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Abstract 
 
The concept of 'Industry 4.0' has introduced great dynamism into production environments, making them more integrated, connected and 
capable of generating large volumes of data. The digital transformation of traditional companies into innovative smart factories is made 
possible by the potential of Artificial Intelligence (AI), which is able to perform predictive analytics inspired by the development of Industrial 
Internet of Things (IoT) technologies or to support highly complex decision-making, in the era of zero-defect manufacturing. The need for 
innovative techniques and automated decision-making in diagnosing the causes of casting defects is increasing due to the growing complexity 
and higher level of automation of industrial systems. Particularly important are fully data-driven predictive approaches that enable the 
discovery of hidden factors influencing defects in castings and the prediction of the specific time of occurrence by analyzing historical or 
real-time measurement data. In this context, the main objective of this article is to provide a systematic overview of data-driven decision 
support systems that have been developed to diagnose the causes of casting defects. In addition, different methods for predicting casting 
defects are presented. Finally, current research trends and expectations for future challenges in the field are highlighted. It is hoped that this 
review will serve as a reference source for researchers working in the field of innovative casting defect prediction and cause diagnosis. 
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1. Introduction 
 
Data-driven intelligent systems can generally split into three 

types: rule-based (RBS), case-based (CBS) or a hybrid reasoning 
as combination of both above-mentioned systems. The first type 
was developed by researches of artificial intelligence and meant 
mainly expert systems based on the if-then rule applied to derive a 
solution of the problem [1]. The second one offers the possibility 
to extract information about incidents that have occurred by 
treating the incident and its resolution as a specific case [2]. A 
strategic concept of data-driven management can be applied in 
every field of manufacturing to make decisions on the basis of 
advanced analysis and interpretation of the production data. 

According to the foundations of the Fourth Industrial Revolution 
(Industry 4.0. or 4IR [3][4][5]) we can say that production data is 
the most valuable raw material in manufacturing companies. The 
main goal is to extract from the acquired process data, the 
information, knowledge, and wisdom (DIKW)[6]. All three types 
of data-driven intelligent systems can be a part of another type, 
which is Artificial Intelligence-based systems [5].  

Artificial intelligence (AI) is one of the leading technologies of 
the Smart Factory, which is one of the main tenets of the Industry 
4.0 concept [5]. AI provides an opportunity to construct automated, 
fully autonomous systems and machines capable of making real-
time decisions in accordance with the changing needs of 
manufacturing companies. Creating effective models of this type 

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9635-8557


 

A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  

of system presents some difficulties, due to the dynamics of the 
production environment and the variability of production problems. 
Nevertheless, the technological advances allow researchers to 
create and use artificial intelligence methods to solve complex 
problems in various fields including the manufacturing sector [7], 
[8], [9], [10], [11], [12], [13]. This is also the case in one of the 
most popular manufacturing processes which is metallurgy sector, 
more specifically in metal casting processes, to diagnose the causes 
of casting defects. Acting on the definition of the term "Quality 
4.0." [14],[15], which refers to the identification of the relationship 
between the production of quality products through its management 
and the 4IR concept. Nowadays, companies are aiming to digitize 
quality management processes in general through the application 
of AI techniques and including machine learning (ML) methods 
[16]. 

The prognostic of defect creation and diagnosing of its causes 
become more important for the manufacturing industry. This is 
related to the constant need to improve the competitiveness of 
enterprises including foundries. It seeks to constantly increase 
production efficiency while maintaining the quality of 
manufactured products while reducing operating costs. 
Considering this fact, the number of defects created significantly 
reduces production efficiency and quality results and, 
consequently, increases operating costs [17]. For example, proper 
defect diagnostics (in a medium-sized foundry) to identify and 
reduce 1% of defects can yield a few million in savings per year 
[18]. It should also be borne in mind that the costs of finishing 
processes and quality control compared to the costs of production 
and, more precisely, the casting process are comparable. Therefore, 
proper defect diagnostics can help save about 50% of total 
production costs [19]. However, achieving this is a significant 
difficulty, as manufacturing processes and in particular casting 
processes are considered to be very expensive, the most complex 
and complicated process, described in detail in [20].  

Data from the casting process can be an important input for 
producing defect-free castings. They can be used as input data for 
machine learning techniques to detect various types of production 
errors. ML in this case allows advanced interpretation of casting 
processes referred to as a 'black box', which, by their complex 
nature, are not algorithmized and can only be analyzed in terms of 
inputs and outputs, with no known characteristics or 
comprehensive knowledge of what is happening inside them [21]. 

Given these facts, it can be concluded that the diagnosis of 
product defects and their causes is an important issue of great 
interest to scientists, technologists and experts of manufacturing 
companies. Over the past two decades, numerous attempts have 
been made to apply rule-based and case-based data-driven 
intelligent systems to determine the cause of deterioration in the 
quality of manufactured castings. The techniques tested by the 
researchers have shown varying results and have been 
characterized by variability in their performance. Therefore, it was 
noted the need to provide a complex overview of data-driven 
decision support systems and methodologies for diagnosing the 
causes of casting defects according to the presented research chain 
in order to present the direction of development of the studied 
problem for future researchers The most recent work on this topic 
will be discussed in the following chapters. 

 
 

2. Overview of Casting Defects 
 
Defects in castings are an important element in the quality 

performance of foundries. The issue of the quality of cast products 
is directly related to the correctness of the shapes and dimensions 
obtained, including the correct mass properties, the mould 
preparation processes, the preparation of the liquid metal and the 
pouring process. The technology for the creation of castings is 
complex, depending on many uncontrollable factors, at various 
stages of production. Each casting must have the required quality 
defined in the technical conditions for its acceptance, which at the 
same time constitute the basis for deeming a given casting defective 
[22]. Consequently, the objective is to detect them at an early stage 
through the implementation of differentiated quality tests [23]. 
Methodologies for improving the quality of manufactured castings 
include determining the type of defect, identifying its causes and 
correcting the set process parameters [22]. A comprehensive 
understanding of the factors influencing the occurrence of certain 
defects in castings is crucial for the optimization of casting 
processes [24].  

Defects in castings are classified according to international and 
national standards. Any deviation of dimensions, shape, weight, 
external appearance, breach of material continuity, structure or 
mechanical or physico-chemical properties from the applicable 
requirements according to the standard are called defects. Defects 
are classified according to where they occur, into shape defects (on 
the external surface of the casting), raw surface defects, 
discontinuities and internal defects. In this order, casting quality is 
controlled by non-destructive and destructive testing, but mainly 
during machining [22]. Common inspection procedures are often 
limited to visual and dimensional inspections, weight and hardness 
testing. However, for castings used in critical applications such as 
aerospace or automotive components, additional methods of 
nondestructive inspections are used like radiographic, eddy current, 
magnetic particle or liquid penetrant inspections (described in 
detail in [25]). 

A well-known defect is porosity, which is a serious problem 
observed in foundries, especially in die casting processes [26], [27]. 
Porosity is the formation of holes, air pockets, depressions or pores 
on the surface or inside of cast parts [28]. Their presence 
compromises the structural integrity of the casting and can cause 
corrosion or leakage. Such defects are unacceptable for critical 
high-strength parts [28]. The reasons for the formation of porosity 
can be various, most commonly as a result of the release of gases 
from the metal during solidification, or from the moulding 
compound [22]. There can also be a high occurrence of bubble 
breakage of aspirated air by the turbulent flow of metal and thus by 
the injection speed of the metal into the mould [29], most 
frequently in high-pressure castings. It should be mentioned that 
hydrogen is the most common source of porosity in aluminum 
alloys of all gases, as its solubility in liquid aluminum decreases 
with temperature [30], [31], [32]. All types of porosity can form in 
alloys depending on the location in the casting and geometry. In 
thicker walls, these are most often shrinkage and mixed porosity, 
while gaseous porosity, depending on the process, can occur 
anywhere. This defect is often recognized through X-ray, visual 
quality inspection of the casting surface or during leak tests [19].  

Another defect is the formation of a shrinkage cavity [33], 
which occurs during solidification when the metal shrinks and is 
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caused by volume contraction of the metal. The result is the 
formation of cavities and voids in the casting, usually funnel-
shaped, sometimes extended with small, separated cavities [22]. 
They are prevented by changing the gating and riser design. 
However, they are diagnosed during radiographic testing and visual 
quality inspection [23].   

 Inclusions of foreign particles such as oxides and sand may 
appear in the casting, which are deposited in the casting during the 
casting process [34]. Foreign particles may originate from moulds, 
contaminated materials, ladles, furnaces or the environment. Sand 
inclusions are often caused by leaching of moulding sand from the 
surface of the mould cavity or by an improperly constructed gating 
system [22]. It is one of the most widespread defects and at the 
same time the cause of so-called production rejects. The aim of this 
defect detection is visual inspection or microscopic analysis [23]. 

Incomplete filling of the casting mould with liquid metal can 
also result in misruns or cold shuts [35], [36]. Cold shuts occur 
when the two relatively cold streams of molten metal from different 
gates do not fuse properly during the casting process [37]. A misrun 
results in an unfilled portion of the mould due to the freezing of the 
molten metal before it reaches all parts of the mould cavity [37]. 
These castings exhibit blurred edge shapes, missing or incomplete 
reproduction of certain elements. Potential causes of this defect 
include premature solidification of the metal in the initial 
solidification phase due to insufficient flowability, insufficient 
pouring speed or excessive metal flow resistance in the mould. The 
prevention of this type of defect is achieved by modifying the 
design and dimensions of the pouring system, increasing the 
casting temperature, and preparing a more efficient air discharge.  

Despite the existence of established diagnostic techniques for 
identifying defects in castings, there are intricate and concealed 
relationships between process parameters and product performance 
parameters that are challenging or even impossible to discern 
without the utilization of appropriate tools based on production 
data [36]. 

 
 

3. Data-Driven Decision Support 
Systems 
 

Decision-making is a kind of meta-problem that is ubiquitous 
in every field of human activity. The phenomenon of decision 
making has therefore become the subject of intensive research into 
various aspects and areas of the problem. The subject is approached 
from the psychological and cognitive sciences, but also from the 
systems sciences, mathematics and information technology. 

In the case of living systems, the key factor is the human 
decision maker, which is a kind of criterion for evaluating the 
comparative performance of created systems [38]. From this it can 
be deduced that the design of such systems must take into account 
human capabilities, which can be the key to success, but also a kind 
of difficulty, through inherent characteristics such as human 
inconsistency, variability of judgements or imprecision. These 
characteristics are an important difficulty for mathematical models 
[39]. For complex decision problems with implicit relationships, 
mathematical analyses could go beyond the limits of formal 
concepts. 

Efforts have been made to develop effective and efficient 
decision support systems (DSS) [40], [41], [42] to assist decision 
makers, but not to replace them. To this end, they have been divided 
into different types, such as document-driven, model-driven, 
knowledge-driven, web-based, inter-organizational, 
communication-driven and data-driven DSS [43]. Data-driven 
modeling of manufacturing processes with all specific types of 
models and management of process failures is described in details 
in [44]. Data-driven decision support system can be a powerful tool 
for gathering insights into the essence of manufacturing data in 
order to extract knowledge from it to help decision makers. It is of 
the utmost importance to utilize advanced data-driven modelling, 
encompassing the full spectrum of AI potential as defined by the 
Industry 4.0 concept [45]. 

The main goal for manufacturing companies is to have easy and 
fast access to a large amount of accurate and well-structured 
multidimensional data, which is also key to the success of a data-
driven DSS. In [46] it was stated that these systems should be 
characterized by special analytical capabilities (with for example 
statistical analysis, ad hoc data filtering and retrieval, alerts and 
triggers, data management, data summarization, excel integration), 
flexible reporting (with for example advanced data displays, report 
design, generation and storage and view production reports), 
intuitive data manipulation, multi-user support, easy for users to 
access and understand and multidimensional conceptual view [47]. 

As previously stated in Chapter 2, the conventional approach 
to identifying quality defects in casting processes relies primarily 
on manual visual inspection and the subjective judgement of 
foundry personnel. Although this approach has been successful 
thus far, it is limited in its ability to analyze complex and intricate 
data sets that contain hidden relationships. Consequently, the 
implementation of data-driven decision support systems (DSS) for 
the diagnosis of casting defects has commenced. These systems are 
designed to analyze large data sets collected from a variety of 
sources in real time. Such systems are frequently based on machine 
learning algorithms, statistical analysis fundamentals, and 
predictive modelling. The systems are often capable of identifying 
patterns, detecting anomalies and trends in common data, while at 
the same time possibly indicating the formation of a defect in a 
specific casting or group of castings.  

The main advantage of this solution is its ability to detect 
defects at an early stage of production, which can help prevent so-
called production rejects. Through constant monitoring and data 
analysis, the systems can alert operators to deviations from normal 
operating conditions, allowing immediate intervention to prevent 
the defect from occurring. The existence of these systems allows 
operators and technologists to make more scientifically informed 
decisions based on objective evidence and data-driven insights, 
rather than relying on individual intuition. At the same time, 
reducing the time and resources required for manual inspection. 
Another advantage of applying data-driven DSS to the subject 
under consideration is their ability to analyze the root causes of 
emerging quality problems. This is achieved by correlating process 
data with historical records to identify specific factors causing 
defects. Such a holistic approach enables the implementation of 
preventive measures to avoid certain defects in the future. 
Furthermore, the concept of continuous improvement (Kaizen 
[48]), is emerging in line with the fundamental principles of lean 
management methodology, as the application of artificial 
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intelligence (AI) algorithms to the systems enables them to learn 
continuously from new data and feedback, thereby enhancing their 
diagnostic capabilities and becoming flexible by adapting to 
evolving casting processes. 

The arguments presented allow us to conclude that the 
integration of data-driven DSS in the diagnosis of the causes of 
casting defects represents a significant advance in modern 
manufacturing practices. The potential to exploit the capabilities of 
advanced data analysis and machine learning techniques allows for 
significant advances and improvements in casting processes, 
ultimately leading to improved quality, reduced downtime and 
increased operational efficiency. Given the importance of the 
subject, Chapter 4 provides an overview of the application of the 
systems and methodologies described in the analyzed subject.  

 
 

4. Review of Data-driven Systems and 
Methodologies for the Casting Defect 
Diagnosis 

 
The application of data-driven DSS in the manufacturing 

industry is diverse, with numerous examples of their use in the 
context of casting defect diagnosis and prediction.  

The data-driven approach to the aforementioned topic can be 
applied, for example, to the identification of technological 
parameters that affect the quality of the final product, namely the 
finished casting. A recent paper [49] describes a data-driven DSS 
based on ANOVA and contingency tables methods used to select 
important process parameters influencing the output variable and 
based on Artificial Neural Networks (ANN) of the multilayer 
perceptron (MLP) type used to build a list of influences of the most 
important process parameters on its result. The authors emphasized 
that a substantial quantity of data, even if imperfect, can provide 
insights into the production process, in this case the aluminum 
extrusion process. By analyzing data using data-based advisory 
systems, it is possible to reduce the proportion of defective 
products. This reduction is possible by correctly identifying the 
source of production defects. As a result, the system can propose 
product design rules and recommend the most appropriate 
production process parameters for existing and new products. The 
developed case-based system, through the application of AI 
models, is capable of utilizing case studies derived from historical 
data and comparing them with the current results. The system 
designed by the authors is notable for its innovative approach, 
which utilizes knowledge derived from neural models (in contrast 
to the conventional extraction of knowledge from human experts, 
expressed in the form of rules). This enables the system to not only 
support decision-making but also to predict the specific 
consequences of the decisions taken, as proposed in [50]. The 
developed CBS system was considered to represent a combination 
of the three types of DSS, namely data-driven, knowledge-driven 
and model-driven, through the use of neural models to determine 
the direction and magnitude of the impact of technological 
parameters on production results, while utilizing exemplars from 
the production database. Consequently, the authors enhanced the 
dependability of the advisory system's recommendations. This 
approach enabled the authors to utilize neural models in the 

advisory system, despite the limitations of these models in 
predicting outcomes for new data. 

Article [51] delineates the concept of a recommendation 
system (analogous to the aforementioned example) based on 
automatically recorded historical data. The system is initially 
designed to select relevant variables through correlation analysis 
and Kruskal-Wallis (K-W) analysis and reverse ANOVA (see [19] 
for further details). Subsequently, the system identifies the 
influence of process parameters on product quality through MPL-
type neural models. The research presented here was conducted as 
part of a project carried out at a production plant. It is noteworthy 
that the authors distinguished between two categories of casting 
defects. The initial category comprised pitting, excessive surface 
roughness, tearing, lines, and blisters. The subsequent category 
encompassed dimensional variation, waving, flatness variation, 
broken walls, lack of rectitude, angle variation, twisting, and dents. 
The division was made on the basis of the information available in 
the company datasets, which described the defect class in question 
as either surface or dimensional. The neural model demonstrated a 
89% accuracy rate for surface defects and a 79% accuracy rate for 
dimensional defects. In this context, the objective of the advisory 
system was to identify the parameters that contribute to the 
formation of a defect belonging to a specific category. The authors' 
proposal for an advisory system involved utilizing historical data 
for analysis, with the objective of identifying the optimal set of 
technological parameters for non-defective castings. In the case of 
new product ranges, the program would identify the optimal 
parameters, taking into account the characteristics of the product 
and the tools employed. The authors concluded that the 
implementation of the proposed recommendation system would 
result in a notable reduction in the number of defective products 
and announced its implementation in the production plant. A 
further avenue for research would be to test the efficacy of neural 
models in predicting the effects of simultaneous changes to 
multiple process parameters and their impact on the quality of the 
final product. 

Additionally, there are intriguing articles that delineate 
analogous methodologies for diagnosing the underlying causes of 
defects in castings [19], [52]. These methodologies are based on 
ANOVA (reversed and direct) and K-W (reversed and direct) 
analyses, as well as Pearson and Spearman correlation coefficient 
analyses for the selection of significant variables. These variables 
are identified from the perspective of the output value that 
describes the quality of the analyzed casting. Three methods of 
advanced process modelling were employed, namely artificial 
neural networks (ANN), regression trees (RT) and support vector 
machines (SVM), with the objective of identifying the optimal 
technological parameters and quantifying their impact on the 
quality of the casting. The authors compared the results of the 
aforementioned methods and demonstrated that the most optimal 
root mean square error (RMSE) of 0.86 was attained through the 
utilization of ANN for modelling purposes. On this basis, the most 
effective ANN models were employed to ascertain the specific 
value levels of given process variables that influence defect 
formation in the product. This was achieved through model testing 
for multidimensional optimization of process parameters, including 
non-linear GRG with multistart and evolutionary methods. The 
authors identified three principal challenges associated with data-
driven modelling. These were: the challenging application of SVM 
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models; the inherent randomness of ANN models (due to the 
different weights); and the limited performance of RT models. This 
and analogous methodologies (which form the basis of Smart 
Factory operations) [53], [54], utilizing, among others, the Random 
Forest (RF) and Synthetic Minority Oversampling Technique 
(SMOTE) algorithms [55], achieve efficiency of up to 89% [56], 
could serve as the foundation for an intelligent decision-making 
system as outlined in reference [51]. 

An intriguing case study was conducted on the advancement of 
a quality-related machine learning algorithm for the forecasting of 
slag inclusions defects in a continuous casting process, as detailed 
in the topic under review [57]. The data obtained from the process 
state sensors was subjected to an empirical mode decomposition 
(EMD) algorithm, which was deployed for the purpose of 
processing the multi-modal time series. The authors conducted an 
empirical investigation of six machine learning methods: ANN 
[58], SVM (with nonlinear and linear kernels) [59], [60], K-Nearest 
Neighbors (K-NN) [61], Decision Trees (DT) [62], RF and 
Adaptive Boosting (AdaBoost). A significant aspect of the study 
was the methodology applied to handle the issue of data imbalance 
data, particularly the representation of critical values, which was 
relatively limited. The authors applied random under-sampling 
(RUS) and random over-sampling (ROS) algorithms to achieve 
data balancing. The resulting predictive models, constructed using 
the aforementioned advanced process modelling techniques, were 
evaluated using a combination of calculated accuracy and a 
proposed evaluation tool: the receiver operating curve in the total 
area under the curve (ROC-AUC), as detailed in [63] and [57]. The 
study indicated that the most effective machine learning method 
was optimized RF, which demonstrated the highest accuracy 0.77 
and ROC AUC 0.64. The model demonstrated the highest 
sensitivity to samples representing castings with a defect, while 
maintaining the capacity to accurately classify castings without 
manufacturing defects. In this instance, the performance of the 
ANN model was found to degrade when some cases were removed 
from the training set using the RUS method. Despite the 
development of a comprehensive methodology that could form the 
basis of a decision-support system, the authors believe that further 
research and experimentation are necessary to enable the solution 
to be applied to the production plant in the future.  

A very interesting paper [64] was presented at the 2nd 
International Conference on Power Electronics & IoT Applications 
in Renewable Energy and its Control (PARC), presenting a model 
for the inspection of castings based on a deep learning binary 
classification method. In the paper, the authors describe an 
inspection system based on image classification that is designed to 
perform fully effective quality analysis while minimizing 
inspection costs by eliminating the human factor. In this paper, a 
convolutional neural network (CNN) architecture has been 
developed to diagnose defects in finished castings. A dataset of 
images of the cast part, i.e. the impeller of a submersible pump, was 
used for the analysis. The images were taken in top view and 
represented by a greyscale mesh. The algorithm created was able 
to identify and classify various surface manufacturing defects and 
decide whether the analyzed casting was acceptable or 
unacceptable from a quality point of view. The subject is extremely 
important as surface and shape defects have the highest proportion 
of defects directly related to the manufacturing process [51].  Other 
articles have described decision systems for the diagnosis of 

surface defects in castings based on the CNN method [65], [66], 
[67], [68], [69], [70], [71] with a high success rate of between 98-
99% [65]. This suggests that, in general, CNNs are capable of 
detecting objects and classifying images [65]. Furthermore, a deep 
learning model has been employed to develop a U-Net system, 
based on CNNs, which is capable of detecting casting defects with 
high efficiency. This approach has been demonstrated in several 
studies, including [72], [73], and [74]. Another study concentrates 
on the prediction of defects using interpretable machine learning 
models. The models are trained on solidification and 
microstructure data, with the objective of predicting the occurrence 
of transverse cracks in castings produced using a continuous 
casting process. The authors achieved a prediction accuracy of 
94.6% [75]. In another paper, the authors employed machine 
learning algorithms to predict and analyze defects associated with 
the surface of steel and cast iron castings [76]. Furthermore, a paper 
[77] put forth the idea of integrating a hybrid model comprising 
convolutional neural networks (CNNs) and random forest 
classifiers to anticipate casting defects such as misruns, blowholes, 
shrinkage defects, inclusions, and sand inclusions. The developed 
system is capable of detecting manufacturing defects based on the 
presented set of images, with an accuracy of 95.91% [77] or, in the 
referenced publication [78], as high as 99%.  

The article [79] similarly puts forth the utilization of machine 
vision through the establishment of the system, designated 
'CASTvision', which is an automated vision system based on 
camera readings. The system was developed by the Cooperative 
Research Centre for Cast Metals Manufacturing (CAST) at Deakin 
University. The objective of the system is to perform dimensional 
and visual inspections of castings produced for the automotive 
industry. The system is based on three principal execution 
procedures. The first concerns the acquisition of camera image 
data, the second the processing of this data, and the third the 
decision-making process. Image analysis was conducted using 
mathematical morphology, as detailed in [80]. However, to 
accelerate the processing of data, the original images were 
smoothed using a Gaussian pyramid filter [81]. A significant 
accomplishment was the successful integration of the developed 
system into the manufacturing plant. In the actual process, the 
system demonstrated an extremely low false positive rate, with 
only 0.25% of normal parts incorrectly identified as defective out 
of 200,000 castings inspected. The research indicates that image 
analysis using hybrid methods can also be an effective means of 
diagnosing and predicting product defects. It is also pertinent to 
mention the expert systems developed based on RBS, such as 
‘ESVOD’ developed at the VSB-Technical University of Ostrava. 
This is a knowledge-based computer system (KBCS) whose 
purpose is to identify defects according to external attributes, 
diagnose defects, identify their causes and finally propose 
prevention and remedies [82]. In addition, publicly accessible 
applications such as the Open Atlas of Casting Defects (OACD) 
have been developed with the objective of supporting the 
assessment and classification of casting defects [83].  

A highly innovative technological solution has also been 
developed in this area, namely the Digital Twin. This relatively 
novel technology was first proposed by Michael Grieves in 2003 
[86] and has since garnered increasing interest from both academic 
and industrial circles. The technology forms part of the Industry 4.0 
initiative, which is designed to facilitate the emergence of so-called 
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Smart Manufacturing Systems (SMS). An SMS can be defined as 
a physical system comprising intelligent machines, products, 
materials and the intricate interconnections between them. The 
SMS can be divided into two distinct spaces: a physical space in 
which physical processes and products exist, and a digital space in 
which models of these processes exist. Consequently, a digital 
twin-based approach has been applied to the manufacturing system 
design sector [88] and to SMS configuration [89]. This is a highly 
innovative approach due to the digital continuity of modelling 
compared to conventional simulations. The Digital Twin has an 
architecture that allows for the real-time prediction of die casting 
quality based on process data. This technological solution enables 
production cells to interact in a virtual environment in real time. 
The objective is to simulate different process alterations and gain 
insight into the resulting production outcomes, which is crucial for 
effective change management in production enterprises. Systems 
have been developed that employ XGBoost-based learning 
methods for the prediction of quality in pressure casting and a deep 
learning-based neural network (named Refine-ACTDD) for the 
accurate detection of minor visual defects in complex aluminum 
castings [84]. This represents a novel approach to the identification 
and diagnosis of casting defects. 

  
 

5. Challenges and Future Directions 
 

In conclusion, the articles present evidence of the efficacy of 
diverse machine learning and deep learning methodologies for the 
diagnosis and prediction of casting defects, demonstrating high 
accuracy and effectiveness in the detection and analysis of defects. 
The systems presented put forth solutions to achieve zero defect 
manufacturing objectives based on advanced process analysis using 
big data. This is consistent with the principles of Industry 4.0. 
Concurrently, the pioneering diagnosis of the root causes of defects 
constitutes an integral component of the Quality 4.0 concept.  

The accurate identification of the underlying causes of casting 
defects is of paramount importance, yet it is also a challenging 
objective, largely due to the intricate nature of metallurgical 
processes and the persistent lack of comprehensive understanding 
thereof [19].  The process of decision-making based on data from 
different stages of highly complex, non-linear processes is 
inherently complex. The discovery of relationships between 
process parameters derived from different stages of the casting 
process is a highly complex undertaking that is currently almost 
impossible to achieve.  It is noteworthy that the utilization of data-
driven DSS in the foundry industry remains relatively limited. This 
is due to the fact that real-world environments present a range of 
complex and distinctive challenges, which organizations are 
frequently inadequately prepared to address. Only a small number 
of the articles reviewed provided information on the complete 
implementation of the solution in a production environment. The 
authors acknowledge that much of the work requires further 
investigation, which is understandable given the importance of 
ensuring the reliability of the forecasts and manufacturing costs. It 
is important to note that any casting that is incorrectly classified as 
defective, despite not exhibiting any defects, will result in 
additional costs for the foundry. Conversely, the incorrect 
classification of a casting as defect-free could result in the use of a 
casting containing a defect in a critical component in the 

automotive industry. This could lead to a significant reduction in 
operational safety and other serious consequences. It thus follows 
that this topic remains a highly active and relevant one. 
Additionally, a considerable number of companies have yet to 
establish a comprehensive roadmap with a defined framework and 
user guide for the implementation of AI methods [85]. This is an 
important aspect to consider in the pursuit of enhanced 
competitiveness.  

The efficacy of the systems and methodologies developed is 
contingent upon the manner in which the process data are prepared 
for advanced modelling of the foundry processes. A salient 
characteristic of the data under examination, as frequently discussed 
in the literature, is its inherent imbalance. This indicates that while a 
substantial quantity of data is available for analysis, there is a paucity 
of data pertaining to castings with defects. Consequently, advanced 
data analysis techniques have frequently been able to exclude this 
data, resulting in a reduction in the accuracy of the predictions. It can 
be concluded that preliminary data analysis, frequently employing 
statistical techniques, is a crucial determinant of success in attaining 
satisfactory results. As previously stated in Chapter 3, the use of an 
artificial neural network (ANN) as a foundation for developing 
decision support systems for predicting product defects and 
diagnosing their causes is a highly advantageous approach. 
Nevertheless, it has been observed that ANN predictions are 
frequently arbitrary, with disparate weightings, which frequently 
necessitates the extension of research and the creation of multiple 
models. With regard to the employed deep learning techniques, it was 
observed that, in the majority of cases, convolutional neural networks 
(CNNs) were capable of identifying defects in the analyzed castings 
(based on machine vision techniques) and of predicting their 
occurrence.  

A significant finding of the literature analysis was the creation of 
a digital twin, which facilitated the prediction of defects and the 
identification of their causes. This technology facilitates the design 
of intelligent manufacturing systems, enabling the maintenance of 
the function-structures-behavior-control-intelligence-performance 
(FSBCIP) framework for SMS [86]. It also enables effective 
production planning and suggests an optimal factory layout. A living 
digital twin enables real-time anomaly detection through predictive 
and prescriptive analysis to minimize not only the number of defects 
produced, but also to minimize downtime and optimize foundry 
operations.  The digital twin concept can be created for a machine, 
such as a key bottleneck machine, for the entire process, including 
models for all machines, and for the entire enterprise, even if 
geographically dispersed - which is the highest level of 
implementation of this technology [87]. These represent avenues for 
further research on the topic under analysis, which, despite extensive 
analysis, still presents a challenge for researchers and foundry 
companies.   
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