
 

1. Introduction 

Thermal non-equilibrium between solid and fluid phases in po-

rous media is an important effect which is usually present when 

high-speed flows are involved or height porosities are present, 

see Vafai and Sozen [1] and Kuznetsov and Vafai [2]. Such sit-

uations are related to the study of nuclear reactor cores and in 

hypothetical nuclear reactor accidents, chemical reactors, etc. 

(see Nield and Bejan, [3]). Detailed reviews of mathematical 

models of heat transfer in porous media, when the thermal non-

equilibrium is present, can be found in Kuznetsov [4,5]. Rees 

and Pop [6,7] performed a numerical and analytical study on the 

free convective boundary-layer flow and stagnation-point flow 

when the thermal non-equilibrium is taken into account. They 

reported that, when the solid matrix and the filling fluid are not 

in local thermal equilibrium, the behaviour of the flow is modi-

fied substantially. Baytas and Pop [8] studied free convection in 

a differentially heated square cavity using a thermal non-equi-

librium model for heat transfer and the Darcy model for fluid 

flow. Compared to the case of thermal equilibrium, lower values 

of the Nusselt number were obtained in the case of thermal non-

equilibrium. These values also depend on the interphase heat 

transfer parameters. 

Self-ignition or thermal explosion can occur in heat transfer 

problems (e.g. in storage technology) due to chemical exother-

mic reactions. Such undesirable behaviour can be described us-

ing the mathematical model given by Semenov [9]. The appear-

ance of the self-ignition/explosion is characterized by the Frank-

Kamenetskii number. Critical values of this number, at which 

the impact occurs, are reported by Lazarovici et al. [10] for a ca- 
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Nomenclature 

a ‒ concentration of reactant A in Eq. (6) 

c ‒ specific heat at constant pressure, J kg-1K-1 

Da ‒ Darcy number 

E ‒ activation energy, J 

g ‒ gravitational acceleration, m2s-1 

Gr ‒ Grashof number 

h ‒ interphase heat transfer coefficient, W m-2K-1 

H ‒ modified inter-phase heat transfer parameter,  

k ‒ thermal conductivity, W m-1K-1 

k0 ‒ pre-exponential factor 

K ‒ Frank-Kamenestkii number 

Kc ‒ critical Frank-Kamenestkii number 

𝐾 ‒ permeability, m2 

L ‒ characteristic length, m 

N  – grid dimension 

p ‒ pressure, N m-2 

P ‒ dimensionless pressure 

Q ‒ exothermicity of reaction, J mol-1 

rT ‒ dimensionless value of the temperature on the boundary 

R ‒ universal gas constant, J mol-1K-1 

Re – Reynolds number 

T – temperature, K  

T0 – reference temperature, K  

u, υ – filtration velocity components, m s-1 

U – dimensionless filtration velocity 

U0 – reference velocity, m s-1 

x, y – Cartesian coordinates, m 

X, Y – dimensionless Cartesian coordinates 

 

Greek symbols 

𝛽 – volumetric thermal expansion coefficient, K-1 

𝛾 – dimensionless pressure gradient 

𝜃 – dimensionless temperature 

θ' – derivative of the dimensionless temperature with respect to y 

κ – thermal conductivities ratio  

λ – dimensionless mixed convection parameter 

 – dynamic viscosity, kg m s-1 

𝜇 – effective dynamic viscosity, kg m s-1 

𝜇∗ – viscosities ratio 

ρ – density, kg m-3 

𝜙 – porosity 

 

Subscripts and Superscripts 

f – fluid phase  

s – solid phase  

vity filled with a porous medium under local thermal equilib-

rium conditions. 

The effect of heat generated by exothermic reactions in po-

rous media in a state of local thermal non-equilibrium has not 

yet been studied. Therefore, in this work, we will deal with the 

analysis of the effect of heat generated by an exothermic chem-

ical reaction on the flow and heat transfer in a porous medium 

that is in a state of thermal non-equilibrium. 

2. Mathematical model 

We consider the mixed convection flow and heat transfer in the 

presence of exothermic chemical reactions in a vertical channel 

filled by a fluid porous medium (see Fig. 1). The mathematical 

model for convective flow in a porous medium, using the Darcy-

Brinkman formulation, and considering the thermal non-equilib-

rium is given in [8], while details of the heat generation term due 

to an exothermic chemical reaction can be found in [10]. On the 

boundaries, the fluid and solid phases are assumed to be in local 

thermal equilibrium (Tf = Ts). Thus, for the governing equations, 

a combined two temperatures model is used, considering that the 

heat is generated in the fluid phase. The equations of continuity, 

momentum and energy for fluid and solid phases are: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (1) 

 
𝜕𝑝

𝜕𝑥
= −

𝜇

𝐾
𝑢 + 𝜇̃∇2 𝑢 + 𝜌𝑔 𝛽(𝑇𝑓 − 𝑇0), (2) 

 
𝜕𝑝

𝜕𝑦
= −

𝜇

𝐾
𝑣 + 𝜇̃ ∇2 𝑣, (3) 

 (𝜌 𝑐)𝑓 (𝑢
𝜕𝑇𝑓

𝜕𝑥 
+ 𝑣

𝜕𝑇𝑓

𝜕𝑦 
) =              

        =  𝜙𝑘𝑓 (
𝜕2𝑇𝑓

𝜕𝑥2 +
𝜕2𝑇𝑓

𝜕𝑦2 ) + ℎ(𝑇𝑓 − 𝑇𝑠) + 𝑄𝑘0𝑎 e−𝐸/𝑅𝑇𝑓, (4) 

 0 = (1 − 𝜙)𝑘𝑠 (
𝜕2𝑇𝑠

𝜕𝑥2 +
𝜕2𝑇𝑠

𝜕𝑦2 ) + ℎ(𝑇𝑓 − 𝑇𝑠). (5) 

In Eqs. (1) to (5), u and υ are the components of the Darcian 

velocity, p is the pressure, Tf  is the temperature of the fluid 

phase and Ts is the temperature of the solid phase. The physical 

properties of the fluid are given in Nomenclature. 

Following the Arrhenius kinetics (see [10]) where the reac-

tant A is transformed in the product B  

𝐴 → 𝐵 + heat,     rate = 𝑘0𝑎 e−𝐸/𝑅𝑇,              (6) 

and the heat generated by a first order exothermic chemical re-

action in the fluid phase is expressed by adding the term 

𝑄𝑘0𝑎 e−𝐸/𝑅𝑇𝑓  in Eq. (4). 

Next, we assume that the process takes place far from the 

channel entrance and that the flow is fully developed, see Aung 

and Worku [11]: 

 

Fig. 1. Geometry of the problem. 
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 𝑣 = 0,    
𝜕𝑢

𝜕𝑥
= 0,    

𝜕𝑇

𝜕𝑥
= 0,    

𝜕𝑝

𝜕𝑦
= 0,    

𝜕𝑝

𝜕𝑥
=

𝑑𝑝

𝑑𝑥
= const. (7) 

Thus, using assumptions (7) in Eqs. (1) to (5), the governing 

equations are: 

 
𝑑𝑝

𝑑𝑥
= −

𝜇

𝐾
𝑢 + 𝜇̃  

𝑑2𝑢

𝑑𝑦2 + 𝜌𝑔 𝛽(𝑇𝑓 − 𝑇0), (8) 

 0 = 𝜙𝑘𝑓
𝑑2𝑇

𝑑𝑦2 + ℎ(𝑇𝑠 − 𝑇𝑓) + 𝑄𝑘0𝑎 𝑒−𝐸/𝑅𝑇𝑓, (9) 

 0 = (1 − 𝜙)𝑘𝑠
𝑑2𝑇𝑠

𝑑𝑦2 + ℎ(𝑇𝑓 − 𝑇𝑠), (10) 

along with the boundary conditions:  

 𝑢 = 0    at  𝑦 = 0   and   𝑦 = 𝐿,  

 𝑇𝑓 = 𝑇𝑠 =  𝑇1     at   y = 0, (11) 

 𝑇𝑓 = 𝑇𝑠 =  𝑇2    at   𝑦 = 𝐿,  

 𝑇1 > 𝑇2.  

In order to solve Eqs. (8)–(11) and find the pressure gradient 
𝑑𝑝

𝑑𝑥
, it is necessary to add a new equation related to the conserva-

tion of mass flow rate (see, Aung and Worku [11] and Cimpan 

[12]): 

 ∫ 𝑢𝑑𝑦
𝐿

0
= 𝑀 = 𝑈0𝐿. (12) 

By using the following dimensionless variables in Eqs. (8)–

(12): 

 𝑋 =
𝑥

Re𝐿
,   𝑌 =

𝑦

𝐿
,   𝑈 =

𝑢

𝑈0
,   𝑃 =

𝑝

𝜌𝑈0
2 ,   𝜃𝑓 =

𝑇𝑓−𝑇0

𝑅𝑇0
2/𝐸

,  

                           𝜃𝑠 =
𝑇𝑠−𝑇0

𝑅𝑇0
2/𝐸

,   Re =
𝑈0𝐿

𝜈 
,   𝑇0 =

𝑇1+𝑇2

2
, (13) 

the mathematical model in the dimensionless form is obtained: 

 𝛾 = −
1

Da
𝑈 + 𝜇∗  

𝑑2𝑈

𝑑𝑌2 + 𝜆𝜃𝑓, (14) 

 0 =
𝑑2𝜃𝑓

𝑑𝑌2 + 𝐻(𝜃𝑠 − 𝜃𝑓) + K e𝜃𝑓 , (15) 

 0 =
𝑑2𝜃𝑠

𝑑𝑌2 + 𝜅𝐻(𝜃𝑓 − 𝜃𝑠), (16) 

 𝑈 = 0   at  𝑌 = 0   and   𝑌 = 1,  

 𝜃𝑓 = 𝜃𝑠  =  𝑟𝑇     at   𝑌 = 0, (17) 

 𝜃𝑓 = 𝜃𝑠 =  −𝑟𝑇  at   𝑌 = 1,  

 ∫ 𝑈𝑑𝑌
1

0
= 1. (18) 

The governing parameters in Eqs. (14)–(17) are: 

 𝛾 =
𝑑𝑃

𝑑𝑋
 (dimensionless pressure gradient),  

 Da =
𝐾

𝐿2  (Darcy number),  

 𝜇∗ =
𝜇̃

𝜇
  (viscosities ratio in the Brinkman model),  

 𝜆 =
Gr 

Re
 (mixed convection parameter),  

  Gr =
𝑔𝛽(

𝑅𝑇0
2

𝐸
)𝐿3

𝜈2  (Grashof number),  

 K =
𝑄𝑘0𝑎𝐿2

𝜙𝑘𝑓(
𝑅𝑇0

2

𝐸
)

e
−

𝐸

𝑅𝑇0 (Frank-Kamenestkii number),  

 𝜅 =
𝜙𝑘𝑓

(1−𝜙)𝑘𝑠
 (thermal conductivity ratio),  

 𝑟𝑇 =
𝑇1−𝑇2

2𝑅𝑇0
2/𝐸

 (boundary condition parameter).  

Assuming a large activation energy (
𝑅𝑇0

𝐸
≪ 1), a Taylor ex-

pansion was used to derive the energy equation for the fluid 

phase, Eq. (15). Here, the Frank-Kamenestkii number K meas-

ures the heat produced by the reaction relative to its loss by 

Newtonian cooling and is responsible for the occurrence of the 

thermal explosion/ignition, see [10]. 

3. Numerical solution and results  

We have solved the system of Eqs. (15) and (16) using the rou-

tine bvp4c from Matlab, using a prescribed error set to 10-9. This 

routine uses a collocation method on a non-uniform mesh to 

solve boundary value problems. The method requires an initial 

mesh and an initial approximate solution, then during the solu-

tion process the error is estimated at each subinterval, and the 

mesh is adjusted to achieve the convergence. The energy equa-

tion (15) is very close to the well-known Bratu’s equation [13], 

where θ(0) = θ(1) = 0. Similar to [13], it was found that there is 

a critical value of the parameter Kc(rT, H, κ), which is the point 

of thermal explosion.  

For 0 < K < Kc, there are two solutions for the temperature 

θf, for K = Kc, we have one solution (for this value the explosion 

occurs), and for K > Kc, the equation has no solution. Following 

[13,14], we can conclude that the lower solution is the stable 

one. In the particular case of local thermal equilibrium, the ob-

tained critical values Kc were compared with those obtained by 

Petrusel et al. [15] (for rT = 0) and Pop et al. [14], see Table 1. 

Increasing the value of the parameter rT leads to a reduction of 

the solution domain. 

Next, we study the effect of local thermal nonequilibrium on 

the existence of the solutions of Eqs. (15) and (16). The values, 

for the modified interphase heat transfer parameter and the ther-

mal conductivity ratio, were chosen on the basis of the paper by 

Table 1. Values of the critical Frank-Kamenetskii number for different 

values of the parameter 𝑟𝑇.  

𝒓𝑻 
𝐊𝒄 

Petrusel et al. [14] Pop et al. [15] Present 

0 3.513830719 − 3.513959 

0.1 − 3.51 3.510533 

0.5 − 3.419 3.419371 

1 − 3.155 3.155131 

2 − 2.332 2.332904 
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Baytas and Pop [8]. The effect of varying the parameters H and 

κ on the range of existence of solutions is shown in Figs. 2 to  5. 

The variation of the stable temperature profiles of the two 

phases (fluid phase and solid phase) with the boundary condition 

parameter 𝑟𝑇 are given in Figs. 6 and 7. The maximum value of 

the temperature increases with the increase of rT. For large val-

ues of 𝑟𝑇, there is an overshoot of the left boundary condition 

value for the 𝜃𝑓 profile. The same effect on the temperature pro-

files is observed for large values of the Frank-Kamenetskii num-

ber 𝐾, see Figs. 8 and 9. 

With the temperature profile obtained by solving the system 

of Eqs. (15) to (17), we focus on the solution of the momentum 

equation (14) along with the boundary conditions (17). The mo-

mentum equation was discretized using central finite differences 

on a uniform grid of dimension N. In addition, for the mass flux 

conservation equation, a midpoint quadrature formula was used. 

The obtained system of algebraic equations was solved using an 

in situ-built program using Matlab routines. In order to choose 

the size of the grid, a dependence simulation  (see  Table 2)  was  

 

Fig. 2. Existence of dual solution and values of 𝜃𝑓′(0)  

for different values of 𝐻 when 𝑟𝑇 = 1 and  𝜅 = 0.1.  

 

Fig. 3. Existence of dual solution and values of 𝜃𝑠′(0)  

for different values of 𝐻 when 𝑟𝑇 = 1 and  𝜅 = 0.1. 

 

Fig. 4. Existence of dual solution and values of 𝜃𝑓′(0)  

for different values of 𝜅 when 𝑟𝑇 = 1 and  𝐻 = 10. 

 

Fig. 5. Existence of dual solution and values of 𝜃𝑠′(0)  

for different values of 𝜅 when 𝑟𝑇 = 1 and  𝐻 = 10. 

 

Fig. 6. Profiles of 𝜃𝑓(𝑌) for different values of 𝑟𝑇  

when 𝜅 = 2,  𝐻 = 10 and K = 3. 

 

Fig. 7. Profiles of 𝜃𝑠(𝑌) for different values of 𝑟𝑇  

when 𝜅 = 2,  𝐻 = 10 and K = 3. 



Mixed convection flow in a porous channel under the effects of exothermic chemical reactions… 

 

241 
 

performed for the following values of the involved parameters: 

H = 10, K = 4, κ = 1, rT = 1, λ = 1000, μ* = 6, and Da = 10-2. 

According to the results obtained, the numerical simulations are 

further carried out using a grid of dimension N  =  401. 

Profiles of the velocity were obtained for some typical values 

of the involved parameters. In this problem, the value of the vis-

cosity ratio parameter was fixed, μ* = 6, see Gentile and Strau-

ghan [16]. The effect of variation of parameters Da and λ on the 

mixed convective fully developed flow is well known. Thus, for 

fixed values of the flow parameters, Da = 10-3 and λ = 1000, we 

focused on the study of the effect of thermal parameters on the 

velocity profiles. 

In Fig 10, the variation of the velocity profile with the pa-

rameter rT is depicted. For large values of the parameter rT, we 

notice the presence of the reverse flow near the cold (right) wall. 

Large values of rT imply a large temperature difference between 

the left and right walls, and this leads to negative buoyancy 

forces near the cold wall, which determine the reverse flow.  

Next, in order to study the effect of the interphase heat trans-

fer parameter H on the flow, computational simulations were 

performed for H = 1, 10, and 100. The increase of the value of 

H leads to an increase of the maximum values of the velocity; 

the reverse flow is more visible for large values of H near the 

right (cold) wall, see Fig 11.  

The effect of the thermal conductivities ratio κ on the veloc-

ity is shown in Fig. 12. The magnitude of 𝑈 increases slowly 

with the increase of κ. Finally, the variation of velocity profiles 

with the parameter K is presented in Fig. 13. The convective 

flow is augmented by the increase of K due to the higher profile 

of temperature, see Fig. 8. The increase of the parameter also 

intensifies the reverse flow. 

4. Conclusions  

The effect of first order exothermic chemical reactions on the 

mixed convective flow in a porous medium was studied consid-

ering a thermal non-equilibrium model. 

 The solution of the energy equation depends on the Frank-

Kamenestkii number, K. For 0 < K < Kc (critical number), 

there are two solutions, for K = Kc, we have one solution 

and for K > Kc, the equation has no solution. 

Table 2. Grid dependence test.  

Grid dimension, N  𝐦𝐚𝐱(𝑼)  

101 3.206797 295.004812 

201 3.206853 294.984245 

401 3.206974 294.979059 

2001 3.206979 294.977760 

 

 

Fig. 10. Variation of velocity profiles 𝑈 with 𝑟𝑇  

for K = 4, 𝐻 = 10, 𝜅 = 2 . 

 

Fig. 11. Variation of velocity profiles 𝑈 with 𝐻  

for 𝑟𝑇 = 2, K = 4, 𝜅 = 2. 

 

Fig. 8. Profiles of 𝜃𝑓(𝑌) for different values of K  

when 𝜅 = 2,  𝐻 = 10 and 𝑟𝑇 = 2. 

 

Fig. 9. Profiles of 𝜃𝑠(𝑌) for different values of K  

when 𝜅 = 2,  𝐻 = 10 and 𝑟𝑇 = 2. 
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 The increase of the rT parameter determines the apparition 

of the reverse flow near the cold wall. 

 The magnitude of U increases with the increase of the heat 

transfer parameters H and κ. 

 For more realistic physical modelling of the ignition/explo-

sion occurrence, unsteady effects can be considered 

[17,18], while for sparse porous media Darcy-Forchheimer 

or Brinkman mathematical models have to be used [19]. 
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Fig. 12. Variation of velocity profiles 𝑈 with 𝜅  

for 𝑟𝑇 = 2, 𝐻 = 10, 𝐾 = 3. 

 

Fig. 13. Variation of velocity profiles 𝑈 with K  

for 𝑟𝑇 = 2, 𝐻 = 10, 𝜅 = 2. 


