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This paper introduces a dual-loop adaptive trajectory tracking control system for
Marine Surface Vehicles (MSVs) that addresses both kinematic and dynamic distur-
bances. The approach begins with an outer-loop backstepping control strategy, which
generates velocity commands at the kinematic level to ensure accurate tracking of the
MSV’s position and heading. An adaptive estimator is integrated to assess unknown
ocean current velocities, allowing for effective compensation of their impact. The
inner-loop control employs linear parameterization to produce torque commands at
the dynamic level, ensuring alignment between the actual and commanded velocity
states. Two adaptive tuning laws are proposed: one for estimating challenging hy-
drodynamic parameters and another for compensating external marine disturbances.
The double-loop control significantly mitigates the effects of both kinematic and
dynamic disturbances, enhancing the precision of MSV tracking and overall perfor-
mance. Stability of the closed-loop system is established using Lyapunov theory, and
the adaptation laws for the system’s unknown parameters are derived. Numerical
simulations demonstrate the efficacy of the proposed control strategy.
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1. Introduction

Marine surface vehicles (MSVs) play a vital role in numerous ocean-based
applications, including resource exploration, offshore surveillance, and oceano-
graphic research [1–3]. However, achieving effective control of MSVs in complex
marine environments remains challenging due to external disturbances like ocean
currents, winds, and waves, along with parametric uncertainties. As a result, design-
ing adaptive and robust control systems for these vehicles has become a significant
research focus.

To tackle these complexities, researchers have explored a variety of advanced
control techniques for MSVs, including machine learning-based methods and their
derivatives, such as fuzzy control [4–6], neural networks (NN) [7–9], reinforcement
learning (RL) [10–12], and event-triggered control [13–15]. Each approach offers
unique benefits to improve adaptability and enhance real-time disturbance handling
capabilities. Fuzzy control, for example, is known for its adaptability through rule-
based systems, effectively addressing unpredictable factors like unknown ocean
currents [4]. Similarly, neural network-based methods employ adaptive structures
to manage uncertainties and meet time-varying constraints [7]. Deep learning (DL)
and reinforcement learning (RL) techniques have recently gained traction for their
data-driven adaptability and decision-making capacity in real-time, as seen in re-
cent surveys highlighting advancements in DL and RL for MSV control [10].
Event-triggered control has also been explored to increase efficiency by updat-
ing controls only as necessary, thus minimizing computational load. For instance,
event-triggered trajectory tracking with state and input quantization has been inves-
tigated [13], while other methods focus on simultaneous tracking and stabilization
with limited inputs [14, 15]. These approaches contribute to improving MSV con-
trol efficiency by selectively activating updates based on system requirements.

Despite the potential of these machine learning-based techniques, they come
with limitations such as the need for extensive datasets and high computational de-
mands. In contrast, sliding mode control (SMC) offers a simpler and more robust
alternative that effectively handles disturbances and uncertainties without requir-
ing large datasets. Advanced SMC variants, such as finite-time [16–20], fixed-
time [21–24], and predefined-time SMC [25–27], enhance performance by ensur-
ing convergence within specific time constraints. Finite-time SMC, for instance,
has been successfully applied to MSVs for heading tracking [16], path-following
[17], and fault tolerance [19, 20], achieving robust performance by guaranteeing
timely convergence. Fixed-time SMC provides convergence guarantees regardless
of initial conditions, which is particularly valuable in marine environments [21].
Predefined-time SMC further improves on this by specifying an exact convergence
time, making it suitable for time-sensitive applications [25–27]. While traditional
SMC is effective, it has drawbacks, such as the "chattering" effect, characterized by
high-frequency oscillations around the sliding surface, which can degrade control
precision and lead to mechanical or electronic wear.
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Furthermore, much existing MSV control research employs single-loop sys-
tems focused on position and orientation stabilization in the earth-fixed frame. This
approach, however, overlooks the fast-changing velocity variables in the body-fixed
frame, limiting adaptability.

To address this limitation, a double-loop control structure, consisting of an
outer loop for high-level trajectory planning and an inner loop for detailed ve-
locity control, offers improved modularity and adaptability. While double-loop
control is commonly used in mobile robot systems, it has not been widely adopted
in MSVs applications. A notable technique to address parameter uncertainty at
the dynamic level is parametric separation, which has been extensively employed
in the literature for MSVs, especially under environmental uncertainties and op-
erational constraints [28–38]. For example, recent studies have introduced self-
triggered adaptive neural control frameworks to mitigate measurement sensitivity
issues under deception attacks [36] and developed distributed optimal control with
event-based mechanisms to improve coordination among multiple vehicles [37].
Additionally, research has proposed intermittent anti-competition communication
mechanisms to support robust formation maneuvers in constrained communica-
tion environments [38]. Building on these foundations, this study presents a robust
double-loop control scheme for MSVs that integrates the parametric separation
technique. A distinctive feature of our approach is the design of an inner control
loop with two adaptive laws: one for handling unknown hydrodynamic parame-
ters and another for countering rapidly changing disturbances. This dual-adaptive
structure enables precise MSV velocity tracking, even under uncertain dynamics
and external disturbances. Unlike prior studies that primarily address disturbances
within the inner loop, our method manages both internal and external disturbances,
such as those from ocean currents, within a unified control framework.The primary
contributions of this study are as follows:
1. We introduce a novel double-loop control system for MSVs that enhances ro-
bustness and adaptability when facing complex disturbances, distinguishing our
approach from existing studies [4–27].
2. To address external kinematic disturbances, our scheme incorporates an adaptive
law to estimate and compensate for these disturbances, ensuring reliable navigation
in challenging open-sea conditions [28–34].
3. The dual-adaptive approach in the inner control loop increases efficiency and re-
silience by generating precise input torque, even with unknown dynamic parameters
and significant marine disturbances.
4. The double-loop structure allows the outer loop to manage slower dynamics
while enabling the inner loop to respond quickly to faster dynamics, resulting in
improved performance and resilience under demanding marine conditions.

This reminder is organized as follows: in Section 2, we present some prelim-
inaries and a problem description of the MSV. Section 3 introduces the design
analysis and main results of the proposed double-loop controller. The effective-
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ness of the suggested controller is verified by numerical simulations in Section 4.
Section 5 concludes the study.

2. Preliminaries and Problem Description

To accurately describe the motion of the MSV, it is crucial to establish two
reference coordinate frames (Fig. 1). The first is the Earth-fixed frame, denoted
as frame ℜ𝐸 (𝑂𝐸 , 𝑋𝐸 , 𝑌𝐸 , 𝑍𝐸), with its origin at point 𝑂𝐸 , where the 𝑂𝐸𝑋𝐸 –
axis points to the north and the 𝑂𝐸𝑌𝐸 – axis points to the east. The second is the
Body-reference frame, denoted as frame ℜ𝐵 (𝑂𝐵, 𝑋𝐵, 𝑌𝐵, 𝑍𝐵), with its origin at
point 𝑂𝐵, where the 𝑂𝐵𝑋𝐵 – axis points forward to the bow, the 𝑂𝐵𝑌𝐵 – axis
points toward starboard, and the 𝑂𝐵𝑍𝐵 – axis points downward.

Fig. 1. The MSV frames and coordinate system

Using the previously mentioned frames, the system’s posture describing the
position and orientation of the MSV in the earth-fixed frame can be described as
follows:

𝑃(𝑡) =
[
𝑋 (𝑡) 𝑌 (𝑡) Ψ(𝑡)

]𝑇
, (1)

where 𝑋 and 𝑌 represent the absolute position in the 𝑂𝐸𝑋𝐸 direction and 𝑂𝐸𝑌𝐸
direction respectively, and Ψ is the heading angle.

Furthermore, the system’s velocity, which describes the velocities of the MSV
in the body-fixed frame, can be described as follows:

𝜔(𝑡) =
[
𝑢(𝑡) 𝑣(𝑡) 𝑟 (𝑡)

]𝑇
, (2)

where 𝑢 and 𝑣 denote the forward and transverse velocities in the𝑂𝐵𝑋𝐵 and𝑂𝐵𝑌𝐵
directions, often referred to as surge and sway velocities, and 𝑟 represents the
angular velocity typically known as yaw.
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The kinematic model of the MSV is the mathematical relationship that de-
scribes the connection between the temporal derivative of its posture and the
vehicle’s speed. This model is expressed as:

¤𝑃(𝑡) =

¤𝑋 (𝑡)
¤𝑌 (𝑡)
¤Ψ(𝑡)

 =

cosΨ − sinΨ 0
sinΨ cosΨ 0

0 0 1



𝑢(𝑡)
𝑣(𝑡)
𝑟 (𝑡)

 = 𝑅(Ψ) 𝜔(𝑡), (3)

where 𝑅 (Ψ) is the transformation matrix.
It’s worth noting that in real marine applications, ocean currents can impact

the motion of the marine vehicle. As a result, the expression of the kinematic model
is modified as follows:

¤𝑃(𝑡) =

¤𝑋 (𝑡)
¤𝑌 (𝑡)
¤Ψ(𝑡)

 =

cosΨ − sinΨ 0
sinΨ cosΨ 0

0 0 1



𝑢(𝑡)
𝑣(𝑡)
𝑟 (𝑡)

 +

𝜌𝑋 (𝑡)
𝜌𝑌 (𝑡)

0

 = 𝑅(Ψ) 𝜔(𝑡) + 𝜌(𝑡), (4)

where 𝜌(𝑡) =
[
𝜌𝑋 (𝑡) 𝜌𝑌 (𝑡) 0

]𝑇
represents the vector of ocean current velocity.

The dynamic model of the MSV is the mathematical relationship that explains
how the applied force affects the vehicle’s acceleration. This model can be described
using the Euler-Lagrange formulation as follows:

𝑀 ¤𝜔(𝑡) + 𝐶 (𝜔)𝜔(𝑡) + 𝐷 (𝜔)𝜔(𝑡) = Γ(𝑡) + Δ(𝑡), (5)

where 𝑀 ∈ ℜ3×3 is the inertia matrix, 𝐶 (𝜔) ∈ ℜ3×3 is the matrix representing
Coriolis and centripetal forces, 𝐷 (𝜔) ∈ ℜ3×3 is the damping matrix, Γ (𝑡) ∈ ℜ3is
the vector of control input and Δ (𝑡) ∈ ℜ3 is the vector of external disturbances.
The specific expressions of the matrices 𝑀 ,𝐶 (𝜔), and 𝐷 (𝜔) are given as follows:

𝑀 =


𝑚11 0 0
0 𝑚22 𝑚23

0 𝑚23 𝑚33

 =

𝑚 − 𝑋 ¤𝑢 0 0

0 𝑚 − 𝑌 ¤𝜈 𝑚𝑥𝐺 − 𝑌 ¤𝑟
0 𝑚𝑥𝐺 − 𝑌 ¤𝑟 𝐼𝑍 − 𝑁 ¤𝑟

 , (6)

𝐶 (𝜔) =


0 0 𝑐13(𝑣, 𝑟)
0 0 𝑐23(𝑢)

−𝑐13(𝑣, 𝑟) −𝑐23(𝑢) 0


=


0 0 −𝑚22𝑣 − 𝑚23𝑟

0 0 𝑚11𝑢

𝑚22𝑣 + 𝑚23𝑟 −𝑚11𝑢 0

 ,
(7)
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𝐷 (𝜔)=

𝑑11(𝑢) 0 0

0 𝑑22(𝑣, 𝑟) 𝑑23(𝑣, 𝑟)
0 𝑑32(𝑣, 𝑟) 𝑑33(𝑣, 𝑟)


=


−𝑋𝑢−𝑋 |𝑢 |𝑢 |𝑢 | 0 0

0 −𝑌𝑣−𝑌𝑣 |𝑣 | |𝑣| −𝑌|𝑟 |𝑣 |𝑟 | −𝑌𝑟−𝑌|𝑣 |𝑟 |𝑣 |−𝑌𝑟 |𝑟 | |𝑟 |
0 −𝑁𝑣− 𝑁 |𝑣 |𝑟 |𝑣 |−𝑁𝑟 |𝑟 | |𝑟 | −𝑁𝑟−𝑁 |𝑣 |𝑟 |𝑣 |−𝑁𝑟 |𝑟 | |𝑟 |

 .
(8)

In these equations, 𝑚 is the mass of the MSV, 𝐼𝑧 is its moment of inertia, and
𝑥𝐺 is the center of gravity coordinate of the MSV. The hydrodynamic derivatives
are denoted by 𝑋∗, 𝑌∗, and 𝑁∗.

For the MSV system, the following properties hold.

Property 1 [33, 34] The inertia matrix 𝑀 is characterized by being symmetric,
positive-definite, and non-singular. Furthermore, it satisfies the following inequal-
ity.

𝑚min∥𝜒∥2 ⩾ 𝜒𝑇𝑀𝜒 ⩾ 𝑚max∥𝜒∥2 ∀𝜒 ∈ R3, (9)

where 𝑚min and 𝑚max are positive scalars.

Property 2 [33, 34] The matrix ¤𝑀 − 2𝐶 (𝜔) is skew symmetric and fulfills the
subsequent equation:

𝜒𝑇
(
¤𝑀 − 2𝐶 (𝜔)

)
𝜒 = 0 ∀𝜒, 𝜔 ∈ R3. (10)

Property 3 [33, 34] The dynamic model of the MSV (5) exhibits linear dependence
on the parameters, which means it can be expressed as the product of two terms,
as follows :

𝑀 ¤𝜔(𝑡) + 𝐶 (𝜔)𝜔(𝑡) + 𝐷 (𝜔)𝜔(𝑡) = Π(𝜔, ¤𝜔)Θ(𝑡), (11)

where Θ (𝑡) ∈ ℜ𝑝 represents the vector of uncertain parameters and Π (𝜔, ¤𝜔) ∈
ℜ3×𝑝 is referred to as the dynamic regressor matrix that contains known parame-
ters.

Remark 1 The above properties are logical because they are consistent with
physical principles, mathematical requirements, and modeling practices commonly
employed in fields like robotics, control theory, and mechanics [26–29]. They help
simplify the representation and analysis of complex systems while adhering to
fundamental principles.

3. Controller design

The principal objective of this paper is to formulate a robust adaptive control
law for MSV, capable of handling uncertainties in both kinematics and dynamics.
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As is well established [25], the system’s state variables can be classified into
two categories: fast time-varying variables, situated within the body-fixed frame,
which encompass the MSV’s velocities in surge, sway, and yaw directions; and
slow time-varying variables, characterizing the MSV’s position and orientation
in the earth-fixed frame. To achieve this, we implement a double-loop control
strategy for trajectory tracking. The outer loop at the kinematic level is dedicated to
stabilizing the slow variables, while the inner loop at the dynamic level is focused
on stabilizing the fast variables. The designed controller should ensure the overall
stability of the system and maintain bounded signals within the closed-loop control
system.

3.1. Design of the kinematic controller with ocean current estimation

In this subsection, our focus is on the design of an outer-loop-based kinematic
control system, which aims to achieve precise tracking of the MSV’s position and
orientation, particularly in the presence of ocean currents. This controller generates
velocity commands and is reinforced by the integration of an adaptive estimator.
This estimator plays a crucial role in estimating and compensating for the unknown
ocean current velocity, ultimately enhancing the performance and reliability of
MSV operations in complex marine environments. Before commencing the syn-
thesis of the control algorithm, it is essential to take into account the following
assumptions.

Assumption 1 The reference posture 𝑃𝑑 (𝑡) and its first derivative are continuous
and time-varying within certain bounded limits, i.e., for all 𝑡 > 0, there exist positive
constants ℓ1 and ℓ2, such that ∥𝑃𝑑 (𝑡)∥ ⩽ ℓ1 and



 ¤𝑃𝑑 (𝑡)


 ⩽ ℓ2.

Assumption 2 The yaw angle Ψ (𝑡) is assured to stay within the specified limit
as follows: |Ψ (𝑡) | < 𝜋/2 .

Assumption 3 The velocity of the ocean currents 𝜌 (𝑡) is assumed to be time-
varying and constrained over time by a positive bound, i.e., there exist𝜛 > 0, such
that ∥𝜌 (𝑡)∥ ⩽ 𝜛 for all 𝑡 > 0.

Assumption 4 It is assumed that the environmental marine disturbances, po-
tentially induced by factors such as ocean current velocity, wind, and waves, are
presumed to vary slowly over time. More precisely, the time derivatives of these
disturbances are assumed to be equal to zero.

Assumption 5 Information concerning the position(𝑋, 𝑌 ), orientation (Ψ), and
velocities (𝑢, 𝑣, 𝑟) of the MSV is typically accessible for feedback.

Remark 2 The yaw angle must not exceed 90◦ to establish overall effectiveness
and safety in maritime operations. This constraint can be realized in practice by
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achieving a balance between stability, maneuverability, and hydrodynamic perfor-
mance. Hence, the transformation matrix 𝑅 (Ψ) is guaranteed to be nonsingular at
all times.

Remark 3 Several factors contribute to ocean current formation, including winds,
the Coriolis effect, temperature and density gradients, gravity, tidal forces, and un-
derwater topography. For example, wind imparts surface momentum, the Coriolis
effect guides current direction, and gravity, tidal forces, and ocean floor topogra-
phy contribute to overall ocean water motion. The boundedness of ocean currents
is logical as it aligns with the natural constraints imposed by earth’s geography,
climate system, and fundamental fluid dynamics laws.

Remark 4 Many marine environmental disturbances, such as ocean currents,
wind patterns, and wave conditions, are influenced by large-scale physical pro-
cesses. Observations and data from the real world show that these processes often
change gradually over extended periods, resulting in slow variations in the associ-
ated disturbances. Therefore, Assumption 4 is completely logical.

Remark 5 To achieve precise navigation, control, and operation in diverse marine
environments, it is essential to integrate sensors into the MSV to provide compre-
hensive data on the position, orientation, and velocity of the system. For example,
these sensors may include GPS (Global Positioning System) for accurate location
data, IMU (Inertial Measurement Unit) equipped with accelerometers and gyro-
scopes for tracking orientation and velocity changes, and compass/magnetometer
for heading information.

Let’s consider trajectory tracking missions, where the reference posture 𝑃𝑑 (𝑡)
is generated by a virtual MSV and adheres to the following equation:

¤𝑃𝑑 (𝑡) =

¤𝑋𝑑 (𝑡)
¤𝑌𝑑 (𝑡)
¤Ψ𝑑 (𝑡)

 =

cosΨ𝑑 − sinΨ𝑑 0
sinΨ𝑑 cosΨ𝑑 0

0 0 1



𝑢𝑑 (𝑡)
𝑣𝑑 (𝑡)
𝑟𝑑 (𝑡)

 . (12)

Therefore, we can define the so-called global posture error of the MSV in the
earth-fixed frame as the disparity between the reference and current posture, as
follows:

𝑒𝑃 (𝑡) = 𝑃𝑑 (𝑡) − 𝑃(𝑡) =

𝑒𝑋 (𝑡)
𝑒𝑌 (𝑡)
𝑒Ψ (𝑡)

 =

𝑋𝑑 (𝑡) − 𝑋 (𝑡)
𝑌𝑑 (𝑡) − 𝑌 (𝑡)
Ψ𝑑 (𝑡) − Ψ(𝑡)

 . (13)
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In the body-fixed frame, we can define a local posture error of the MSV, which
can be subsequently derived as follows:

𝑃𝑒 (𝑡) =

𝑋𝑒 (𝑡)
𝑌𝑒 (𝑡)
Ψ𝑒 (𝑡)

 =


cosΨ sinΨ 0
− sinΨ cosΨ 0

0 0 1



𝑒𝑋 (𝑡)
𝑒𝑌 (𝑡)
𝑒Ψ (𝑡)

 = 𝑅
𝑇 (Ψ)𝑒𝑃 (𝑡). (14)

Building upon Equation (4) and Equation (12), we can represent the time
derivative of the local posture error through the following system:

¤𝑋𝑒 = 𝑟𝑌𝑒 + 𝑢𝑑 cosΨ𝑒 − 𝑣𝑑 sinΨ𝑒 − 𝑢 − 𝜌𝑋 cosΨ − 𝜌𝑌 sinΨ,
¤𝑌𝑒 = −𝑟𝑋𝑒 + 𝑢𝑑 sinΨ𝑒 + 𝑣𝑑 cosΨ𝑒 − 𝑣 + 𝜌𝑋 sinΨ − 𝜌𝑌 cosΨ,
¤Ψ𝑒 = 𝑟𝑑 − 𝑟.

(15)

We will employ Lyapunov’s stability theory to devise the kinematic control
law for our system, with a particular focus on its effectiveness when influenced by
ocean currents. Additionally, we will tackle the adaptation law, a crucial component
intended to handle the kinematic disturbances introduced by these ocean currents.
To fulfill this goal, we will employ the following Lyapunov candidate function:

𝑉 =
1
2
𝑋𝑇
𝑒 𝑋𝑒 +

1
2
𝑌𝑇
𝑒 𝑌𝑒 +

1
2
Ψ𝑇
𝑒 Ψ𝑒 +

1
2
𝑘𝑥 𝜌̃

2
𝑋 + 1

2
𝑘𝑦 𝜌̃

2
𝑌 . (16)

Here, 𝜌̃𝑋 = 𝜌𝑋 − 𝜌̂𝑋 and 𝜌̃𝑌 = 𝜌𝑌 − 𝜌̂𝑌 represent the estimation errors of the ocean
current velocity along the 𝑋𝐸−axis and 𝑌𝐸−axis, respectively. These errors are
defined as the difference between the actual and estimated velocities, with 𝑘𝑥 and
𝑘𝑦 denoting positive constants.

After taking the time derivative of the Lyapunov candidate function, we have:

¤𝑉 = 𝑋𝑒 ¤𝑋𝑒 + 𝑌𝑒 ¤𝑌𝑒 + Ψ𝑒
¤Ψ𝑒 +

1
𝑘𝑥
𝜌̃𝑋 ¤̃𝜌𝑋 + 1

𝑘𝑦
𝜌̃𝑌 ¤̃𝜌𝑌 . (17)

When we substitute the local posture error (15) into the above equation, we obtain:

¤𝑉 = 𝑋𝑒 (𝑟𝑌𝑒 + 𝑢𝑑 cosΨ𝑒 − 𝑣𝑑 sinΨ𝑒 − 𝑢 − 𝜌𝑋 cosΨ − 𝜌𝑌 sinΨ)
+ 𝑌𝑒 (−𝑟𝑋𝑒 + 𝑢𝑑 sinΨ𝑒 + 𝑣𝑑 cosΨ𝑒 − 𝑣 + 𝜌𝑋 sinΨ − 𝜌𝑌 cosΨ)

+ Ψ𝑒 (𝑟𝑑 − 𝑟) + 1
𝑘𝑥
𝜌̃𝑋 ¤̃𝜌𝑋 + 1

𝑘𝑦
𝜌̃𝑌 ¤̃𝜌𝑌 .

(18)

After replacing 𝜌𝑋 = 𝜌̃𝑋 + 𝜌̂𝑋 , 𝜌𝑌 = 𝜌̃𝑌 + 𝜌̂𝑌 and rearranging the above equation,
we have:
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¤𝑉 = 𝑋𝑒

(
𝑢𝑑 cosΨ𝑒 − 𝑣𝑑 sinΨ𝑒 − 𝑢 − 𝜌̂𝑋 cosΨ − 𝜌̂𝑌 sinΨ

)
+ 𝜌̃𝑋

(
− 𝑋𝑒 cosΨ + 𝑌𝑒 sinΨ + 1

𝑘𝑥
¤̃𝜌𝑋
)

+ 𝑌𝑒
(
𝑢𝑑 sinΨ𝑒 + 𝑣𝑑 cosΨ𝑒 − 𝑣 + 𝜌̂𝑋 sinΨ − 𝜌̂𝑌 cosΨ

)
+ 𝜌̃𝑌

(
− 𝑋𝑒 sinΨ − 𝑌𝑒 cosΨ + 1

𝑘𝑦
¤̃𝜌𝑌
)

+ Ψ𝑒 (𝑟𝑑 − 𝑟).

(19)

To ensure the stability of the control law, it is essential that the time derivative
of the candidate Lyapunov function is negative. Therefore, we need to consider the
following two conditions:

𝑢𝑑 cosΨ𝑒 − 𝑣𝑑 sinΨ𝑒 − 𝑢 − 𝜌̂𝑋 cosΨ − 𝜌̂𝑌 sinΨ = −𝑘1𝑋𝑒,

𝑢𝑑 sinΨ𝑒 + 𝑣𝑑 cosΨ𝑒 − 𝑣 + 𝜌̂𝑋 sinΨ − 𝜌̂𝑌 cosΨ = −𝑘2𝑌𝑒,

𝑟𝑑 − 𝑟 = −𝑘3Ψ𝑒,

(20)

and:
−𝑋𝑒 cosΨ + 𝑌𝑒 sinΨ + 1

𝑘𝑥
¤̃𝜌𝑋 = 0,

−𝑋𝑒 sinΨ − 𝑌𝑒 cosΨ + 1
𝑘𝑦

¤̃𝜌𝑌 = 0,
(21)

where 𝑘1 , 𝑘2 and 𝑘3 are positive scalars.
From condition (20), we can deduce the following kinematic adaptive law:

𝝎𝑐 (𝑡) =

𝑢𝑐 (𝑡)
𝑣𝑐 (𝑡)
𝑟𝑐 (𝑡)

 =

𝑘1𝑋𝑒 + 𝑢𝑑 cosΨ𝑒 − 𝑣𝑑 sinΨ𝑒 − 𝜌̂𝑋 cosΨ − 𝜌̂𝑌 sinΨ
𝑘2𝑌𝑒 + 𝑢𝑑 sinΨ𝑒 + 𝑣𝑑 cosΨ𝑒 + 𝜌̂𝑋 sinΨ − 𝜌̂𝑌 cosΨ

𝑘3Ψ𝑒 + 𝑟𝑑

 . (22)

Assumption 4 states that the ocean current velocity varies slowly over time, which
means that ¤𝜌 = 0. Consequently, the adaptation law for the unknown ocean current
velocity can be derived from (21) as follows:

¤̂𝜌𝑋 = 𝑘𝑥 (−𝑋𝑒 cosΨ + 𝑌𝑒 sinΨ) ,
¤̂𝜌𝑌 = 𝑘𝑦 (−𝑋𝑒 sinΨ − 𝑌𝑒 cosΨ) .

(23)

After applying the suggested control law (22) along with the adaptation law for the
ocean current velocity (23), the time derivative of the Lyapunov candidate function
is simplified to:

¤𝑉 = −𝑘1𝑋
2
𝑒 − 𝑘2𝑌

2
𝑒 − 𝑘3Ψ

2
𝑒 ⩾ 0. (24)

Given that 𝑉 ⩾ 0 and ¤𝑉 ⩽ 0, it is evident that 𝑉 is a bounded function and
has a finite limit as time goes to infinity. This implies that 𝑉 is bounded, and
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consequently, its components, including the tracking errors 𝑋𝑒, 𝑌𝑒, and Ψ𝑒, as well
as the estimation errors 𝜌̃𝑋 and 𝜌̃𝑌 , are also bounded. Furthermore, assuming that
the reference posture 𝑋𝑑 , 𝑌𝑑 , and Ψ𝑑 is bounded (as per Assumption 1), we can
deduce from equation (14) that the actual posture 𝑋 , 𝑌 , and Ψare also bounded.
The boundedness of reference posture and desired posture implies, from equations
(4) and (12), the boundedness of the reference and actual velocity, i.e., 𝑢𝑑 , 𝑣𝑑 ,
𝑟𝑑 , 𝑢, 𝑣, and 𝑟. Similarly, relying on Assumption 3 and considering that actual
ocean currents 𝜌𝑋 and 𝜌𝑌 are bounded, and given that the errors in estimating
these currents 𝜌̃𝑋 and 𝜌̃𝑌 are also bounded, we can infer that the estimated ocean
currents 𝜌̂𝑋 and 𝜌̂𝑌 are likewise bounded. Based on the previous analysis, we
can affirm that the kinematic control law (22) and update law (23) for the ocean
currents are bounded. After all, we can affirm that all signals of the closed-loop
system are bounded. Furthermore, the second time derivative of the Lyapunov
function can be computed as ¥𝑉 = −2𝑘1𝑋𝑒 ¤𝑋𝑒 − 2𝑘2𝑌𝑒 ¤𝑌𝑒 − 2𝑘3Ψ𝑒

¤Ψ𝑒. Equation (15)
can demonstrate the boundedness of ¤𝑋𝑒, ¤𝑌𝑒, and ¤Ψ𝑒, and given the boundedness of
𝑋𝑒, 𝑌𝑒, and Ψ𝑒, we can assert the boundedness of ¥𝑉 , implying that ¤𝑉 is uniformly
continuous. By applying the Barbalat Lemma, we can conclude that lim

𝑡→∞
𝑉 (𝑡) = 0,

and consequently, lim
𝑡→∞

𝑋𝑒 (𝑡) = 0; lim
𝑡→∞

𝑌𝑒 (𝑡) = 0; lim
𝑡→∞

Ψ𝑒 (𝑡) = 0; lim
𝑡→∞

𝜌̃𝑋 (𝑡) = 0
and lim

𝑡→∞
𝜌̃𝑌 (𝑡) = 0, which finally implies that 𝑋 (𝑡) → 𝑋𝑑 (𝑡), 𝑌 (𝑡) → 𝑌𝑑 (𝑡),

Ψ (𝑡) → Ψ𝑑 (𝑡), 𝜌𝑋 (𝑡) → 𝜌̂𝑋 (𝑡) and 𝜌𝑌 (𝑡) → 𝜌̂𝑌 (𝑡) when time goes to infinity.
This completes the proof of the asymptotic convergence.

The previous analysis can be summarized in the following theorem:

Theorems 1 Consider the MSV system governed by the kinematic Equation (4)
in the presence of unknown ocean currents, assuming that Assumptions 1−5 are
satisfied. If the velocity command in Equation (22) is designed in the outer loop,
incorporating the update laws for the estimation of ocean currents in Equation
(23), then, for any initial posture and smooth reference trajectory, the following
conditions hold:

1. The posture tracking errors converge asymptotically to zero.
2. The estimation error for unknown ocean currents converges to a small

neighborhood around the origin.
3. All signals of the outer-loop system are uniformly ultimately bounded.

Remark 6 In this study, the estimation of ocean current velocity has been solely
based on position measurements, which represents a significant advancement in
marine sensing techniques. By utilizing position data, this approach demonstrates
an innovative method for deriving crucial information about ocean currents. Such
innovation not only underscores the ingenuity of the estimation process but also
holds promise for cost-effective and accessible solutions in oceanography, offering
a valuable tool for understanding and monitoring marine dynamics.
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3.2. Design of the dynamic controller with parameters and disturbances
estimation

In this subsection, our focus is on the design of an inner-loop-based dynamic
control system, which aims to achieve precise tracking of the MSV velocity, es-
pecially in the presence of uncertain dynamic parameters and external torque
disturbances. This controller generates input torque and is strengthened by the inte-
gration of adaptive estimators for unknown parameters and external disturbances,
using only information about the position and velocity of the system. These esti-
mators contribute significantly to improving the efficiency and dependability of the
MSV operations in completely unknown dynamic parameters and severe marine
disturbances, which may arise from wind, waves, etc.

It is necessary to consider the following Assumptions before starting to syn-
thesize the control algorithm.

Assumption 6 The external disturbance Δ (𝑡) is assumed to be time-varying,
inherently unmeasurable, and yet bounded, i.e., there exist 𝛿 > 0, such that
∥Δ (𝑡)∥ ⩽ 𝛿 for all 𝑡 > 0.

Assumption 7 The dynamic parameters 𝑀 , 𝐶 (𝜔) and 𝐷 (𝜔) of the MSV are
assumed to completely unknown but there are bounded.

Remark 7 The external disturbances in marine environments arise from factors
such as ocean currents, wind patterns, and wave conditions, contributing to the
dynamic nature of the system. The assumption that these disturbances are unmea-
surable is based on the complex and vast scales of marine systems, making precise
measurements challenging. Additionally, the finite time energy of marine distur-
bances contributes to the boundedness of the disturbance by imposing constraints
on its overall magnitude and variability.

Remark 8 The dynamic parameters of MSV, including added mass, inertia, and
hydrodynamic parameters, are associated with vehicle characteristics, maneuvers,
and environmental conditions. The characterization of these parameters as un-
known arises from the intricate and variable nature of the marine environment, the
complexity of hydrodynamics, and practical challenges in measurement. Despite
their unknown nature, it is assumed that these dynamic parameters remain within
certain limits due to practical considerations and the physical limitations imposed
by the marine environment.

To begin, let’s define the velocity tracking error, which is the difference between
the commanded velocity generated by the kinematic algorithm and the actual
velocity, as follows:

𝑒𝜔 (𝑡) = 𝜔𝑐 (𝑡) − 𝜔(𝑡). (25)
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The following classical computed torque input can be designed to ensure the
convergence of the actual velocity 𝜔 to the velocity command 𝜔𝑐 [25], as given by
the following equation:

Γ(𝑡) = 𝑀 ¤𝜔𝑐 (𝑡) + 𝐶 (𝜔)𝜔𝑐 (𝑡) + 𝐷 (𝜔)𝜔(𝑡) + 𝐾𝑒𝜔 (𝑡), (26)

where 𝐾 is a positive gain matrix.
The accurate tracking performance of the above controller is assured only if the

dynamic quantities 𝑀,𝐶 (𝜔), 𝐷 (𝜔) are perfectly known. However, obtaining this
information is challenging due to the complexity of measuring or estimating the
hydrodynamic parameters of the MSV. Additionally, marine torque disturbances
arising from various environmental factors such as wind, waves, and tides can
impact the normal operation or behavior of marine systems, potentially leading
to system instability. Consequently, effective control systems are often necessary
to mitigate these effects and ensure the reliable execution of missions. To address
these challenges, the computed torque controller in Equation (26) can be enhanced
as follows:

Γ(𝑡) = 𝑀̂ ¤𝜔𝑐 (𝑡) + 𝐶̂ (𝜔)𝜔𝑐 (𝑡) + 𝐷̂ (𝜔)𝜔(𝑡) + 𝐾𝑒𝜔 (𝑡) − Δ̂(𝑡), (27)

where the matrices 𝑀̂, 𝐶̂ (𝜔) and 𝐷̂ (𝜔) are the estimates of 𝑀, 𝐶 (𝜔), and 𝐷 (𝜔)
respectively, and Δ̂ (𝑡) is the estimate of the unknown disturbance torque Δ (𝑡).

Utilizing the linear parametrizable Property 3, Equation (27) can be expressed
in the following concise form:

Γ(𝑡) = Π(𝜔, 𝜔𝑐, ¤𝜔𝑐)Θ̂(𝑡) + 𝐾𝑒𝜔 (𝑡) − Δ̂(𝑡), (28)

where Θ̂ ∈ ℜ9 represents the estimated vector of unknown dynamic parameters.
We note the existence of 9 unknown dynamic parameters for the system, which can
be grouped together in the following vector:

Θ=

[
𝑚11 𝑚22 𝑚23 𝑚33 𝑑11(𝑢) 𝑑22(𝑣,𝑟) 𝑑23(𝑣,𝑟) 𝑑32(𝑣,𝑟) 𝑑33(𝑣,𝑟).

]𝑇
(29)

The terms Π𝑖 𝑗 (𝑖 = 1 ∼ 3, 𝑗 = 1 ∼ 9) of the regression matrix Π (𝜔, 𝜔𝑐, ¤𝜔𝑐) can

be determined as follows: first, calculate the vector Υ =

[
Υ1 Υ2 Υ3

]𝑇
∈ ℜ3

such that Υ = 𝑀 ¤𝜔𝑐 + 𝐶 (𝜔) 𝜔𝑐 + 𝐷 (𝜔) 𝜔, after which we find that:

Υ1 = ¤𝑢𝑐𝑚11 − 𝑣𝑟𝑐𝑚22 − 𝑟𝑟𝑐𝑚23 + 𝑢𝑑11 (𝑢) ,
Υ2 =𝑢𝑟𝑐𝑚11 + ¤𝑣𝑐𝑚22 + ¤𝑟𝑐𝑚23 + 𝑣𝑑22 (𝑣, 𝑟) + 𝑟𝑑23 (𝑣, 𝑟) ,
Υ3 = − 𝑢𝑣𝑐𝑚11 + 𝑢𝑐𝑣𝑚22 + ( ¤𝑣𝑐 + 𝑢𝑐𝑟) 𝑚23 + ¤𝑟𝑐𝑚33 + 𝑣𝑑32 (𝑣, 𝑟) + 𝑟𝑑33 (𝑣, 𝑟) .

Then, for 𝑗 = 1 ∼ 9, we have: Π1 𝑗 =
𝜕Υ1
𝜕Θ𝑖

; Π2 𝑗 =
𝜕Υ2
𝜕Θ𝑖

; Π3 𝑗 =
𝜕Υ3
𝜕Θ𝑖

.
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Finally, after these calculations, the measurable regression matrix Π (𝜔, 𝜔𝑐, ¤𝜔𝑐) ∈
ℜ3×9 can be computed as follow:

Π(𝜔, 𝜔𝑐, ¤𝜔𝑐) =


¤𝑢𝑐 −𝑣𝑟𝑐 −𝑟𝑟𝑐 0 𝑢 0 0 0 0
𝑢𝑟𝑐 ¤𝑣𝑐 ¤𝑟𝑐 0 0 𝑣 𝑟 0 0
−𝑢𝑣𝑐 𝑢𝑐𝑣 ¤𝑣𝑐 + 𝑢𝑐𝑟 ¤𝑟𝑐 0 0 0 𝑣 𝑟

 . (30)

By substituting the control law provided in Equation (27) into the dynamic
model expressed in Equation (5), we derive the dynamic behavior of the closed-
loop system as follows:

𝑀 ¤𝑒𝜔 + 𝐶 (𝜔)𝑒𝜔 + 𝐾𝑒𝜔 − Π(𝜔, 𝜔𝑐, ¤𝜔𝑐)Θ̃ + Δ̃ = 0, (31)

where Θ̃ = Θ−Θ̂ defines the parameter estimation error, while Δ̃ = Δ−Δ̂ represents
the estimation errors associated with external disturbances.

We will use Lyapunov’s stability theory to design the dynamic control law for
our system, paying specific attention to its effectiveness in the presence of unknown
dynamic parameters. Furthermore, we will address the adaptation law, a critical
component designed to manage external disturbances. To achieve this objective,
we will utilize the following Lyapunov candidate function:

𝑉 =
1
2
𝑒𝑇𝜔𝑀𝑒𝜔 + 1

2
Θ̃𝑇𝐾ΘΘ̃ + 1

2
Δ̃𝑇𝐾ΔΔ̃, (32)

where 𝐾Θ and 𝐾Δ are diagonal positive definite matrices.
After taking the time derivative of the Lyapunov candidate function, we have:

¤𝑉 = 𝑒𝑇𝜔𝑀 ¤𝑒𝜔 + 1
2
𝑒𝑇𝜔

¤𝑀𝑒𝜔 + Θ̃𝑇𝐾Θ
¤̃Θ + Δ̃𝑇𝐾Δ

¤̃Δ. (33)

The substitution of the closed-loop behavior (31) in the above equation, followed
by the application of the skew-symmetric Property 2, results in:

¤𝑉 = −𝑒𝑇𝜔𝐾𝑒𝜔 +
(
𝑒𝑇𝜔Π(𝜔, 𝜔𝑐, ¤𝜔𝑐) + ¤̃Θ𝑇𝐾Θ

)
Θ̃ +

(
−𝑒𝑇𝜔 + ¤̃Δ𝑇𝐾Δ

)
Δ̃. (34)

To ensure the stability of the control law, it is essential that the time derivative
of the candidate Lyapunov function is negative. Therefore, we need to consider the
following two conditions:

𝑒𝑇𝜔Π(𝜔, 𝜔𝑐, ¤𝜔𝑐) + ¤̃Θ𝑇𝐾Θ = 0, (35)

and:
−𝑒𝑇𝜔 + ¤̃Δ𝑇𝐾Δ = 0. (36)
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Based on the Assumption 4 that the variable changes slowly over time, i.e.,
¤̃Θ = − ¤̂

Θ and ¤̃Δ = − ¤̂
Δ , then the adaptation law for the unknown dynamic parameters

is given by:
¤̂
Θ = 𝐾−𝑇

Θ Π𝑇 (𝜔, 𝜔𝑐, ¤𝜔𝑐) 𝑒𝜔 . (37)

Similarly, the adaptation law for the external disturbance torque is as follows:

¤̂
Δ = −𝐾−𝑇

Δ 𝑒𝜔 . (38)

After applying the suggested control law (28) along with the adaptation law
for the unknown dynamic parameters (37) and the adaptation law for the external
disturbance torque (38), the time derivative of the Lyapunov candidate function is
simplified to:

¤𝑉 = −𝑒𝑇𝜔𝐾𝑒𝜔 ⩽ 0. (39)

Given that 𝑉 ⩾ 0 and ¤𝑉 ⩽ 0, it is evident that 𝑉 is a bounded function and has a
finite limit as time goes to infinity. This implies that𝑉 is bounded, and consequently,
its components, including the velocity error 𝑒𝜔, as well as the estimation errors
for the dynamic parameters and external disturbances Θ̃ and Δ̃, are also bounded.
Using the fact that the velocity command 𝜔𝑐, is bounded, we can deduce that the
actual velocity 𝜔 is also bounded. Relying on Assumptions 6, 7 and considering
that dynamic parameters Θ and external disturbances Δ are bounded, and given
that the errors in estimating these variables Θ̃ and Δ̃ are also bounded, we can infer
that their estimated values Θ̂ and Δ̂ are likewise bounded. Based on the previous
analysis, we can affirm that the dynamic control law (28) and the update laws
(37) and (38) for the dynamic parameters and external disturbances are bounded.
After all, we can affirm that all signals of the closed-loop system are bounded.
Furthermore, the second time derivative of the Lyapunov function can be computed
as ¥𝑉 = −2 ¤𝑒𝑇𝜔𝐾𝑒𝜔. We can affirm the boundedness of ¥𝑉 , implying that ¤𝑉 is
uniformly continuous. By applying the Barbalat Lemma, we can conclude that
lim
𝑡→∞

𝑉 (𝑡) = 0, and consequently, lim
𝑡→∞

𝑒𝜔 (𝑡) = 0; lim
𝑡→∞

Θ̃ (𝑡) = 0 and lim
𝑡→∞

Δ̃ (𝑡) = 0,

which finally implies that 𝜔 (𝑡) → 𝜔𝑐 (𝑡), Θ (𝑡) → Θ̂ (𝑡) and Δ (𝑡) → Δ̂ (𝑡) when
time goes to infinity. This completes the proof of the asymptotic convergence.

The previous analysis can be summarized in the following theorem:

Theorems 2 Consider the MSV system governed by the dynamic Equation (5)
in the presence of unknown dynamic parameters and external torque disturbances,
assuming that Assumptions 6−7 are satisfied. If the input torque in Equation (28) is
designed in the inner loop, incorporating the update laws for the unknown dynamic
parameters in Equation (37) and for external torque disturbances in Equation (38),
then, for any smooth velocity command, the following conditions hold:

1. The velocity tracking errors converge asymptotically to zero.
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2. The estimation error for unknown dynamic parameters and external torque
disturbances converges to a small neighborhood around the origin.

3. All signals of the inner-loop system are uniformly ultimately bounded.
The schema bloc of the overall double-loop controller is illustrated in Fig. 2.

Fig. 2. Block diagram of the proposed double-loop controller

Remark 9 The assumption that variables change slowly over time is often made in
adaptive control for practical reasons and to simplify the design of control systems.
This assumption is logical in marine missions due to natural constraints, dynamic
conditions, safety considerations, and energy efficiency requirements inherent in
maritime systems. Embracing this assumption enables smoother adjustments, re-
duces the risk of instability, and aligns with the efficient use of propulsion systems,
especially in the face of environmental challenges.

Remark 10 In adaptive control systems, parameter drift can occur due to un-
certainties and disturbances, causing the adaptive parameters to increase without
bound, which undermines the accuracy and stability of the controller. To address
this, the dead-zone technique is applied by introducing a threshold around zero that
prevents unnecessary parameter updates when the error is small. Specifically, the
update law for the adaptive parameters is modified such that if the error magnitude
is below a predefined threshold , no update occurs, while the parameter update
is governed by an adaptive law when the error exceeds . This approach ensures
that only significant errors trigger adaptations, stabilizing the control system and
preventing unnecessary drift [39–41].
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Remark 11 In designing the proposed dual-loop algorithm, it is essential to
follow a systematic approach to ensure optimal performance and stability. The
following steps outline the process for selecting and refining the controller gain
parameters:
Step 1: Define the Inputs

• Specify the desired trajectory 𝑃𝑑 (𝑡) : This trajectory outlines the target
path, including both position and orientation over time, that the system
should follow.

• Measure the actual trajectory 𝑃 (𝑡) : The system’s real-time trajectory is
recorded to provide feedback, allowing for continuous comparison with the
desired path.

• Examine the system model to understand the dynamics that affect control
inputs, which is essential for estimating parameters and defining error terms.

Step 2: Design the Adaptive Kinematic Controller with Ocean Current Estimation
• Compute the global posture error 𝑒𝑃 (𝑡) = 𝑃𝑑 (𝑡) − 𝑃 (𝑡), which repre-

sents the difference between the desired and actual trajectories in the global
reference frame.

• Compute the local posture error 𝑃𝑒 (𝑡), a relative error used to refine the
system’s position and orientation alignment with the desired trajectory.

• Select the gains for the ocean current update laws: 𝑘𝑥 and 𝑘𝑦 are selected to
allow for accurate estimation of ocean currents impacting the system.

• Select the gains for the kinematic controller: 𝑘1, 𝑘2, and 𝑘3are chosen to
improve tracking accuracy in both position and orientation.

• Design the adaptive kinematic controller as detailed in Equation (22), with
update laws to estimate the ocean current (Equation (23)).

Step 3: Design the Adaptive Dynamic Controller with Parameter and Disturbance
Estimation

• Compute the velocity tracking error 𝑒𝜔 (𝑡) as the difference between veloc-
ities command and actual velocities, which refines accuracy in tracking the
velocity command.

• Select gains for the parameter update law 𝐾Θ, which adjusts the estimates of
dynamic parameter Θ (𝑡) for improved model alignment.

• Select gains for the disturbance update law 𝐾Δ to mitigate the effects of
unknown disturbances Δ (𝑡) that can impact control performance.

• Design the adaptive dynamic controller as described in Equation (28), using
parameter update laws (Equation (37)) and disturbance update laws (Equa-
tion (38)).

Step 4: Simulation and Refinement
• Simulate the controller with initial gains in a controlled environment, intro-

ducing variations in ocean current and external disturbances to observe the
system’s response.
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• Adjust gains iteratively based on the simulation results to meet specific per-
formance criteria, such as minimizing tracking error and optimizing response
time.

Step 5: Final Evaluation
• Evaluate tracking performance against pre-established criteria. If the results

are satisfactory, the gains are finalized.
• If necessary, return to Steps 2 and 3 for further gain refinement.

4. Simulation results

In this subsection, extensive computer simulations will be conducted to verify
the effectiveness of the proposed controller. For this purpose, we use the MSV
Northern Gripper as a simulation example. This vessel, which is a giant in terms
of its size and equipped with powerful thrusters, has a length of 76.2 m long and
a mass of 4.591.106 kg. The torque ranges that the MSV’s actuators can support
are as follows: Γ𝑢 ∈

[
−2.5.103; 2.5.103] kN, Γ𝑣 ∈

[
−1.5.103; 1.5.103] kN, and

Γ𝑟 ∈
[
−2.105; 2.105] kNm. For more detailed information on the hydrodynamic

parameters of the MSV, please refer to [42, 43].
The desired trajectory to be followed is planned as follows:

𝑃𝑑 (𝑡) =

𝑋𝑑 (𝑡)
𝑌𝑑 (𝑡)
Ψ𝑑 (𝑡)

 =


600 cos (0.72𝑡) cos (0.12𝑡)
600 cos (0.72𝑡) sin (0.12𝑡)
60 sin (0.1𝑡)

 . (40)

To verify the robustness of our control system, we considered parametric
uncertainties of 20% for the physical and hydrodynamic parameters relative to
their nominal values. Additionally, we took into account the following marine
environment disturbance [36]:

Δ (𝑡) =

Δ𝑢 (𝑡)
Δ𝑣 (𝑡)
Δ𝑟 (𝑡)

 =


104 (sin(0.2𝑡) + cos(0.5𝑡)) + 𝛿 (𝑡)
104 (sin(0.1𝑡) + cos(0.4𝑡)) + 𝛿 (𝑡)
104 (sin(0.5𝑡) + cos(0.3𝑡)) + 𝛿 (𝑡)

 , (41)

where 𝛿 (𝑡) = ℵ (0, 1) represents a white Gaussian noise with an amplitude of 0.1
and a sample time of 0.001 seconds.

We have also considered the following kinematic disturbance arising from the
velocity of ocean currents:

𝜌 (𝑡) =

𝜌𝑋 (𝑡)
𝜌𝑌 (𝑡)

0

 =


2 sin (0.4𝑡)
2 cos (0.4𝑡)

0

 . (42)
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The initial configuration of the MSV is set to 𝑃 (0) = [5 − 4 𝜋/4]𝑇 , and
its initial velocity is set to 𝜔(0) = [0 0 0]𝑇 . The control gains are selected as
𝑘1 = 60, 𝑘2 = 60, 𝑘3 = 90, 𝑘𝑥 = 700, 𝑘𝑦 = 700, 𝐾 = 900, 𝐾Θ = 1800 and
𝐾Δ = 1000. The initial values of the adaptive parameters are assumed to be zero,
i.e., 𝜌̂𝑋 (0) = 𝜌̂𝑌 (0) = 0 and Θ̂𝑖 (0) = 0 for 𝑖 = 1 ∼ 9. The tracking performances
under these conditions are illustrated in Figs. 3–9.

Fig. 3 illustrates the impressive precision of the MSV as it adeptly follows
a predetermined trajectory in the XY plane. The track showcases the advanced
navigation capabilities of the system, highlighting its ability to maintain accurate
and consistent tracking throughout the designated path. In Fig. 4, a comprehensive
depiction of the temporal evolution of both positions 𝑋 and 𝑌 , as well as the
orientation Ψ, clearly demonstrates the effectiveness of the control mechanism
in accurately steering the system along the intended path and underscores the
overall reliability of the system in achieving precise and consistent positioning and
orientation.
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Fig. 3. Plot of the MSV tracking trajectory in the 𝑋𝑌 plane

The high tracking precision is further confirmed through the plot of the tracking
errors in Fig. 5, which, after a transient due to errors in the initial condition,
exhibit a small value and converge to zero. The good performance in position and
orientation tracking is mainly attributed to the efficiency of the algorithm designed
for estimating the current ocean velocity. As illustrated in Fig. 6, a perfect estimation
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Fig. 5. Evolution of the tracking error in the 𝑋 direction, 𝑌 direction, and heading

is achieved, and it can be observed that the estimated ocean current velocities align
closely with the real ones. It is important to note that this estimation is achieved
using only information data about the system’s posture. This not only highlights the
estimating process’s creativity but also shows a cost-effective and potential tool for
studying maritime dynamics. Furthermore, as shown in Fig. 7, it can be observed
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that the actual velocities closely match the velocity commands generated by the
kinematic controller, thereby demonstrating the validity of the proposed inner loop
control.

The high speed at the beginning of the movement is a result of the initial
conditions assumed in the simulation. Specifically, the model begins with a sce-
nario where the vehicle is assumed to start with sufficient propulsion to achieve
near-instantaneous acceleration to a higher speed. In the later stages of the simu-
lation, the speed values become more realistic because the vehicle has reached its
operational phase, where the dynamics are dominated by realistic interactions be-
tween propulsion, resistance, and environmental factors. This transition to realistic
conditions reflects the system’s equilibrium in real-world scenarios.

Fig. 8 shows the control signals of the actuators throughout the tracking con-
trol process. It can be observed that the signals remain smooth, with no signs of
singularities or chattering. Furthermore, the torque and thrust values in the simu-
lation now align more closely with the technical limitations of the MSV Northern
Gripper, ensuring that the controller operates within realistic, feasible limits. As a
result, the control signals reflect stable and realistic actuator performance, which
is consistent with the vessel’s actual capabilities. Fig. 9 shows the evolution of
the adaptive parameters for the unknown dynamics; it can be seen that all the
parameters converge rapidly to constant values after a brief oscillating period at
the beginning. This confirms the ability of this algorithm to approximate unknown
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dynamic parameters, which is useful in many practical situations. Notice that the
observed consistency in input torques, despite significant variations in current
speed, underscores the robustness of the proposed control system in compensat-
ing for disturbances caused by ocean currents. The adaptive estimator integrated
into the outer-loop control effectively identifies and mitigates these disturbances,
ensuring that the MSV maintains its desired trajectory and velocity even under
fluctuating environmental conditions. This compensation mechanism minimizes
the need for substantial adjustments in the inner-loop torque commands, enabling
smooth operation without drastic changes in torque inputs. As a result, the input
torques exhibit a stable system response, even amidst varying current conditions.
This stability is a direct result of the effective disturbance rejection embedded in
the control process, highlighting the system’s reliability and adaptability.

5. Conclusions

This paper presents an adaptive control strategy for trajectory tracking of a
Marine Surface Vehicle (MSV), accounting for parameter uncertainties, external
disturbances, and ocean currents. The control system is designed with a double-
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loop structure: an outer kinematic controller that generates velocity commands and
an inner dynamic controller that provides real-time control inputs. The kinematic
controller is enhanced with an adaptive algorithm to estimate and compensate
for kinematic disturbances, particularly those caused by ocean currents. The dy-
namic controller is strengthened by two adaptive control laws: one for estimating
unmeasured hydrodynamic parameters and another for compensating external dis-
turbance torques. The overall stability of the closed-loop system is proven using
Lyapunov stability theory. Simulation results confirm the robustness of the con-
troller. The proposed control strategy demonstrates high tracking accuracy, strong
robustness to disturbances, and effective compensation for ocean currents. It also
ensures smooth and realistic actuator control. The system adapts well to paramet-
ric uncertainties and kinematic disturbances, with adaptive parameters converging
to constant values. Despite its advantages, the strategy faces challenges in com-
putational complexity, tuning, and potential higher implementation costs. Further
validation in real-world conditions is necessary to evaluate its scalability and prac-
tical applicability.
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