝑄 is the acceleration vector of point 𝑄. At this point an
elementary doubt arises, does Brand’s definition of the acceleration state satisfy
the helical vector field conditions? To answer this question let us consider the
reduced acceleration states of points 𝐴 and 𝐵. Indeed

𝑗𝐴𝐴𝐴𝑚
𝐴 =

[
𝑗𝛼𝛼𝛼𝑚

𝑎𝑎𝑎𝐴 − 𝑗𝜔𝜔𝜔𝑚 × 𝑣𝑣𝑣𝐴

]
, 𝑗𝐴𝐴𝐴𝑚

𝐵 =

[
𝑗𝛼𝛼𝛼𝑚

𝑎𝑎𝑎𝐵 − 𝑗𝜔𝜔𝜔𝑚 × 𝑣𝑣𝑣𝐵

]
. (23)

Clearly, the first condition of a helical field is satisfied, i.e., the primal part, or
vector 𝑗𝛼𝛼𝛼𝑚, of both acceleration states is the same. To prove the second condition,
by resorting to elementary kinematics we have that

𝑎𝑎𝑎𝐵 = 𝑎𝑎𝑎𝐴 + 𝑗𝜔𝜔𝜔𝑚 × 𝑣𝑣𝑣𝐵/𝐴 + 𝑗𝛼𝛼𝛼𝑚 × 𝑟𝑟𝑟𝐵/𝐴 . (24)

Hence

𝑎𝑎𝑎𝐵 = 𝑎𝑎𝑎𝐴 + 𝑗𝜔𝜔𝜔𝑚 × (𝑣𝑣𝑣𝐵 − 𝑣𝑣𝑣𝐴) + 𝑗𝛼𝛼𝛼𝑚 × 𝑟𝑟𝑟𝐵/𝐴 (25)

or

𝑎𝑎𝑎𝐵 − 𝑗𝜔𝜔𝜔𝑚 × 𝑣𝑣𝑣𝐵 = 𝑎𝑎𝑎𝐴 − 𝑗𝜔𝜔𝜔𝑚 × 𝑣𝑣𝑣𝐴 + 𝑗𝛼𝛼𝛼𝑚 × 𝑟𝑟𝑟𝐵/𝐴 . (26)

Note that the left side of Eq. (26) is precisely the dual part of the acceleration
state 𝑗𝐴𝐴𝐴𝑚

𝐵 while the right side is the dual part of the acceleration state 𝑗𝐴𝐴𝐴𝑚
𝐴 plus the

cross product 𝑗𝛼𝛼𝛼𝑚 × 𝑟𝑟𝑟𝐵/𝐴. Furthermore, the vector 𝑗𝛼𝛼𝛼𝑚 is the primal part of both
acceleration states. This confirms that Brand’s definition of the acceleration state
of rigid body satisfies the conditions of a helical field.

Finally, the jerk state of the body𝑚 as observed from the body 𝑗 was formulated
by Rico et al [16] as

𝑗𝐽𝐽𝐽𝑚𝑄 =

[
𝑗𝜁𝜁𝜁𝑚

𝑝𝑝𝑝𝑄 − 2 𝑗𝛼𝛼𝛼𝑚 × 𝑣𝑣𝑣𝑄 − 𝑗𝜔𝜔𝜔𝑚 × 𝑎𝑎𝑎𝑄

]
, (27)

where 𝑗𝜁𝜁𝜁𝑚 =
𝑗𝑑

𝑑𝑡

𝑗𝛼𝛼𝛼𝑚 is the angular jerk vector of body 𝑚 as measured from body

𝑗 , while 𝑝𝑝𝑝𝑄 =
𝑗𝑑

𝑑𝑡
𝑎𝑎𝑎𝑄 is the linear jerk vector of point 𝑄. To prove the correctness

of Eq. (27) let us consider that the jerk states of points 𝐴 and 𝐵 are given by

𝑗𝐽𝐽𝐽𝑚𝐴 =

[
𝑗𝜁𝜁𝜁𝑚

𝑝𝑝𝑝𝐴−2 𝑗𝛼𝛼𝛼𝑚×𝑣𝑣𝑣𝐴− 𝑗𝜔𝜔𝜔𝑚×𝑎𝑎𝑎𝐴

]
, 𝑗𝐽𝐽𝐽𝑚𝐵 =

[
𝑗𝜁𝜁𝜁𝑚

𝑝𝑝𝑝𝐵−2 𝑗𝛼𝛼𝛼𝑚×𝑣𝑣𝑣𝐵− 𝑗𝜔𝜔𝜔𝑚×𝑎𝑎𝑎𝐵

]
. (28)
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The first condition of a helical field is immediately satisfied, i.e., the primal part or
vector 𝑗𝜁𝜁𝜁𝑚 of both jerk states is the same. On the other hand, the linear jerk vector
of point 𝐵 is computed upon the linear jerk vector of point 𝐴 as follows

𝑝𝑝𝑝𝐵 = 𝑝𝑝𝑝𝐴 − 𝑝𝑝𝑝𝐵/𝐴 , (29)

where, see refs. [16, 17], the relative jerk vector between points 𝐴 and 𝐵 is given
by

𝑝𝑝𝑝𝐵/𝐴 = 2 𝑗𝛼𝛼𝛼𝑚 × 𝑣𝑣𝑣𝐵/𝐴 + 𝑗𝜔𝜔𝜔𝑚 × 𝑎𝑎𝑎𝐵/𝐴 + 𝑗𝜁𝜁𝜁𝑚 × 𝑟𝑟𝑟𝐵/𝐴 , (30)

Thus, after a few computations it follows that

𝑝𝑝𝑝𝐵−2 𝑗𝛼𝛼𝛼𝑚×𝑣𝑣𝑣𝐵− 𝑗𝜔𝜔𝜔𝑚×𝑎𝑎𝑎𝐵 = 𝑝𝑝𝑝𝐴 − 2 𝑗𝛼𝛼𝛼𝑚×𝑣𝑣𝑣𝐴− 𝑗𝜔𝜔𝜔𝑚×𝑎𝑎𝑎𝐴+ 𝑗𝜁𝜁𝜁𝑚×𝑟𝑟𝑟𝐵/𝐴 (31)

or

𝑑𝑑𝑑𝐵 = 𝑑𝑑𝑑𝐴 + 𝑗𝜁𝜁𝜁𝑚 × 𝑟𝑟𝑟𝐵/𝐴 . (32)

and the conditions of a helical field for expression (27) are completed.

2.2.2. Screw theory and kinematic chains

In this part of the contribution, it is provided the relationship between the kine-
matic states of rigid body and the infinitesimal screws representing the kinematic
pairs of a serial chain. For details of these concepts the reader is referred to [18].

A screw $ is formed with two vectors 𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑂 where the unit vector 𝑠𝑠𝑠 is
the direction of the axis of the screw, known as the Instantaneous Screw Axis
(ISA), while 𝑠𝑠𝑠𝑂 is the moment produced by 𝑠𝑠𝑠 about a point 𝑂 named the reference
pole. The vectors 𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑂 are designated, respectively, as the primal and dual
parts of the screw. The moment 𝑠𝑠𝑠𝑂 is computed using the pitch ℎ of the screw as
𝑠𝑠𝑠𝑂 = ℎ𝑠𝑠𝑠 + 𝑠𝑠𝑠 × 𝑟𝑟𝑟𝑂 where 𝑟𝑟𝑟𝑂 is a vector starting at an arbitrary point of the ISA
and ending at the reference pole 𝑂. A screw splendidly confirms the celebrated
Chasles theorem, which states that the spatial displacement of a rigid body can
be represented by a rotation around an axis followed by a translation parallel
to the same axis. Furthermore, since a screw bears a direct relationship to the
Plücker coordinates of a line, then a set of complex lines is a set of lines whose
Plücker coordinates satisfy a linear relationship which can be associated with the
instantaneous motion of the rigid body.

Fig. 5 shows a kinematic chain serially connected by helical pairs which are
notated as 𝑘$𝑘+1(𝑘 = 0, 1, 2, . . . , 𝑚 − 1). The fixed link is labelled as 0 while the
end link is labelled as 𝑚.

The velocity state of the body 𝑚 as observed from the body 0 can be written in
terms of the infinitesimal screws associated with the kinematic pairs of the serial
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-1$
m-1 2

1 2$m
1

0 1$ 0

m m

Fig. 5. Open kinematic chain and its infinitesimal screws

chain as follows [19]

0𝑉𝑉𝑉𝑚
𝑂 =

𝑚−1∑︁
𝑖=0

𝑖𝜔𝑖+1
𝑖$𝑖+1, (33)

where 𝑖𝜔𝑖+1(𝑖 = 0, 1, . . . , 𝑚 − 1) is the joint velocity rate between bodies 𝑖 + 1
and 𝑖. Expression (33) marks the successful beginning of the screw theory in
the kinematic analysis of robotic manipulators. However, the extension of this
expression to acceleration analysis was not as immediate as one might suppose.
Thus, detractors of screw theory found for several decades arguments to discredit
the value of this algebra and to pigeon-hole it as an academic curiosity of little use
and forever limited to velocity analysis. It took several decades after the publication
of Sugimoto and Duffy [19] for screw theory to finally emerge from its slumber
and be properly extended to acceleration analysis of kinematic chains thanks to the
work of Rico and Duffy [20]. After unfounded criticisms and some skepticism, the
acceleration analysis of kinematic chains in screw form was finally formulated and
accepted as

0𝐴𝐴𝐴𝑚
𝑂 =

𝑚−1∑︁
𝑖=0

𝑖𝛼𝑖+1
𝑖$𝑖+1 + $𝑎 , (34)

where 𝑖𝛼𝑖+1 =
𝑑𝑖𝜔𝑖+1
𝑑𝑡

is the joint acceleration rate of body 𝑖 + 1 as observed from
body 𝑖 while $𝑎 is designated as the Lie screw of acceleration, after Marius Sophus
Lie, which is calculated as

$𝑎 =

𝑚−2∑︁
𝑖=0

[
𝑖𝜔𝑖+1

𝑖$𝑖+1
𝑚−1∑︁
𝑗=𝑖+1

𝑗𝜔 𝑗+1
𝑗$ 𝑗+1

]
, (35)

where the brackets
[
∗ ∗

]
denote the Lie product, a fundamental operation of

the Lie algebra 𝑠𝑒(3) of the Euclidean group 𝑆𝐸 (3). Note that the Lie screw of



12 Jaime GALLARDO-ALVARADO, Jesus H. TINAJERO-CAMPOS

acceleration is related with Coriolis terms. In that sense, it is somewhat strange to
read that some authors conclude that by means of experiments it is verified that the
Coriolis and centrifugal forces are negligible in the PUMA robot [21].

The clarity with which the expression (34) was developed soon allowed it to
be extended to the jerk analysis. The jerk state of body 𝑚 as measured from the
base link 0, notated as 0𝐽𝐽𝐽𝑚𝑂, in screw form is given by [16]

0𝐽𝐽𝐽𝑚𝑂 =

𝑚−1∑︁
𝑖=0

𝑖𝜁𝑖+1
𝑖$𝑖+1 + $ 𝑗 , (36)

where $ 𝑗 is called the Lie screw of jerk which is calculated as

$ 𝑗 =

𝑚−2∑︁
𝑖=0

(
2
[
𝑖𝑉𝑉𝑉 𝑖+1

𝑂
𝑖+1𝐴𝐴𝐴𝑚

𝑂

]
+
[
𝑖𝐴𝐴𝐴𝑖+1

𝑂
𝑖+1𝑉𝑉𝑉𝑚

𝑂

]
+
[
𝑖𝑉𝑉𝑉 𝑖+1

𝑂

[
𝑖𝑉𝑉𝑉 𝑖+1

𝑂
𝑖+1𝑉𝑉𝑉𝑚

𝑂

] ] )
.

(37)

Naturally, the corresponding velocity and acceleration states are computed by
resorting to Eq. (33) and Eq. (34). Finally, note that the computation of nested Lie
products is an unavoidable task to obtain the six-dimensional vector $ 𝑗 .

3. Plücker coordinates and the Lie algebra se(3) of the Euclidean group
SE(3)

The Lie algebra 𝑠𝑒(3) of the Euclidean group 𝑆𝐸 (3) is directly related with the
Plücker coordinates of lines which is evidenced in the infinitesimal kinematic anal-
ysis of robotic manipulators owing to its isomorphism with screw theory [22–24].
At a glance, this appears to be a contradiction to the results previously presented.
For example, in the general case a line in Plücker coordinates consists of six compo-
nents of which, as already shown, two are redundant while an infinitesimal screw
necessarily requires two concatenated three-dimensional vectors. It is therefore
necessary to clarify the compatibility between these concepts.

First, it is essential to maintain the redundancy of the Plücker vector to achieve
compatibility between the involved algebras. Considering that one has some free-
dom in the choice of the vector 𝑝𝑝𝑝, then without losing generality it is feasible to
select the vector 𝑝𝑝𝑝 in such a way that it is perpendicular to the unit vector ℓ̂ℓℓ. In this
way, the magnitude of the vector 𝑝𝑝𝑝, notated as 𝑝, is the minimum distance between
the straight line ℓ and the origin𝑂. At this point an extremely interesting task arises
which consists of determining the Plücker coordinates of the line such that 𝑝 goes
to infinity. With this in mind, let us consider that

∏
is the plane generated by

the straight line ℓ and the vector 𝑝𝑝𝑝 which of course includes the origin 𝑂 of the
reference frame. Note that as the straight line ℓ is farther from the origin 𝑂 in the
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plane, the vector 𝑚𝑚𝑚 grows such that the Plücker coordinates can be expressed

by resorting to the original vector 𝑚𝑚𝑚 as

𝐿𝐿𝐿 =

[
ℓ̂ℓℓ

𝑡𝑚𝑚𝑚

]
, (38)

where 𝑡 ∈ R is a scalar that amplifies the vector 𝑚𝑚𝑚, i.e., 𝑡 > 1. Therefore, it is
possible to write a scaled Plücker vector 𝐿𝐿𝐿𝑠 of 𝐿𝐿𝐿 as

𝐿𝐿𝐿𝑠 = 𝐿𝐿𝐿/𝑡 =
[
ℓ̂ℓℓ/𝑡
𝑚𝑚𝑚

]
. (39)

Afterwards, if 𝑡 → ∞ then it follows that

𝐿𝐿𝐿𝑠 = lim
𝑡→∞

[
ℓ̂ℓℓ/𝑡
𝑚𝑚𝑚

]
=


lim
𝑡→∞

ℓ̂ℓℓ/𝑡
lim
𝑡→∞

𝑚𝑚𝑚

 =
[
000
𝑚𝑚𝑚

]
. (40)

4. Higher-order kinematic analyses of the PUMA robot

This section focuses on the infinitesimal kinematic analysis, up to the jerk
analysis, of the PUMA robot. In that sense, although the position analysis of the
PUMA robot has been widely studied in previous works, see for instance [25–28],
it is included in the contribution only for the sake of completeness of the section.

4.1. Position

The position analysis is addressed using the Denavit-Hartenberg convention,
a classical method [29, 30]. Fig. 6 shows the topology of the PUMA robot, its
parameters as well as its generalized coordinates 𝑞𝑖 (𝑖 = 1, 2, 3, . . . , 6). Following
the order 𝑞𝑖 (𝑖 = 1, 2, 3, . . . , 6), the generalized coordinates are designated as waist,
shoulder rotation, elbow, wrist rotation, wrist bend, and flange. Clearly, the solution
of the position analysis requires six reference frames due to the constitutive elements
of the six-degrees-of-freedom robot arm.

The end-effector, link 6, of the PUMA robot is related with the base link
0 through the homogeneous coordinates transformation matrix 0T6 ∈ 𝑆𝐸 (3) as
follows

0T6 = 0T1 1T2 2T3 3T4 4T5 5T6, (41)
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End-effector

Base link

Trunk

Shoulder

Upper arm

Fore arm

Fig. 6. The PUMA robot and its skeleton

where

0T1 =


cos 𝑞1 0 − sin 𝑞1 0
sin 𝑞1 0 cos 𝑞1 0

0 −1 0 0
0 0 0 1


, 1T2 =


cos 𝑞2 − sin 𝑞2 0 𝑎2 cos 𝑞2

sin 𝑞2 cos 𝑞2 0 𝑎2 sin 𝑞2

0 0 1 𝑑2

0 0 0 1


,

2T3 =


cos 𝑞3 0 sin 𝑞3 𝑎3 cos 𝑞3

sin 𝑞3 0 − cos 𝑞3 𝑎3 sin 𝑞3

0 1 0 0
0 0 0 1


, 3T4 =


cos 𝑞4 0 − sin 𝑞4 0
sin 𝑞4 0 cos 𝑞4 0

0 −1 0 𝑑4

0 0 0 1


,
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4T5 =


cos 𝑞5 0 sin 𝑞5 0
sin 𝑞5 0 − cos 𝑞5 0

0 1 0 0
0 0 0 1


, 5T6 =


cos 𝑞6 − sin 𝑞6 0 0
sin 𝑞6 cos 𝑞6 0 0

0 0 1 𝑑6

0 0 0 1


.

Expression (41) may be employed to solving both, the inverse and the forward
displacement analyses of the PUMA robot. In that concern, unlike the forward
position analysis, the inverse position analysis is a challenging task that has been,
however, successfully elucidated since several decades ago, see for instance [31–
36]. Furthermore, it is worth to say that the inverse position analysis of 6R serial
manipulators has been improved in recent years by resorting to the Dixon elimina-
tion method [37].

In the contribution, the position analysis focuses on the forward analysis.
That is, given the generalized coordinates 𝑞𝑖 (𝑖 = 1, 2, 3, . . . , 6) of the PUMA
robot, it is necessary to determine the pose, position and orientation, of the end-
effector. In short, it is required to determine the matrix 0T6 according to Eq. (41).
Afterwards, assuming that 𝑃 is a point of the end-effector, then the coordinates of
𝑃 = (𝑋𝑃, 𝑌𝑃, 𝑍𝑃), expressed in the fixed reference frame, are obtained upon the
relationship 

𝑋𝑃

𝑌𝑃

𝑍𝑃

1


= 0T6


𝑥𝑃

𝑦𝑃

𝑧𝑝

1


, (42)

where (𝑥𝑃, 𝑦𝑃, 𝑧𝑃) are the coordinates of 𝑃 expressed in the moving reference
frame 𝑂6𝑋6𝑌6𝑍6.

4.2. Infinitesimal kinematics

To approach the infinitesimal kinematics of the PUMA robot, Fig. 7 shows the
infinitesimal screws of the serial manipulator.

The equation of velocity in screw form of the PUMA robot is obtained by
applying Eq. (33) using point 𝑂6 as the reference pole as follows

0𝜔1
0$1 + 1𝜔2

1$2 + 2𝜔3
2$3 + 3𝜔4

3$4 + 4𝜔5
4$5 + 5𝜔6

5$6 = 0𝑉𝑉𝑉6
𝑂6
. (43)

Taking into account that all the revolute joints of the PUMA robot are actuated
then it follows that

¤𝑞1 = 0𝜔1, ¤𝑞2 = 1𝜔2, ¤𝑞3 = 2𝜔3, ¤𝑞4 = 3𝜔4, ¤𝑞5 = 4𝜔5, ¤𝑞6 = 5𝜔6.
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End-effector

Base link

Fig. 7. Infinitesimal screws of the PUMA robot

By arranging in matrix form expression (43), the input-output equation of
velocity of the manipulator is compactly obtained as

J Qv = I6
0𝑉𝑉𝑉6

𝑂6
, (44)

where J is the Jacobian matrix of the robot which is given by

J =
[
0$1 1$2 2$3 3$4 4$5 5$6

]
, (45)

whereas

Qv =

[
¤𝑞1 ¤𝑞2 ¤𝑞3 ¤𝑞4 ¤𝑞5 ¤𝑞6

]𝑇
(46)

is the first-order driver matrix of the robot. Furthermore, I6 is the identity matrix
of order 6.

Expression (44) allows for two types of velocity analysis. The first one is
called the forward velocity analysis of the robot and consists of determining the
velocity state 0𝑉𝑉𝑉6

𝑂 as long as the matrix Qv is given. That is to say, assuming
that the manipulator is in a defined reference configuration, when the revolute
joints are actuated according to a set of generalized velocities ¤𝑞𝑖 (𝑖 = 1, 2, 3, . . . , 6)
then the end-effector undergoes a velocity state 0𝑉𝑉𝑉6

𝑂. Excluding structural sin-
gularities credited to the position analysis, there are no restrictions for the com-
putation of the velocity state 0𝑉𝑉𝑉6

𝑂. That is to say, the PUMA robot is free of
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direct singularities. The second kind of velocity analysis is called the inverse ve-
locity analysis of the robot and consists of computing the matrix Qv to meet a
desired velocity state 0𝑉𝑉𝑉6

𝑂. This analysis requires that the Jacobian matrix J must
be invertible otherwise the robot manipulator is at a singular posture. Unlike the
forward singularity, the inverse singularity is a reality and can be a serious prob-
lem for the performance of the PUMA robot. For example, if 3$4 = 5$6, see
Fig. 7, then the screws of matrix J are linearly dependent causing that det(J) = 0,
and the robot manipulator evidently is at an inverse singularity. It is straightfor-
ward to demonstrate that actuating the revolute joint with the screw 3$4, the robot
PUMA can escape from this particular example, for details the reader is referred
to [38]. In short, the PUMA robot is incapable of executing arbitrary velocity
states.

Once the velocity analysis was solved, the input-output equation of acceleration
of the PUMA robot by applying Eq. (34) results in

J Qa + $𝑎 = 0𝐴𝐴𝐴6
𝑂6

, (47)

where Qa =
[
¥𝑞1 ¥𝑞2 ¥𝑞3 ¥𝑞4 ¥𝑞5 ¥𝑞6

]𝑇
is the second-order driver matrix of the

PUMA robot while the Lie screw of acceleration $𝑎 is computed as

$𝑎 =

[
¤𝑞1

0$1 ¤𝑞2
1$2 + ¤𝑞3

2$3 + ¤𝑞4
3$4 + ¤𝑞5

4$5 + ¤𝑞6
5$6

]
+[

¤𝑞2
1$2 ¤𝑞3

2$3 + ¤𝑞4
3$4 + ¤𝑞5

4$5 + ¤𝑞6
5$6

]
+[

¤𝑞3
2$3 ¤𝑞4

3$4 + ¤𝑞5
4$5 + ¤𝑞6

5$6
]
+[

¤𝑞4
3$4 ¤𝑞5

4$5 + ¤𝑞6
5$6

]
+
[
¤𝑞5

4$5 ¤𝑞6
5$6

]
.

Finally, by resorting to expression (36), the input-output equation of jerk of
the PUMA robot results in

J Qj + $ 𝑗 = 𝐽𝐽𝐽𝑂6 , (48)

where Qj =
[
𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6

]𝑇
is the third-order driver matrix of the

PUMA robot while the Lie screw of jerk $ 𝑗 is given by
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$ 𝑗 = 2
[
¤𝑞1

0$1 ¥𝑞2
1$2 + · · · + ¥𝑞6

5$6 + [ ¤𝑞3
2$3 ¤𝑞4

3$4 + · · · + ¤𝑞6
5$6]

+ · · · + [ ¤𝑞5
4$5 ¤𝑞6

5$6]
]

+ 2
[
¤𝑞2

1$2 ¥𝑞3
2$3 + · · · + ¥𝑞6

5$6 + [ ¤𝑞4
3$4 ¤𝑞5

4$5 + ¤𝑞6
5$6]

+ [ ¤𝑞5
4$5 ¤𝑞6

5$6]
]
+ · · · + 2

[
¤𝑞5

4$5 ¥𝑞6
5$6

]
+
[
¥𝑞1

0$1 ¤𝑞2
1$2 + · · · + ¤𝑞6

5$6
]
+
[
¥𝑞2

1$2 ¤𝑞3
2$3 + · · · + ¤𝑞6

5$6
]

+ · · · +
[
¥𝑞5

4$5 ¤𝑞6
5$6

]
+
[
¤𝑞1

0$1 [ ¤𝑞1
0$1 ¤𝑞2

1$2 + · · · + ¤𝑞6
5$6]

]
+
[
¤𝑞2

1$2 [ ¤𝑞2
1$2 ¤𝑞3

3$4 + · · · + ¤𝑞6
5$6]

]
+ · · · +

[
¤𝑞5

4$5 [ ¤𝑞5
4$5 ¤𝑞6

5$6]
]
.

Finally, the jerk analysis of robot manipulators is not a trivial task. For example,
this analysis is useful in the time optimal and jerk optimal for the manipulators in
the presence of obstacles [39].

5. Simulation results

In this section, the equations of the instantaneous kinematics obtained by
resorting to the theory of screws for the PUMA robot are applied in two numerical
examples. Naturally, as an intermediate step, the displacement analysis is also
addressed. The first example is focused on determining the conditions of position,
velocity and acceleration of the robot so that from its reference configuration it
reaches a given pose of the end-effector under specific conditions of motion both at
the beginning and at the end of the motion. Example 2 is devoted to the computation
of the temporal behavior of the jerk of the end-effector satisfying motion conditions
imposed to the six active revolute joints of the robot or generalized coordinates.
The numerical results of example 2 are validated using an alternative approach
such as the implementation of algorithms based on sequential time derivatives of
the analytic functions describing the displacement of the end-effector. To solve the
numerical examples, let us consider that typical values for the Denavit-Hartenberg
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parameters of the PUMA robot are as follows
𝑎2 = 431.8 [mm], 𝑎3 = −20.32 [mm],
𝑑2 = 144.09 [mm], 𝑑4 = 433.07 [mm], 𝑑6 = 56.25 [mm].

Furthermore, let us consider that in the reference configuration of the robot the
generalized coordinates are given by

𝑞1 = 0.2 [rad], 𝑞2 = 0.15 [rad], 𝑞3 = 0.25 [rad],
𝑞4 = 0.3 [rad], 𝑞5 = 0.1 [rad], 𝑞6 = 0.25 [rad].

Of course, these data apply to both examples.

5.1. Example 1

The first example is devoted to perform numerically the time history of the
velocity and acceleration analyses of the PUMA robot, focusing on the behavior of
the end-effector as observed from the base link. For this purpose, consider that the
manipulator starts from rest, both in velocity and acceleration, and after 4 seconds
the robot returns to rest in such a way that the configuration of the robot meets the
following generalized coordinates

𝑞1 = − 0.5 [rad], 𝑞2 = 0.7 [rad], 𝑞3 = 0.4 [rad],
𝑞4 = − 0.8 [rad], 𝑞5 = 0.5 [rad], 𝑞6 = −0.7 [rad].

There is a considerable number of mathematical methods with which it is
possible to achieve the desired conditions for the higher-order analysis, for instance
by using complex methods such as cubic NURBS, fifth-order B-spline, the com-
bination of the third-order spline with the septuple B-spline in the joint space to
generate time-optimal and jerk-continuous trajectories, the time-optimal Acc/Dec
method for multiple segments, and so on. An effective and simple option to meet
the condition motions of example 1 is the use of fifth-order polynomial equations
for the generalized coordinates [40]. This choice implies that six constraints are
introduced for each active joint of the robot but fortunately in this part of the anal-
ysis we resort to the solution of simple linear equations. After a few computations,
the functions of the generalized coordinates meeting the conditions imposed to the
PUMA robot result to be the following univariate polynomial equations

𝑞1 = 0.2 − .109375𝑡3 + 0.410156250𝑒 − 1𝑡4 − 0.41015625𝑒 − 2𝑡5,
𝑞2 = 0.15 + 0.859375𝑒 − 1𝑡3 − 0.322265625𝑒 − 1𝑡4 + 0.322265𝑒 − 2𝑡5,
𝑞3 = 0.25 + 0.234375𝑒 − 1𝑡3 − 0.87890625𝑒 − 2𝑡4 + 0.8789062𝑒 − 3𝑡5,
𝑞4 = 0.3 − .171875𝑡3 + 0.64453125𝑒 − 1𝑡4 − 0.64453125𝑒 − 2𝑡5,
𝑞5 = 0.1 + 0.625𝑒 − 1𝑡3 − 0.234375𝑒 − 1𝑡4 + 0.234375𝑒 − 2𝑡5,
𝑞6 = 0.25 − .1484375𝑡3 + 0.556640625𝑒 − 1𝑡4 − 0.556640625𝑒 − 2𝑡5,

(49)
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where the time 𝑡 is given in the interval 0 ≤ 𝑡 ≤ 4 [s]. Note that in this example,
several coefficients of the univariate polynomial expressions (49) vanish, more
specifically the coefficients of 𝑡 and 𝑡2. For clarity, Fig. 8 shows plots of func-
tions (49) and their time derivatives. In the rest of the contribution, Maple sheets
are used to generate the necessary plots.

Fig. 8. Time history of the kinematics of the generalized coordinates of example 1

The time history of the coordinates of point𝑂6 expressed in the fixed reference
frame 𝑂_𝑋𝑌𝑍 by applying the Denavit-Hartenberg formulation is provided in
Fig. 9.

Fig. 9. Time history of the coordinates of point 𝑂6 of example 1

The time history of the instantaneous kinematics of the end-effector of the
PUMA robot by applying the theory of screws is provided in Fig. 10. In that
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concern, the linear velocity and acceleration are computed for point 𝑂6 of the
end-effector.

angular velocity

angular acceleration

velocity

acceleration

Fig. 10. Time history of the kinematics of the end-effector, example 1
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As expected, the end-effector starts from rest and after the assigned time returns
to rest by adopting the selected pose.

5.2. Example 2

To give an example for the computation of the jerk, in this subsection the
numerical application is formulated as follows. Upon the reference configuration
of the robot, the generalized coordinates are commanded to follow periodical
functions given by

𝑞𝑖 (𝑡) = 𝑞𝑖 + 𝛿𝑖 sin 𝑡 cos 𝑡 𝑖 = 1 ∼ 6, (50)

where the time 𝑡 is given in the interval 0 ≤ 𝑡 ≤ 2𝜋 [s]. Furthermore, we have that

𝛿1 = 0.2 [rad], 𝛿2 = −0.15 [rad], 𝛿3 = −0.175 [rad],
𝛿4 = 0.25 [rad], 𝛿5 = 0.15 [rad], 𝛿6 = −0.1 [rad],

with these data it is required to compute the time history of the jerk of the end-
effector as observed from the base link. Naturally, as intermediate steps, it is
necessary to perform the position, velocity and acceleration analyses of the PUMA
robot. Dealing with the linear components, point 𝑂6 is chosen as the reference
pole.

The time history of the coordinates of point𝑂6 expressed in the fixed reference
frame 𝑂_𝑋𝑌𝑍 by applying the Denavit-Hartenberg formulation is provided in
Fig. 11.

Fig. 11. Time history of the coordinates of point 𝑂6, example 2

Afterwards, the application of the methodology of kinematic analysis de-
veloped in the contribution yields the time history of the angular infinitesimal
kinematics of the end-effector provided in Fig. 12.

Furthermore, the time history of the linear components of velocity and accel-
eration for point𝑂6 of the end-effector is displayed in Fig. 13 while the time history
of the jerk is reported in Fig. 15.

The validation of the results of example 2 by applying an alternative method
is the next logical step.
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angular velocity

angular acceleration

angular jerk

Fig. 12. Time history of the angular instantaneous kinematics of the end-effector, example 2

velocity

Fig. 13. Time history of the linear components of velocity and acceleration for point 𝑂6, example 2
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acceleration

Fig. 13. cont. Time history of the linear components of velocity and acceleration for point 𝑂6,
example 2

5.3. Verification of numerical results

Due to the lack of a physical prototype, the strategy selected to verify the
correctness of the numerical examples focuses on the calculation of the trajec-
tory generated by the 𝑂6 point of the end-effector using the Denavit-Hartenberg
formulation and subsequently deriving such functions, which evidently depend
on time, up to the third derivative. On the other hand, example 2 is the case se-
lected for the validation of the results since validating both examples would only
lead to a duplication of information. With this in mind, the coordinates of point
𝑂6 = (𝑋 (𝑡), 𝑌 (𝑡), 𝑍 (𝑡)), after applying the Denavit-Hartenberg formulation, result
to be

𝑋 (𝑡) = 56.25
[

sin(.2 + .2𝑠𝑐) cos(.3 + .25𝑠𝑐) cos(.2 + .2𝑠𝑐)
cos(−.15 + .15𝑠𝑐) cos(−.25 + .175𝑠𝑐)

]
−56.25

[
sin(.2 + .2𝑠𝑐) cos(.3 + .25𝑠𝑐) cos(.2 + .2𝑠𝑐)

sin(−.15 + .15𝑠𝑐) sin(−.25 + .175𝑠𝑐)
]

−56.25 cos2(.2 + .2𝑠𝑐) cos(−.15 + .15𝑠𝑐) sin(−.25 + .175𝑠𝑐)

−56.25 cos2(.2 + .2𝑠𝑐) sin(−.15 + .15𝑠𝑐) cos(−.25 + .175𝑠𝑐)
−433.07 cos(.2 + .2𝑠𝑐) cos(−.15 + .15𝑠𝑐) sin(−.25 + .175𝑠𝑐)
−433.07 cos(.2 + .2𝑠𝑐) sin(−.15 + .15𝑠𝑐) cos(−.25 + .175𝑠𝑐)
−20.32 cos(.2 + .2𝑠𝑐) cos(−.15 + .15𝑠𝑐) cos(−.25 + .175𝑠𝑐)
+20.32 cos(.2 + .2𝑠𝑐) sin(−.15 + .15𝑠𝑐) sin(−.25 + .175𝑠𝑐)

+431.8 cos(.2 + .2𝑠𝑐) cos(−.15 + .15𝑠𝑐)

+56.25 sin(.3 + .25𝑠𝑐) cos2(.2 + .2𝑠𝑐)
−56.25 sin(.3 + .25𝑠𝑐) − 144.09 sin(.2 + .2𝑠𝑐) (51)
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𝑌 (𝑡) = 56.25 cos(.3 + .25𝑠𝑐) cos(−.15 + .15𝑠𝑐) cos(−.25 + .175𝑠𝑐)
−56.25 cos(.3+.25𝑠𝑐) cos(−.15+.15𝑠𝑐) cos(−.25+.175𝑠𝑐) cos2(.2+.2𝑠𝑐)

−56.25 cos(.3 + .25𝑠𝑐) sin(−.15 + .15𝑠𝑐) sin(−.25 + .175𝑠𝑐)
+56.25 cos(.3+.25𝑠𝑐) sin(−.15+.15𝑠𝑐) sin(−.25+.175𝑠𝑐) cos2(.2+.2𝑠𝑐)

+56.25 sin(.2 + .2𝑠𝑐) cos(.2 + .2𝑠𝑐) sin(.3 + .25𝑠𝑐)
−56.25 cos(.2 + .2𝑠𝑐) sin(.2 + .2𝑠𝑐) cos(−.15 + .15𝑠𝑐) sin(−.25 + .175𝑠𝑐)
−56.25 cos(.2 + .2𝑠𝑐) sin(.2 + .2𝑠𝑐) sin(−.15 + .15𝑠𝑐) cos(−.25 + .175𝑠𝑐)

−433.07 sin(.2 + .2𝑠𝑐) cos(−.15 + .15𝑠𝑐) sin(−.25 + .175𝑠𝑐)
−433.07 sin(.2 + .2𝑠𝑐) sin(−.15 + .15𝑠𝑐) cos(−.25 + .175𝑠𝑐)
−20.32 sin(.2 + .2𝑠𝑐) cos(−.15 + .15𝑠𝑐) cos(−.25 + .175𝑠𝑐)
+20.32 sin(.2 + .2𝑠𝑐) sin(−.15 + .15𝑠𝑐) sin(−.25 + .175𝑠𝑐)

+431.8 sin(.2 + .2𝑠𝑐) cos(−.15 + .15𝑠𝑐) + 144.09 cos(.2 + .2𝑠𝑐) (52)

𝑍 (𝑡)= 56.25 cos(.3+.25𝑠𝑐)sin(.2+.2𝑠𝑐) sin(−.15+.15𝑠𝑐) cos(−.25+.175𝑠𝑐)
+56.25 cos(.3+.25𝑠𝑐)sin(.2+.2𝑠𝑐)cos(−.15+.15𝑠𝑐)sin(−.25+.175𝑠𝑐)

−56.25 cos(.2 + .2𝑠𝑐) sin(−.15 + .15𝑠𝑐) sin(−.25 + .175𝑠𝑐)
+56.25 cos(.2 + .2𝑠𝑐) cos(−.15 + .15𝑠𝑐) cos(−.25 + .175𝑠𝑐)

−433.07 sin(−.15 + .15𝑠𝑐) sin(−.25 + .175𝑠𝑐)
+433.07 cos(−.15 + .15𝑠𝑐) cos(−.25 + .175𝑠𝑐)
−20.32 sin(−.15 + .15𝑠𝑐) cos(−.25 + .175𝑠𝑐)
−20.32 cos(−.15 + .15𝑠𝑐) sin(−.25 + .175𝑠𝑐)

+431.8 sin(−.15 + .15𝑠𝑐)
(53)

where 𝑠𝑐 = sin 𝑡 cos 𝑡.
The velocity, acceleration and jerk of point 𝑂6 are computed by sequentially

applying the corresponding time derivatives to Eqs. (51)-(53). The generated plots
up to the acceleration analysis of example 2 are reported in Fig. 14.

Please note that the plots of Fig. 14 are in excellent agreement with the plots
of Figs. 11 and 13. After successful comparison of numerical results applying two
different methods, the jerk of point 𝑂6 is provided in Fig. 15.

Finally, it is noteworthy how the numerical results of the jerk analysis using
screw theory agree reasonably well with those obtained when using an alternative
method such as the direct application of time derivatives to analytic functions
associated with the robot position analysis. Even though the same results are
obtained, it is important to point out that when the screw theory is applied, the
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position

velocity

acceleration

Fig. 14. Time history of the kinematics of point 𝑂6 up to the acceleration analysis using time
derivatives of analytic functions. Example 2

Screw theory

Fig. 15. Time history of the jerk of point 𝑂6 using two different methods. Example 2
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Time derivatives of analytic functions

Fig. 15. cont. Time history of the jerk of point 𝑂6 using two different methods. Example 2

physical and geometrical meaning of the obtained expressions is not lost. For
example, with the derivation method, the Jacobian matrix is hidden in the obtained
expressions and not explicitly as it occurs when the screw theory is applied. This
point is of utmost importance when addressing issues such as singularity analysis
and the evaluation of the dexterity (manipulability) of robotic manipulators.

6. Conclusions

During the last decades screw theory has established by itself as a reliable
tool in the analysis of robotic manipulators and has gained a predominant place
in rigid body kinematics. In this paper, the screw theory is applied to the jerk
analysis of the PUMA robot, surely one of the most studied manipulators in history
and still interesting to investigate. For a better understanding of the contribution, a
comprehensive review of concepts involving the Lie algebra 𝑠𝑒(3) of the Euclidean
group 𝑆𝐸 (3), the Plücker coordinates of lines and of course also the screw algebra
which is isomorphic to the motor algebra is provided. The position analysis is
included as a preliminary step to the higher-order analyses of the robot. The position
analysis is addressed by resorting to the Denavit-Hartenberg convention. The input-
output equations of velocity, acceleration and jerk are focused on the end-effector
of the PUMA robot, and are valid for both the inverse and the forward analyses of
the robot manipulator. Numerical examples illustrate the versatility of the method
of kinematic analysis employed in the contribution.

Finally, as far as the authors suppose, the jerk analysis of the PUMA robot
by resorting to screw theory has not been approached in previous works. In that
sense it is worth mentioning that the acceleration, jerk and in general higher order
instantaneous kinematics of robotic manipulators using screw theory have been
rather scarce. One of the main advantages of the screw theory is its clear physical
and geometrical meaning, which, as proved by the numerical examples, is lost
when alternative methods such as the use of time derivatives of analytic functions
are used.
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