
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES,
DOI: 10.24425/bpasts.2025.153827

The Fast Type-IV
Discrete Sine Transform Algorithms
for Short-Length Input Sequences

Marina POLYAKOVA1∗ , Anna WITENBERG2∗∗, Aleksandr CARIOW3∗∗∗

1 Institute of Computer Systems, Odesa Polytechnic National University, Shevchenko 1, Odesa, 65044, Ukraine
2 Institute of Telecommunications and Computer Science, University of Science and Technology;

Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
3 Faculty of Computer Science and Information Technology, West Pomeranian University of Technology in Szczecin,

Zołnierska 49, 71-210 Szczecin, Poland

Abstract. The fast algorithms of discrete sinusoidal transform of the fourth type (DST-IV) for small-length input data in the range of lengths
from 2 to 9 are developed. Fast algorithms for short input data sequences are subsequently used as building blocks for designing fast algorithms
of large-sized discrete transforms. Applying the fast DST-IV algorithms for small-size block processing can reduce overall system complexity
and delay, allowing detailed signal processing. As a result of the literature review, two main approaches to developing fast discrete sine
transform (DST) algorithms were identified, namely, the polynomial algebraic approach and the matrix factorization approach. In the paper,
the last approach is exploited. A matrix-vector product expression of the DST-IV is the starting point for designing the fast algorithms.
Then based on the repetition and arranging of the matrix elements, the factorization of the matrices of coefficients of DST-IV is produced to
reduce computational complexity. The correctness of the obtained algorithmic solutions was justified theoretically using a strict mathematical
background of each of them. The elaborated algorithms were then further tested using MATLAB R2023b software to finally confirm their
performance. The resulting factorizations of the DST-IV matrices reduce the number of multiplications by 63% but increase the number of
additions by 8% on average in the range of signal sample numbers from 3 to 9. It has been observed that for even-length input sequences, the
reduction in the number of multiplications is not as significant as for odd-length sequences. For some other well-known discrete trigonometric
transforms (discrete Fourier transform, discrete Hartley transform) the opposite situation holds. The proposed DST-IV fast algorithms do not
limit the length of the input data sequence to powers of two or three. The data flow graphs constructed for the proposed algorithms reveal their
modular space-time structure suitable for VLSI implementation.

Key words: discrete sine transform; matrix factorization; fast algorithms; computational complexity; digital signal processing

1. INTRODUCTION

Discrete orthogonal transforms are widely used in digital sig-
nal and image processing [1, 2]. One of the important, but
not the main advantages of such transforms is a huge num-
ber of so-called fast algorithms that have been developed for
them [3, 4]. Fast algorithms allow the implementation of
discrete orthogonal transforms with high computational effi-
ciency [5, 6]. Among other orthogonal transforms, the DST
is a well-known and well-tested tool in digital signal process-
ing, specifically, in video steganography [7], medical image
fusion [8], filter design [9, 10], video coding [11, 12], image
transmission [13], image denoising [14]. However undesirable
high-frequency artifacts may often appear when using DST for
image compression [1].

In the signal and image processing community, the reason-
ableness of applying the DST versus discrete cosine transform
(DCT) and discrete Fourier transform (DFT) are discussed
from time to time. If an input signal is mirrored by a symmetric
reflection then the FFT input does not have a discontinuity in
the middle. In this case, the DCT is roughly equivalent to the
DFT. At the same time, the DST is roughly equivalent to a DFT

∗e-mail: polyakova@op.edu.ua
∗∗e-mail: anna.witenberg@pbs.edu.pl

∗∗∗e-mail: atariov@wi.zut.edu.pl

after an antisymmetric mirrored extension which results in dis-
continuities both in the middle and around the circle. Discon-
tinuities are represented by energy in the high-frequency bins
in the FFT results. These high-frequency artifacts are usually
undesirable when using a transform for compression. But at
the same time, DST is applied in the better portable graphics
coder to save the high-frequency content of video sequences.

Thus, the paper [15] is devoted to the intra-frame coding of
video sequences by High Efficiency Video Coding (HEVC).
The term intra-frame coding means that different compression
techniques are applied relative to information from the current
frame only, and not based on any other frame in the video se-
quence. HEVC is widely used in video coding as an advanced
image compression standard more efficient than JPEG 2000.
HEVC exploits a significant number of coding tools, in partic-
ular, DCT and DST are both applied in HEVC. Then evaluating
the amount of transform operations performed by the encoder
in a realistic application is extremely important to select opti-
mal settings in rate-distortion sense.

The DST can outperform the discrete Fourier transform in
speech and voice applications, for example, in speech sig-
nal enhancement [16–18]. In [16] to estimate the spectra of
speech signals for deep-learning models, the DST, DCT, and
other well-known orthogonal transforms were applied rather

1

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

THIS IS AN EARLY ACCESS ARTICLE.
This article has been accepted for publication in a future issue of this journal,

but has not been fully edited. Content may change prior to final publication.

Marina Polyakova, Anna Witenberg, Aleksandr Cariow

than the traditional DFT. The widely used deep-learning ar-
chitectures were tested, specifically, convolutional neural net-
work and fully connected neural network. To evaluate the
speech enhancement performance, several speech quality and
intelligibility measures were estimated on the signals from the
NOIZEUS database. The obtained results demonstrated that
DST is better suited than DFT for speech enhancement with
considered deep-learning models at signal-noise-ratio of 5, 10,
and 15 dB [16].

The DST is also applied for voice register recognition [19].
Human voices are divided based on sound timbre, produced
high and low tones, resonant space sensation, sound source,
etc. In [19] the types of female voice were recognized, specif-
ically, the chest voice, head voice, falsetto, and vocal fry. The
true detection rate in percentage was estimated for recognition
based on the DST, DCT, and DFT. The DST-based true detec-
tion rate ranged from 63% to 79%, while the same measure for
the DCT-based and DFT-based recognition was around 5-10%
lower. Therefore the DST-based methods is advisable to use
in applications where the high frequency content of signals or
images is significant.

Until now eight types of DST are known [20]. Although
DST is employed less frequently than DCT, the most exploited
transform is DST-II [21,22]. The other types of DST are much
less applied. However, the discrete orthogonal transforms al-
low the acceleration of their implementation by developing so-
called fast algorithms [2]. The number of arithmetic operations
required for the direct computation of the DST-IV is of order
N2, where N is the length of the input sequence. That is why
fast algorithms for DST-IV have been developed to reduce the
implementation cost and computational complexity [21–24].

It is necessary to note that the case of large lengths of in-
put data sequences is mostly considered in the papers relat-
ing to designing fast DST-IV algorithms [4, 22–26]. How-
ever, the short-length DST-IV algorithms are of special inter-
est, since they can be considered as typical modules in synthe-
sizing more complex algorithms [2,23]. Once constructed, the
short-length DST-IV algorithms can be successfully applied in
various projects to unify the process of developing the final
product. For example, in real-time applications such as video
conferencing or voice control systems applying the fast DST-
IV algorithms for small-size block processing can reduce over-
all system complexity and delay, allowing the detailed analysis
of audio signals [27, 28].

Then the designing the fast DST-IV algorithms for short-
length input sequences is a relevant problem. Further to select
the approach for developing such fast DST-IV algorithms the
related papers is analyzed.

1.1. State-of-art of the Problem
Among the various mathematical methods used to obtain fast
algorithms for DST, the dominant approaches are the poly-
nomial arithmetic approach [22, 23] and matrix factoriza-
tion [4, 20, 21, 24]. In addition, new fast DST algorithms for
direct very large scale integration (VLSI) have been developed
in [25, 26].

Based on the first approach the large class of fast general

radix algorithms was introduced in [22]. The proposed al-
gorithms were developed by exploiting a polynomial algebra
for DST and well-known Cooley-Tukey fast Fourier transform
instead of the manipulating the entries of transform matri-
ces. In [23] a new decomposition DST-IV algorithm is de-
scribed. The result was higher computational efficiency and
simpler hardware implementation compared to existing algo-
rithms. The efficiency of the introduced algorithm is verified
by a real-time audio decoding application. The second ap-
proach is based on a deep analysis of the structures of discrete
orthogonal transform matrices. As a result, the individual fea-
tures of the arrangement of identical entries are identified [29].
Then, if necessary, the matrix structures are altered for subse-
quent use of certain matrix structures that lead to the suitable
factorization of these matrices. In the end, the fast, efficient,
and recursive DST algorithms were developed by applying, for
example, the factorization on sparse, scaled orthogonal, rota-
tional, and rotational-reflection matrices [4, 20].

So, in [4] the authors have obtained the recursive radix-
2 DST algorithms with the lowest multiplication complexity.
The proposed algorithms are executed via factorization of DST
matrices into a product of diagonal, bidiagonal, sparse, and
scaled orthogonal matrices. As a result, the lowest multipli-
cation complexity is achieved among DST-IV algorithms de-
scribed in the literature. The relationship between DST-II and
DST-IV matrices was derived using diagonal and bidiagonal
matrices. The algorithms based on the proposed DST-II and
DST-III factorizations were implemented within an image en-
cryption scheme with double random phase encoding.

In [20] the factorizations of DST I-IV matrices are proposed.
The resulting matrices are scaled orthogonal, sparse, butterfly,
rotational, and rotational-reflection. Then the connection be-
tween the obtained factorizations and signal flow graph build-
ing blocks was established. As a result, the signal flow graphs
were constructed for the DST I-IV algorithms if the length of
the input sequence is equal to 8 or 16. These DST algorithms
significantly improve the speed of calculations and have low
arithmetic complexity.

In [24] the fast DST-IV algorithms were presented. Thus a
lower count of real multiplications and additions than previ-
ously published algorithms was achieved without the numeri-
cal accuracy sacrificing. To develop the proposed algorithms
the DCT-IV was considered as a special case of a discrete
Fourier transform of length 8N with certain symmetries. Then
the recent split-radix fast Fourier transform algorithm was ap-
plied. The improved algorithms for DST-IV follow immedi-
ately from the obtained DCT-IV algorithms.

The analysis of known fast DST-IV algorithms made it pos-
sible to define their shortcomings and formulate unsolved parts
of the general problem of reducing computational complexity.

1.2. The Main Contributions of the Paper

As a result of the analysis of papers devoted to synthesizing the
fast DST-IV algorithms, the following should be noted [5]. The
aforementioned algorithms are focused on the input sequences
with length N being the power of two or three. The mathe-

2

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Paper for BPASTS

matical notations used by the authors to describe the proposed
fast algorithms are often quite complicated. As a result, the
understanding of the essence of the suggested solutions may
be difficult for practitioners when a wide range of problems
are solved. The data flow graphs are not always constructed
for proposed fast algorithms which makes their implementa-
tion difficult. To avoid these disadvantages, in [5] the structural
approach is proposed to develop fast algorithms for the matrix-
vector product via matrix factorization. It is based on a deep
analysis of the structures of base transform matrices, identify-
ing individual features of the arrangement of identical entries.
Then, if necessary, the matrix structures are changed for sub-
sequent use of certain matrix identities that lead to the suitable
factorization of these matrices. This way, the number of multi-
plication and addition operations necessary for the calculation
of matrix-vector product may be reduced. The structural ap-
proach does not limit the length of the original data sequence,
for example, to a power of two or three [5, 21, 30, 31]. At least
for odd N DST-IV, the coefficients matrices are structured, then
developing the fast DST-IV algorithms based on a structural
approach to matrix factorization is relevant.

In addition, the case of large lengths of input data sequences
is considered in papers concerning the efficient implementa-
tion of DSTs [4, 20–26]. However, short-length DST-IV al-
gorithms are of particular interest since these transforms are
applied as typical modules in synthesizing more complex al-
gorithms [2]. In addition, fast algorithms for short-length se-
quences can be successfully used directly, for example, in the
processing of signals with low sampling rates [32, 33]. There-
fore, this research aims to develop the reduced-complexity
DST-IV algorithms based on a structural approach for input
sequences of length N = 2,3,4,5,6,7,8,9. These values of N
allow for further construction of the radix-type algorithms with
a large range of radix values.

2. MATERIAL AND METHODS

2.1. Preliminary Remarks

DST-IV can be expressed as follows [1, 4]:

yk =

√
2
N

N−1

∑
n=0

xnsin
π(2n+1)(2k+1)

4N
, (1)

where: k = 0,1, . . . ,N − 1, yk is the output sequence after the
DST-IV; xn is the input sequence; N is the number of signal
samples.

DST-IV can be represented in matrix notation by the expres-
sion:

YN×1 = CNXN×1, (2)

where
XN×1 = [x0,x1, . . . ,xN−1]

T ,

YN×1 = [y0,y1, . . . ,yN−1]
T ,

ckl =

√
2
N

sin
π(2l +1)(2k+1)

4N
, k, l = 0,1, . . . ,N −1.

In this paper, we use the following notations and signs:

IN is an order N identity matrix;

H2 is a 2×2 Hadamard matrix;
1N×M is a N ×M matrix of ones;
⊗ is the Kronecker product of two matrices;
⊕ is the direct sum of two matrices.

An empty cell in a matrix means it contains zero.We desig-
nated the values of the sines obtained as a result of the trans-
formations as s(N)

m .
As a graphical illustration of the space-time structures of the

developed algorithms, we will use data flow graphs oriented
from right to left. We will use regular straight lines to denote
data transfer operations and dashed lines to denote data transfer
operations with simultaneous sign changes. Nodes from which
the lines diverge mean data transfer, and nodes where the lines
connect symbolize summations. Circles denote multiplications
by sine values obtained as a result of arithmetic operations.

DST-IV in matrix-vector representation is expressed as fol-
lows:

y0

y1
...

yN−1

=


c0,0 c0,1 . . . c0,N−1

c1,0 c1,1 . . . c1,N−1
...

...
. . .

...
cN−1,0 cN−1,1 . . . cN−1,N−1




x0

x1
...

xN−1

. (3)

2.2. Algorithm for 2-point DST-IV

To obtain the algorithm for two-point DST-IV the expres-
sion (2) is represented as follows:

Y2×1 = C2X2×1 (4)

where:

X2×1 = [x0,x1]
T , Y2×1 = [y0,y1]

T , C2 =

[
a2 b2

b2 −a2

]
,

a2 = sin
(

π

8

)
≈ 0.3827, b2 = sin

(
3π

8

)
≈ 0.9239.

Based on the structural properties of matrix C2 [5, 21], the
expression for DST-IV for N = 2 can be presented as follows:

Y2×1 = W2×3D3W3×2X2×1, (5)

where:
D3 = diag

(
s(2)0 ,s(2)1 ,s(2)2

)
,

s(2)0 = a2 −b2, s(2)1 =−(a2 +b2), s(2)2 = b2,

W3×2 =

1
1

1 1

 , W2×3 =

[
1 1

1 1

]
.

A data flow graph of the synthesized algorithm for the two-
point DST-IV is shown in the Figure 1. If this algorithm is
applied, then the number of multiplication operations may be
reduced from 4 to 3, although the number of addition opera-
tions is increased from 2 to 3.

3

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Marina Polyakova, Anna Witenberg, Aleksandr Cariow

Fig. 1. The data flow graph of the proposed algorithm for the computa-
tion of two-point DST-IV

2.3. Algorithm for 3-point DST-IV

Next, we develop the algorithm for three-point DST-IV which
is expressed as

Y3×1 = C3X3×1 (6)

where:

X3×1 = [x0,x1,x2]
T , Y3×1 = [y0,y1,y2]

T ,

C3 =

a3 b3 c3

b3 b3 −b3

c3 −b3 a3

 ,

a3 =

√
2
3

sin
(

π

12

)
≈ 0.2113, b3 =

√
2
3

sin
(

3π

12

)
≈ 0.5774,

c3 =

√
2
3

sin
(

5π

12

)
≈ 0.7887.

We can decompose the matrix C3 into two components:

C3 = C(a)
3 +C(b)

3 (7)

where

C(a)
3 =

 b3

b3 b3 −b3

−b3

 , C(b)
3 =

a3 0 c3

0 0 0
c3 0 a3

 .
Matrix C(a)

3 has the same entries except on the sign in the
second column and second row, which allows for reducing the
number of operations without the need for further transforma-
tions. After eliminating the rows and columns containing only
zero entries in the last matrix, we obtain

C(a)
2 =

[
a3 c3

c3 a3

]
.

Based on the properties of structural matrices [5, 21], the
computational procedure for the three-point DST-IV is repre-
sented by expression

Y3×1 = W3×4W4D4W4×3W3X3×1, (8)

where:
D4 = diag

(
s(3)0 ,s(3)1 ,s(3)2 ,s(3)3

)
,

s(3)0 =
a3 + c3

2
, s(3)1 =

a3 − c3

2
, s(3)2 = s(3)2 = b3,

W3×4 =

1 1
1 1

1 −1

 , W3 =

1 1
1

1 −1

 ,

Fig. 2. The data flow graph of the proposed algorithm for the computa-
tion of three-point DST-IV

W4×3 =


1

1
1

1

 , W4 = H2 ⊗ I2,

A data flow graph of the proposed algorithm for the three-
point DST-IV is shown on Figure 2. The number of multipli-
cations may be reduced from 9 to 4, the number of additions is
increased from 6 to 7, however.

2.4. Algorithm for 4-point DST-IV

To design the algorithm for four-point DST-IV we can
rewrite (2) as

Y4×1 = C4X4×1, (9)

X4×1 = [x0,x1,x2,x3]
T , Y4×1 = [y0,y1,y2,y3]

T ,

C4 =


a4 b4 c4 d4

b4 d4 a4 −c4

c4 a4 −d4 b4

d4 −c4 b4 −a4

 ,

a4 =

√
1
2

sin
(

π

16

)
≈ 0.1379, b4 =

√
1
2

sin
(

3π

16

)
≈ 0.3928,

c4 =

√
1
2

sin
(

5π

16

)
≈ 0.5879, d4 =

√
1
2

sin
(

7π

16

)
≈ 0.6935.

To change the order of columns and rows of C4 the permu-
tations

π
(0)
4 =

(
1 2 3 4
3 2 1 4

)
, π

(1)
4 =

(
1 2 3 4
1 4 3 2

)
.

are defined. After permutation the columns of C4 according
to π

(0)
4 and permutation the rows of C4 according to π

(1)
4 we

obtain the matrix

C(a)
4 =


c4 b4 a4 d4

b4 −c4 d4 −a4

−d4 a4 c4 b4

a4 d4 b4 −c4


with permutation matrices

P(0)
4 =


1

1
1

1

 , P(1)
4 =


1

1
1

1

 .

4

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Paper for BPASTS

The matrix C(a)
4 matches the matrix pattern

C(a)
4 =

[
A2 B2

C(a)
2 A2

]
,

where

A2 =

[
c4 b4

b4 −c4

]
,B2 =

[
a4 d4

d4 −a4

]
,C(a)

2 =

[
−d4 a4

a4 d4

]
.

Hence the matrix C(a)
4 can be represented as [5, 30]

C(a)
4 = (T(3)

2×3 ⊗ I2)

·
[
(C(a)

2 −A2)⊕ (B2 −A2)⊕A2

]
(T(3)

3×2 ⊗ I2),
(10)

where:

T(3)
2×3 =

[
1 1

1 1

]
, T(3)

3×2 =

1
1

1 1

 .
Considering the structure of the resulting matrices

C(a)
2 −A2 =

[
−d4 − c4 a4 −b4

a4 −b4 d4 + c4

]
,

B2 −A2 =

[
a4 − c4 d4 −b4

d4 −b4 −a4 + c4

]
,

and A2, we note that these matrices match the patterns[
a b
b −a

]
,

[
c d
d −c

]
,

[
e f
f −e

]
,

respectively.
Here a = −d4 − c4; b = a4 − b4; c = a4 − c4; d = d4 − b4;

e = c4 and f = b4. Then [5, 6]:

C(a)
2 −A2 = T(4)

2×3 diag(s(4)0 ,s(4)1 ,s(4)2)T(3)
3×2,

B2 −A2 = T(4)
2×3 diag(s(4)3 ,s(4)4 ,s(4)5)T(3)

3×2, (11)

A2 = T(4)
2×3 diag(s(4)6 ,s(4)7 ,s(4)8)T(3)

3×2,

where:

s(4)0 =−d4 − c4 −a4 +b4; s(4)1 = d4 + c4 −a4 +b4;

s(4)2 = a4 −b4; s(4)3 = a4 − c4 −d4 +b4;

s(4)4 =−a4 + c4 −d4 +b4; s(4)5 = d4 −b4;

s(4)6 = c4 −b4; s(4)7 =−c4 −b4; s(4)8 = b4

and

T(4)
2×3 =

[
1 1

1 1

]
.

Based on properties of structural matrices [5, 29], the com-
putational procedure for the four-point DST-IV is represented
by formula

Y4×1 = P(1)
4 W4×6W6×9D9W9×6W6×4P(0)

4 X4×1, (12)

Fig. 3. The data flow graph of the proposed algorithm for the computa-
tion of four-point DST-IV

where:

D9 = diag(s(4)0 ,s(4)1 ,s(4)2 ,s(4)3 ,s(4)4 ,s(4)5 ,s(4)6 ,s(4)7 ,s(4)8),

W4×6 = T(3)
2×3 ⊗ I2, W6×9 = T(4)

2×3 ⊕T(4)
2×3 ⊕T(4)

2×3,

W6×4 = T(3)
3×2 ⊗ I2, W9×6 = T(4)

3×2 ⊕T(4)
3×2 ⊕T(4)

3×2.

A data flow graph of the proposed four-point DST-IV al-
gorithm is presented on Figure 3. In particularly, the number
of multiplications may be reduced from 16 to 9, although the
number of additions is increased from 12 to 15.

2.5. Algorithm for 5-point DST-IV
Let’s obtain the algorithm for five-point DST-IV which is ex-
pressed as follows:

Y5×1 = C5X5×1, (13)

X5×1 = [x0,x1,x2,x3,x4]
T , Y5×1 = [y0,y1,y2,y3,y4]

T ,

C5 =


a5 b5 c5 d5 e5

b5 e5 c5 −a5 −d5

c5 c5 −c5 −c5 −c5

d5 −a5 −c5 e5 −b5

e5 −d5 c5 −b5 a5

 ,

a5 =

√
2
5

sin
(

π

20

)
≈ 0.0989, b5 =

√
2
5

sin
(

3π

20

)
≈ 0.2871,

c5 =

√
2
5

sin
(

π

4

)
≈ 0.4472, d5 =

√
2
5

sin
(

7π

20

)
≈ 0.5636,

e5 =

√
2
5

sin
(

9π

20

)
≈ 0.6247.

To change the order of columns and rows of C5 the permu-
tations π

(0)
5 and π

(1)
5 are defined as

π
(0)
5 =

(
1 2 3 4 5
1 2 3 5 4

)
, π

(1)
5 =

(
1 2 3 4 5
2 1 3 4 5

)
.

The columns of C5 are permutated according to π
(0)
5 and the

rows of C5 are permutated according to π
(1)
5 . After permuta-

tions and altering the sign in fourth row and the fourth column,

5

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Marina Polyakova, Anna Witenberg, Aleksandr Cariow

the obtained matrix C(a)
5 is decomposed into two components

C(a)
5 = C(b)

5 +C(c)
5 , (14)

where

C(b)
5 =


c5

c5

c5 c5 −c5 −c5 −c5

c5

c5

 ,

C(c)
5 =


b5 e5 d5 −a5

a5 b5 −e5 d5

−d5 a5 −b5 −e5

e5 −d5 −a5 −b5

 .

Matrix C(b)
5 has the same entries except on the sign in the

third column and third row, which allows decreasing the num-
ber of operations without the need for further transformations.
After eliminating the rows and columns containing only zero
entries in matrix C(c)

5 , we obtain matrix C(d)
4 :

C(d)
4 =


b5 e5 d5 −a5

a5 b5 −e5 d5

−d5 a5 −b5 −e5

e5 −d5 −a5 −b5

 .
The matrix C(d)

4 matches the matrix pattern

C(d)
4 =

[
A(0)

2 B(0)
2

−B(0)
2 −A(0)

2

]
,

where

A(0)
2 =

[
b5 e5

a5 b5

]
, B(0)

2 =

[
d5 −a5

−e5 d5

]
.

Hence the matrix C(d)
4 can be represented as [5, 30]

C(d)
4 = (Ī2 ⊗ I2)(H2 ⊗ I2)

· 1
2

[
(A(0)

2 +B(0)
2)⊕ (A(0)

2 −B(0)
2)
]
(H2 ⊗ I2),

(15)

where

Ī2 =

[
1 0
0 −1

]
.

Considering the structure of the resulting matrices A(0)
2 +

B(0)
2 and A(0)

2 −B(0)
2 we note that these matrices match the pat-

terns [
a b
d −a

]
,

[
c d
d c

]
,

respectively. For that it is necessary to alter the sigh in the
second row of A(0)

2 +B(0)
2 matrix. Here a = b5 +d5; b = e5 −

a5; c = b5 −d5; d = e5 +a5. Then [5, 6]

1
2

(
A(0)

2 +B(0)
2

)
= Ī2T(4)

2×3 diag
(

a−b
2

,
−a−b

2
,

b
2

)
T(3)

3×2,

1
2

(
A(0)

2 −B(0)
2

)
= H2 diag

(
c+d

4
,

c−d
4

)
H2, (16)

where T(4)
2×3 is defined as in (11), T(3)

3×2 is defined as in (10).
Consequently,

C(d)
4 = (Ī2 ⊗ I2)(H2 ⊗ I2)

(
(Ī2T(4)

2×3)⊕H2

)
·diag(s(5)0 ,s(5)1 ,s(5)2 ,s(5)5 ,s(5)6)(T(3)

3×2 ⊕H2)(H2 ⊗ I2),(17)

where

s(5)0 =
b5 +d5 − e5 +a5

2
; s(5)1 =

−b5 −d5 − e5 +a5

2
;

s(5)2 =
e5 −a5

2
; s(5)3 = s(5)4 = c5;

s(5)5 =
b5 −d5 + e5 +a5

4
; s(5)6 =

b5 −d5 − e5 −a5

4
.

Taken in account properties of structural matrices [5, 21],
the computational procedure for the five-point DST-IV is rep-
resented by expression

Y5×1 =P(1)
5 W5×6W6W6×7D7W7×6W6W6×5P(0)

5 X5×1, (18)

where: W6×7 = Ī2T(4)
2×3 ⊕ I2 ⊕H2,

W7×6 = T(3)
3×2 ⊕ I2 ⊕H2,

D7 = diag(s(5)0 ,s(5)1 ,s(5)2 ,s(5)3 ,s(5)4 ,s(5)5 ,s(5)6),

P(1)
5 =


1

1
1

−1
1

 , P(0)
5 =


1

1
1

−1
1

 ,

W6×5 =



1
1

1
1 1 −1 −1

1
1


,

W6 =



1 1
1 1

1
1

1 −1
1 −1


,

W5×6 =


1 1

1 1
−1 1
1 −1
1 −1

 .
A data flow graph of the proposed algorithm of the five-point

DST-IV is presented in Figure 4. In particularly, the number of
multiplications may be reduced from 25 to 7, but the number
of additions is increased from 20 to 23.

6

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Paper for BPASTS

Fig. 4. The data flow graph of the proposed algorithm for the computa-
tion of five-point DST-IV

2.6. Algorithm for 6-point DST-IV

Now we propose the algorithm for six-point DST-IV. The six-
point DST-IV is expressed as follows:

Y6×1 = C6X6×1, (19)

where:
X6×1 = [x0,x1,x2,x3,x4,x5]

T ,

Y6×1 = [y0,y1,y2,y3,y4,y5]
T ,

C6 =



a6 b6 c6 d6 e6 f6

b6 e6 e6 b6 −b6 −e6

c6 e6 −a6 − f6 −b6 d6

d6 b6 − f6 a6 e6 −c6

e6 −b6 −b6 e6 −e6 b6

f6 −e6 d6 −c6 b6 −a6


,

a6 =

√
1
3

sin
(

π

24

)
≈ 0.0754, b6 =

√
1
3

sin
(

π

8

)
≈ 0.2209,

c6 =

√
1
3

sin
(

5π

24

)
≈ 0.3515, d6 =

√
1
3

sin
(

7π

24

)
≈ 0.4580,

e6 =

√
1
3

sin
(

9π

24

)
≈ 0.5334, f6 =

√
1
3

sin
(

11π

24

)
≈ 0.5724.

The columns and rows of C6 are permutated according to π6
which is defined in the following form

π6 =

(
1 2 3 4 5 6
6 2 3 5 4 1

)
.

In addition, the sign is altered in third row and the third
column. Then the matrix C(a)

6 is obtained. The matrix C(a)
6

matches the matrix pattern

C(a)
6 =

[
A3 B3

B3 −A3

]
,

where

A3 =

−a6 −e6 −d6

−e6 e6 −e6

−d6 −e6 −a6

 , B3 =

−c6 b6 f6

b6 −b6 b6

f6 b6 −c6

 .
Hence the matrix C(a)

6 can be represented as [5, 29]

C(a)
6 = (T(4

2×3 ⊗ I3)

· [(A3 −B3)⊕ (−A3 −B3)⊕B3] (T
(3)
3×2 ⊗ I3)

(20)

Then we alter the sign in second column of each resulted
matrices A3 −B3, −A3 −B3, B3, and represent the resulting
matrices

(A3 −B3)
(0) =

−a6 + c6 −e6 −b6 d6 + f6

−e6 −b6 e6 +b6 e6 +b6

−d6 − f6 −e6 −b6 a6 − c6

 ,

(−A3 −B3)
(0) =

a6 + c6 e6 −b6 −d6 + f6

e6 −b6 −e6 +b6 −e6 +b6

d6 − f6 e6 −b6 −a6 − c6

 ,

B(0)
3 =

−c6 b6 − f6

b6 −b6 −b6

f6 b6 c6


as

(A3 −B3)
(0) = C(c)

3 +C(d)
3 ,

(−A3 −B3)
(0) = C(e)

3 +C(f)
3 , (21)

B(0)
3 = B(a)

3 +B(b)
3 ,

where

C(c)
3 =

 −e6 −b6

−e6 −b6 e6 +b6 e6 +b6

−e6 −b6

 ,

C(d)
3 =

−a6 + c6 −d6 + f6

−d6 − f6 a6 − c6


C(e)

3 =

 e6 −b6

e6 −b6 −e6 +b6 −e6 +b6

e6 −b6

 ,

C(f)
3 =

a6 + c6 −d6 + f6

d6 − f6 −a6 − c6

 ,

B(a)
3 =

 b6

b6 −b6 −b6

b6

 ,B(b)
3 =

−c6 − f6

f6 c6

 .
Further we eliminate the zeros from the matrices C(d)

3 , C(f)
3 ,

B(b)
3 and obtain the matrices

C(g)
2 =

[
−a6 + c6 d6 + f6

−d6 − f6 a6 − c6

]
,C(h)

2 =

[
a6 + c6 −d6 + f6

d6 − f6 −a6 − c6

]
,

B(c)
2 =

[
−c6 − f6

f6 c6

]
.

Then we note that the matrices match the pattern[
a b
−b −a

]
.

7

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Marina Polyakova, Anna Witenberg, Aleksandr Cariow

Here a = −a6 + c6; b = d6 + f6 for C(g)
2 ; a = a6 + c6; b =

−d6 + f6 for C(h)
2 ; a =−c6; b =− f6 for B(c)

2 ; then [5, 6]

C(g)
2 = Ī2 H2diag

(
s(6)0 ,s(6)1

)
H2,

C(h)
2 = Ī2 H2diag

(
s(6)4 ,s(6)5

)
H2,

B(c)
2 = Ī2 H2diag

(
s(6)8 ,s(6)9

)
H2,

(22)

where

s(6)0 =
−a6 + c6 +d6 + f6

2
;s(6)1 =

−a6 + c6 −d6 − f6

2
;

s(6)4 =
a6 + c6 −d6 + f6

2
;s(6)5 =

a6 + c6 +d6 − f6

2
;

s(6)8 =
−c6 − f6

2
;s(6)9 =

−c6 + f6

2
.

Taken in account properties of structural matrices [5, 21],
the computational procedure for the six-point DST-IV is rep-
resented by expression

Y6×1 = P6W6×9W9×12W12D12W12×9W9W9×6P6X6×1,
(23)

where

W6×9 = T(4)
2×3 ⊗ I3; W9×6 = T(3)

3×2 ⊗ I3;

W9×12 = W3×4 ⊕W3×4 ⊕W3×4;
W12 = Ī2 H2 ⊕ I2 ⊕ Ī2 H2 ⊕ I2 ⊕ Ī2 H2 ⊕ I2;

W12×9 = W4×3 ⊕W4×3 ⊕W4×3;
W9 = W3 Ī3 ⊕W3 Ī3 ⊕W3 Ī3;

W3×4 =

1 1
−1 1

1 1

 ;W3 =

1 1
1

1 −1

 ;

W4×3 =


1

1
1

1

 ; Ī3 =

1
1

−1

 ;

P6 =



1
1

−1
1

1
1


;

D12 = diag
(

s(6)0 ,s(6)1 ,s(6)2 ,s(6)3 ,s(6)4 ,s(6)5 ,

s(6)6 ,s(6)7 ,s(6)8 ,s(6)9 ,s(6)10 ,s
(6)
11

)
;

s(6)2 =−e6 −b6; s(6)3 =−e6 −b6; s(6)6 = e6 −b6;

s(6)7 = e6 −b6; s(6)10 = b6; s(6)11 = b6.

A data flow graph of the proposed algorithm of the five-point
DST-IV is presented on Figure 5. In particularly, the number
of multiplication operations may be reduced from 36 to 12, but
the number of addition operations is the same.

Fig. 5. The data flow graph of the proposed algorithm for the computa-
tion of six-point DST-IV

2.7. Algorithm for 7-point DST-IV

To elaborate the algorithm for seven-point DST-IV the formula
of this transform is expressed as follows:

Y7×1 = C7X7×1, (24)

where:
X7×1 = [x0,x1,x2,x3,x4,x5,x6]

T ,

Y7×1 = [y0,y1,y2,y3,y4,y5,y6]
T ,

C7 =



a7 b7 c7 d7 e7 f7 g7

b7 e7 g7 d7 a7 −c7 − f7

c7 g7 b7 −d7 − f7 −a7 e7

d7 d7 −d7 −d7 d7 d7 −d7

e7 a7 − f7 d7 b7 −g7 c7

f7 −c7 −a7 d7 −g7 e7 −b7

g7 − f7 e7 −d7 c7 −b7 a7


,

a7 =

√
2
7

sin
(

π

28

)
≈ 0.0598, b7 =

√
2
7

sin
(

3π

28

)
≈ 0.1765,

c7 =

√
2
7

sin
(

5π

28

)
≈ 0.2844, d7 =

√
2
7

sin
(

π

4

)
≈ 0.3780,

e7 =

√
2
7

sin
(

9π

28

)
≈ 0.4526, f7 =

√
2
7

sin
(

11π

28

)
≈ 0.5045,

g7 =

√
2
7

sin
(

13π

28

)
≈ 0.5312.

To change the order of columns and rows, we define the
permutation π7 in the following form

π7 =

(
1 2 3 4 5 6 7
3 2 1 4 5 6 7

)
.

Let permute columns and rows of C7 according to π7. After
permutation and altering the sign in fifth row and fifth column
the resulted matrix C(a)

7 is decomposed into two components:

C(a)
7 = C(b)

7 +C(c)
7 , (25)

8

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Paper for BPASTS

where

C(b)
7 =



−d7

d7

d7

−d7 d7 d7 −d7 d7 −d7 −d7

d7

−d7

−d7


,

C(c)
7 =



b7 g7 c7 − f7 a7 e7

g7 e7 b7 a7 c7 − f7

c7 b7 a7 e7 − f7 g7

− f7 a7 e7 b7 g7 c7

a7 c7 − f7 g7 e7 b7

e7 − f7 g7 c7 b7 a7


.

Matrix C(b)
7 has the same entries regardless of sign in the

third column and third row, which allows us to reduce the num-
ber of operations without the need for further transformations.
After eliminating the rows and columns containing only zero
entries in matrix C(c)

7 , we obtain matrix C(d)
6

C(d)
6 =



b7 g7 c7 − f7 a7 e7

g7 e7 b7 a7 c7 − f7

c7 b7 a7 e7 − f7 g7

− f7 a7 e7 b7 g7 c7

a7 c7 − f7 g7 e7 b7

e7 − f7 g7 c7 b7 a7


.

The obtained matrix acquires the structure

C(d)
6 =

[
A(a)

3 B(a)
3

B(a)
3 A(a)

3

]
with

A(a)
3 =

b7 g7 c7

g7 e7 b7

c7 b7 a7

 , B(a)
3

− f7 a7 e7

a7 c7 − f7

e7 − f7 g7

 .
Then [5, 32]

C(d)
6 =(H2 ⊗ I3)

1
2

[
(A(a)

3 +B(a)
3)⊕ (A(a)

3 −B(a)
3)
]
(H2 ⊗ I3).

(26)

Let’s represent the submatrices:

A(a)
3 +B(a)

3 =

b7 − f7 a7 +g7 c7 + e7

a7 +g7 c7 + e7 b7 −b7

c7 + e7 b7 − f7 a7 +g7

 ,

A(a)
3 −B(a)

3 =

b7 + f7 g7 −a7 c7 − e7

g7 −a7 e7 − c7 b7 + f7

c7 − e7 b7 + f7 a7 −g7



of quasi-diagonal matrix (A(a)
3 +B(a)

3)⊕(A(a)
3 −B(a)

3) as circu-
lar convolution matrices [32]. For that we rearranged the first
and second columns in both matrices and then altered the sign
in first row and first column of A(a)

3 −B(a)
3 matrix. As a result

the matrices C(k)
3 and C(l)

3 were respectively obtained:

C(k)
3 =

b7 − f7 c7 + e7 a7 +g7

a7 +g7 b7 − f7 c7 + e7

c7 + e7 a7 +g7 b7 − f7

 ,

C(l)
3 =

b7 + f7 e7 − c7 a7 −g7

a7 −g7 b7 + f7 e7 − c7

e7 − c7 a7 −g7 b7 + f7

 .

Further the matrices C(k)
3 and C(l)

3 were factorized in accor-
dance with the expressions for calculating the entries of a cir-
cular convolution matrix H3,

H3 =

h0 h2 h1

h1 h0 h2

h2 h1 h0


for N = 3 [32]:

H3 = T(1)
3 T3×4 diag(s0,s1,s2,s3)T4×3 T(0)

3 , (27)

where

s0 =
h0 +h1 +h2

3
, s3 =

h0 +h1 −2h1

3
,

s2 = h1 −h2, s1 = h0 −h2,

T(1)
3 =

1 1
1 −1 1
1 1

 , T3×4 =

1
1 −1

1 −1

 ,

T4×3 =


1

1
1

1 1

 , T(0)
3 =

1 1 1
1 −1

1 −1

 .

As a result we obtain in (27) h0 = b7 − h7, h1 = a7 + g7,
h2 = c7 + e7 for C(k)

3 matrix and h0 = b7 + f7, h1 = a7 − g7,

h2 = e7 − c7 for C(l)
3 matrix.

Then

C(d)
6 =(H2 ⊗ I3)

(
T(1)

3 ⊕P(a)
3 T(1)

3

)
(T3×4 ⊕T3×4)

×diag
(

s(7)0 ,s(7)1 ,s(7)2 ,s(7)3 ,s(7)6 ,s(7)7 ,s(7)8 ,s(7)9

)
× (T4×3 ⊕T4×3)

(
T(0)

3 ⊕T(0)
3

)
P(a)

6 (H2 ⊗ I3),

(28)

where

s(7)0 =
b7 − f7 +g7 +a7 + c7 + e7

6
;

9

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Marina Polyakova, Anna Witenberg, Aleksandr Cariow

s(7)1 =
b7 − f7 − e7 − c7

2
;

s(7)2 =
g7 +a7 − c7 − e7

2
;

s(7)3 =
b7 − f7 +g7 +a7 −2e7 −2c7

6
;

s(7)6 =
b7 + f7 +a7 −g7 + e7 − c7

6
;

s(7)7 =
b7 + f7 − e7 + c7

2
;

s(7)8 =
a7 −g7 − e7 + c7

2
;

s(7)9 =
b7 + f7 +a7 −g7 −2e7 +2c7

6
;

P(a)
3 =

−1
1

1

 ,P(a)
6 =



1
1

1
−1

1
1


.

Based on properties of structural matrices [5, 32], the com-
putational procedure for the seven-point DST-IV is represented
by the expression:

Y7×1 =P7W7×8W(0)
8 W(1)

8 W8×10D10

·W10×8W(2)
8 P(a)

8 W(0)
8 W8×7P7X7×1,

(29)

where

D10=diag
(

s(7)0 ,s(7)1 ,s(7)2 ,s(7)3 ,s(7)4 ,s(7)5 ,s(7)6 ,s(7)7 ,s(7)8 ,s(7)9

)
;

s(7)4 = d7; s(7)5 = d7;

W8×10 = T3×4 ⊕ I2 ⊕T3×4; W10×8 = T4×3 ⊕ I2 ⊕T4×3;

W(1)
8 = T(1)

3 ⊕ I2 ⊕
(

P(a)
3 T(1)

3

)
;W(2)

8 = T(0)
3 ⊕ I2 ⊕T(0)

3 ;

W(0)
8 =



1 1
1 1

1 1
1

1
1 −1

1 −1
1 −1



W7×8 =



1 1
1 1

1 −1
−1 1
1 1
1 1
−1 1



W8×7 =



1
1

1
1

−1 1 1 1 −1 −1
1

1
1



P(a)
8 =



1
1

1
1

1
−1

1
1



P7 =



1
1

1
1

1
−1

1


Figure 6 shows a data flow graph of the synthesized algo-

rithm for the seven-point DST-IV. As can be seen, we are able
to reduce the number of multiplication operations from 49 to
10, although the number of addition operations is increased
from 42 to 45.

2.8. Algorithm for 8-point DST-IV

Let’s design the algorithm for eight-point DST-IV. The eight-
point DST-IV is expressed as follows:

Y8×1 = C8X8×1, (30)

where:
X8×1 = [x0,x1,x2,x3,x4,x5,x6,x7]

T ,

Y8×1 = [y0,y1,y2,y3,y4,y5,y6,y7]
T ,

C8 =



a8 b8 c8 d8 e8 f8 g8 h8

b8 e8 h8 f8 c8 −a8 −d8 −g8

c8 h8 d8 −b8 −g8 −e8 a8 f8

d8 f8 −b8 −h8 −a8 g8 c8 −e8

e8 c8 −g8 −a8 h8 −b8 − f8 d8

f8 −a8 −e8 g8 −b8 −d8 h8 −c8

g8 −d8 a8 c8 − f8 h8 −e8 b8

h8 −g8 f8 −e8 d8 −c8 b8 −a8


,

10

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Paper for BPASTS

Fig. 6. The data flow graph of the proposed algorithm for the computation of seven-point DST-IV

with

a8 =

√
1
4

sin
(

π

32

)
≈ 0.0490, b8 =

√
1
4

sin
(

3π

32

)
≈ 0.1451,

c8 =

√
1
4

sin
(

5π

32

)
≈ 0.2357, d8 =

√
1
4

sin
(

7π

32

)
≈ 0.3172,

e8 =

√
1
4

sin
(

9π

32

)
≈ 0.3865, f8 =

√
1
4

sin
(

11π

32

)
≈ 0.4410,

g8 =

√
1
4

sin
(

13π

32

)
≈ 0.4785, h8 =

√
1
4

sin
(

15π

32

)
≈ 0.4976.

Let us define the permutation

π8 =

(
1 2 3 4 5 6 7 8
4 2 3 1 5 7 6 8

)
to change the order of columns and rows. As a result of the
permutations and altering the sign in second and third row and
the second and third column, the matrix C(a)

8 is obtained. The

matrix C(a)
8 matches the matrix pattern

C(a)
8 =

[
A(a)

4 B(a)
4

B(a)
4 −A(a)

4

]
,

where

A(a)
4 =


−h8 f8 b8 −d8

f8 e8 −h8 −b8

b8 −h8 d8 c8

−d8 −b8 c8 a8

 ,

B(a)
4 =


−a8 c8 g8 −e8

c8 −d8 −a8 −g8

g8 −a8 e8 − f8

−e8 −g8 − f8 −h8

 .
Hence the matrix C(a)

8 can be represented as [5, 30]:

C(a)
8 = (T(4)

2×3 ⊗ I4)

·
[
(A(a)

4 −B(a)
4)⊕ (−A(a)

4 −B(a)
4)⊕B(a)

4

]
(T(3)

3×2 ⊗ I4),(31)

where T(4)
2×3, T(3)

3×2 are defined as in (11).

Considering the structures of the resulting matrices B(a)
4 ,

A(a)
4 −B(a)

4 =


−h8 +a8 f8 − c8 b8 −g8 −d8 + e8

f8 − c8 e8 +d8 −h8 +a8 −b8 +g8

b8 −g8 −h8 +a8 d8 − e8 f8 + c8

−d8 + e8 −b8 +g8 f8 + c8 h8 +aa

 ,

−A(a)
4 −B(a)

4 =


h8 +a8 − f8 − c8 −b8 −g8 d8 + e8

− f8 − c8 −e8 +d8 h8 +a8 b8 +g8

−b8 −g8 h8 +a8 −d8 − e8 − f8 + c8

d8 + e8 b8 +g8 − f8 + c8 −h8 +aa

 ,
we note that these matrices matches the pattern[

A(b)
2 B(b)

2

C(b)
2 A(b)

2

]

after permutation of the columns and rows according to

π9 =

(
1 2 3 4
3 4 2 1

)
, π10 =

(
1 2 3 4
1 2 4 3

)
,

respectively. Also a sign in the fourth row and third column
was altered.

Then [5, 32]

A(a)
4 −B(a)

4 = (T(3)
2×3 ⊗ I2)

·
[
(C(b)

2 −A(b)
2)⊕ (B(b)

2 −A(b)
2)⊕A(b)

2

]
(T(3)

3×2 ⊗ I2),
(32)

where T(3)
2×3, T(3)

3×2 are defined as in (10),

A(b)
2 =

[
b8 −g8 e8 −d8

a8 −h8 g8 −b8

]
, B(b)

2 =

[
c8 − f8 a8 −h8

e8 −d8 f8 − c8

]
,

C(b)
2 =

[
f8 + c8 a8 +h8

e8 −d8 − f8 − c8

]
.

The matrices −A(a)
4 −B(a)

4 and B(a)
4 are decomposed simi-

11

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Marina Polyakova, Anna Witenberg, Aleksandr Cariow

larly to A(a)
4 −B(a)

4 . Then

A(c)
2 =

[
−b8 −g8 e8 +d8

a8 +h8 g8 +b8

]
,B(c)

2 =

[
c8 + f8 a8 +h8

−e8 +d8 − f8 − c8

]
,

C(c)
2 =

[
f8 − c8 −a8 +h8

e8 +d8 − f8 + c8

]
.

and

A(d)
2 =

[
g8 −e8

−a8 −g8

]
, B(d)

2 =

[
−c8 −a8

d8 c8

]
,

C(d)
2 =

[
− f8 −h8

−e8 f8

]

are used instead of A(b)
2 , B(b)

2 , C(b)
2 .

Further, the matrices C(b)
2 −A(b)

2 , B(b)
2 −A(b)

2 , A(b)
2 , C(c)

2 −
A(c)

2 , B(c)
2 −A(c)

2 , A(c)
2 , C(d)

2 −A(d)
2 , B(d)

2 −A(d)
2 , A(d)

2 matches
the pattern

[
a b
c −a

]
. So the matrix A(b)

2 is represented as

A(b)
2 = T(3)

2×3 diag((c−a),(b+a))T(4)
3×2, (33)

wnere T(3)
2×3 is defined as in (10),

T(4)
3×2 =

 1
1

−1 1

 ,
a = b8−g8, b = e8−d8, c = a8−h8. The matrices C(b)

2 −A(b)
2 ,

B(b)
2 −A(b)

2 , C(c)
2 −A(c)

2 , B(c)
2 −A(c)

2 , A(c)
2 , C(d)

2 −A(d)
2 , B(d)

2 −
A(d)

2 , A(d)
2 are decomposed similarly to A(b)

2 .
Combining the decompositions (31), (32), (33), we obtain

the following matrix factorization:

Y8×1 =P(1)
8 W8×12P(1)

12 W12×18W18×27D27

·W27×18W18×12P(0)
12 W12×8P(0)

8 X8×1,
(34)

where

D27 = diag
(

s(8)0 ,s(8)0 , . . . ,s(8)26

)
;

s(8)0 = e8 −d8 +h8 −a8 − f8 − c8 +b8 −g8;

s(8)1 = f8 + c8 −b8 +g8 +h8 +a8 +d8 − e8;

s(8)2 =− f8 − c8 +b8 −g8;

s(8)3 =−e8 −d8 +h8 −a8 − c8 + f8 +b8 −g8;

s(8)4 = c8 − f8 −b8 +g8 −h8 +a8 +d8 − e8;

s(8)5 =−c8 + f8 +b8 −g8; s(8)6 =−h8 +a8 −b8 +g8;

s(8)7 = b8 −g8 −d8 + e8; s(8)8 =−b8 +g8;

s(8)9 = d8 + e8 −h8 −a8 + c8 − f8 −b8 −g8;

s(8)10 =−a8 +h8 −d8 − e8 − c8 + f8 +b8 +g8;

s(8)11 = c8 − f8 −b8 −g8;

s(8)12 = e8 −d8 −h8 −a8 − c8 − f8 −b8 −g8;

s(8)13 = a8 +h8 −d8 − e8 + c8 + f8 +b8 +g8;

s(8)14 =−c8 − f8 −b8 −g8; s(8)15 = h8 +a8 +b8 +g8;

s(8)16 =−b8 −g8 +d8 + e8; s(8)17 = b8 +g8;

s(8)18 =−e8 +a8 + f8 +g8; s(8)19 =− f8 −g8 −h8 + e8;

s(8)20 = f8 +g8; s(8)21 = d8 +a8 + c8 +g8;

s(8)22 =−g8 − c8 + e8 −a8; s(8)23 = c8 +g8;

s(8)24 =−a8 −g8; s(8)25 = g8 − e8; s(8)26 =−g8;

W8×12 = T(4)
2×3 ⊗ I4; W12×8 = T(3)

3×2 ⊗ I4;

W12×18 =
(

T(3)
2×3 ⊗ I2

)
⊕
(

T(3)
2×3 ⊗ I2

)
⊕
(

T(3)
2×3 ⊗ I2

)
;

W18×12 =
(

T(3)
3×2 ⊗ I2

)
⊕
(

T(3)
3×2 ⊗ I2

)
⊕
(

T(3)
3×2 ⊗ I2

)
;

P(0)
12 = P(a)

4 ⊕P(a)
4 ⊕P(a)

4 ;

P(1)
12 = P(b)

4 ⊕P(b)
4 ⊕P(b)

4 ;

W27×18 = T(4)
3×2 ⊕T(4)

3×2 ⊕T(4)
3×2 ⊕T(4)

3×2 ⊕T(4)
3×2⊕

⊕T(4)
3×2 ⊕T(4)

3×2 ⊕T(4)
3×2 ⊕T(4)

3×2;

W18×27 = T(3)
2×3 ⊕T(3)

2×3 ⊕T(3)
2×3 ⊕T(3)

2×3 ⊕T(3)
2×3⊕

⊕T(3)
2×3 ⊕T(3)

2×3 ⊕T(3)
2×3 ⊕T(3)

2×3;

P(a)
4 =


1

1
−1

1

 ;P(b)
4 =


1

1
−1

1

 ;

P(0)
8 =



1
1

−1
−1

1
1

1
1


;

P(1)
8 =



−1
1

−1
1

1
1

1
1


.

12

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Paper for BPASTS

Fig. 7. The data flow graph of the proposed algorithm for the computation of eight-point DST-IV

The data flow graph of the designed algorithm for the eight-
point DST-IV is presented on Figure 7. As can be seen, we are
able to reduce the number of multiplication operations from 81
to 27, although the number of addition operations is increased
from 56 to 57.

2.9. Algorithm for 9-point DST-IV

To develop the algorithm for nine-point DST-IV the formula of
this transform is expressed as follows:

Y9×1 = C9X9×1, (35)

where:

C9=



a9 b9 c9 d9 e9 f9 g9 h9 q9

b9 e9 h9 h9 e9 b9 −b9 −e9 −h9

c9 h9 f9 a9 −e9 −q9 −d9 b9 g9

d9 h9 a9 −g9 −e9 c9 q9 b9 − f9

e9 e9 −e9 −e9 e9 e9 −e9 −e9 e9

f9 b9 −q9 c9 e9 −g9 −a9 h9 −d9

g9 −b9 −d9 q9 −e9 −a9 f9 −h9 c9

h9 −e9 b9 b9 −e9 h9 −h9 e9 −b9

q9 −h9 g9 − f9 e9 −d9 c9 −b9 a9


,

X9×1 = [x0,x1,x2,x3,x4,x5,x6,x7,x8]
T ,

Y9×1 = [y0,y1,y2,y3,y4,y5,y6,y7,y8]
T ,

a9 =

√
2
9

sin
(

π

36

)
≈ 0.0411, b9 =

√
2
9

sin
(

π

12

)
≈ 0.1220,

c9 =

√
2
9

sin
(

5π

36

)
≈ 0.1992, d9 =

√
2
9

sin
(

7π

36

)
≈ 0.2704,

e9 =

√
2
9

sin
(

π

4

)
≈ 0.3333, f9 =

√
2
9

sin
(

11π

36

)
≈ 0.3862,

g9 =

√
2
9

sin
(

13π

36

)
≈ 0.4272, h9 =

√
2
9

sin
(

5π

12

)
≈ 0.4553,

q9 =

√
2
9

sin
(

17π

36

)
≈ 0.4696.

To change the order of columns and rows, we define the
permutation π12 in the following form

π12 =

(
1 2 3 4 5 6 7 8 9
1 2 3 4 5 9 8 7 6

)
.

Let permute columns and rows of C9 according to π12. Af-
ter permutation and altering the sign in second and ninth rows,
seventh and ninth columns the obtained matrix C(a)

9 is decom-

13

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Marina Polyakova, Anna Witenberg, Aleksandr Cariow

posed into two components:

C(a)
9 = C(b)

9 +C(c)
9 , (36)

where

C(b)
9 =



e9
−e9
−e9
−e9

e9 e9 −e9 −e9 e9 e9 e9 −e9 −e9
e9
−e9
−e9
−e9


,

C(c)
9 =



a9 b9 c9 d9 q9 −h9 g9 − f9
−b9 −e9 −h9 −h9 h9 −e9 b9 b9
c9 h9 f9 a9 g9 −b9 −d9 q9
d9 h9 a9 −g9 − f9 −b9 q9 −c9

q9 −h9 g9 − f9 a9 b9 c9 d9
h9 −e9 b9 b9 −b9 −e9 −h9 −h9
g9 −b9 −d9 q9 h9 −h9 e9 −b9
− f9 −b9 q9 −c9 −d9 c9 −b9 a9


.

Matrix C(b)
9 has the same entries except on the sign in the

fifth column and fifth row, which allows us to reduce the num-
ber of operations without the need for further transformations.
After eliminating the rows and columns containing only zero
entries in matrix C(c)

9 , we obtain matrix C(d)
8 . The obtained

matrix acquires the structure

C(d)
8 =

[
A(b)

4 B(b)
4

B(b)
4 A(b)

4

]
,

A(b)
4 =


a9 b9 c9 d9

−b9 −e9 −h9 −h9

c9 h9 f9 a9

d9 h9 a9 −g9

 ,

B(b)
4 =


q9 −h9 g9 − f9

h9 −e9 b9 b9

g9 −b9 −d9 q9

− f9 −b9 q9 −c9

 .
Then [5, 32]

C(d)
8 =(H2 ⊗ I3)

· 1
2

[
(A(b)

4 +B(b)
4)⊕ (A(b)

4 −B(b)
4)
]
(H2 ⊗ I3) .

(37)

Let’s represent the submatrices

A(b)
4 +B(b)

4 =


a9 +q9 b9 −h9 c9 +g9 d9 − f9

−b9 +h9 −2e9 −h9 +b9 −h9 +b9

c9 +g9 h9 −b9 f9 −d9 a9 +q9

d9 − f9 h9 −b9 a9 +q9 −g9 − c9

 ,

A(b)
4 −B(b)

4 =


a9 −q9 b9 +h9 c9 −g9 d9 + f9

−b9 −h9 0 −h9 −b9 −h9 −b9

c9 −g9 h9 +b9 f9 +d9 a9 −q9

d9 + f9 h9 +b9 a9 −q9 −g9 + c9

 ,
of quasi-diagonal matrix (A(b)

4 +B(b)
4)⊕(A(b)

4 −B(b)
4) as circu-

lar convolution matrices [32]. We permutated the columns and
rows in both matrices with

π13 =

(
1 2 3 4
2 1 4 3

)
, π14 =

(
1 2 3 4
2 1 3 4

)
,

respectively. Then the sign in second row and second column
of the transformed A(b)

4 +B(b)
4 matrix was altered. As a result

the matrices C(k)
4 and C(l)

4 were respectively obtained:

C(k)
4 =


−2e9 −b9 +h9 b9 −h9 b9 −h9

b9 −h9 a9 +q9 −d9 + f9 −c9 −g9

−b9 +h9 −c9 −g9 a9 +q9 −d9 + f9

−b9 +h9 −d9 + f9 −c9 −g9 a9 +q9

 ,

C(l)
4 =


0 −b9 −h9 −b9 −h9 −b9 −h9

h9 +b9 a9 −q9 d9 + f9 c9 −g9

h9 +b9 c9 −g9 a9 −q9 d9 + f9

h9 +b9 d9 + f9 c9 −g9 a9 −q9

 .
Then the matrices C(k)

4 , C(l)
4 are decomposed into two com-

ponents:

C(k)
4 = C(m)

4 +C(n)
4 ; C(l)

4 = C(p)
4 +C(r)

4 ; (38)

where

C(m)
4 =


−2e9 −b9 +h9 b9 −h9 b9 −h9

b9 −h9

−b9 +h9

−b9 +h9

 ,

C(n)
4 =

 a9 +q9 −d9 + f9 −c9 −g9

−c9 −g9 a9 +q9 −d9 + f9

−d9 + f9 −c9 −g9 a9 +q9

 ,

C(p)
4 =


−b9 −h9 −b9 −h9 −b9 −h9

h9 +b9

h9 +b9

h9 +b9

 ;

C(r)
4 =

 a9 −q9 d9 + f9 c9 −g9

c9 −g9 a9 −q9 d9 + f9

d9 + f9 c9 −g9 a9 −q9

 .
Matrices C(m)

4 , C(p)
4 have the same entries except on the sign

in the first column and first row, and except on element in first
row and first column. This allows reducing the number of op-
erations without the need for further transformations. After

14

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Paper for BPASTS

eliminating the rows and columns containing only zero entries
in matrices C(n)

4 , C(r)
4 , we obtain matrices C(n)

3 , C(r)
3 :

C(n)
3 =

 a9 +q9 −d9 + f9 −c9 −g9

−c9 −g9 a9 +q9 −d9 + f9

−d9 + f9 −c9 −g9 a9 +q9

 ;

C(r)
3 =

a9 −q9 d9 + f9 c9 −g9

c9 −g9 a9 −q9 d9 + f9

d9 + f9 c9 −g9 a9 −q9

 .
Further the matrices C(n)

3 , C(r)
3 were factorized in accor-

dance with the expressions for calculating the entries of a cir-
cular convolution matrix H3

H3 =

h0 h2 h1

h1 h0 h2

h2 h1 h0


for N = 3 (expression (27)) [32].

As a result we obtain in (27) h0 = a9 + q9, h1 = −c9 − g9,
h2 =−d9 + f9 for C(n)

3 matrix and h0 = a9 −q9, h1 = c9 −g9,

h2 = d9 + f9 for C(r)
3 matrix.

Next, we define

s(9)0 =−e9; s(9)1 =
a9 +q9 −d9 + f9 − c9 −g9

6
;

s(9)2 =
a9 +q9 +d9 − f9

2
; s(9)3 =

−c9 −g9 +d9 − f9

2
;

s(9)4 =
a9 +q9 − c9 −g9 +2d9 −2 f9

6
; s(9)5 =

b9 −h9

2
;

s(9)6 =
b9 −h9

2
; s(9)7 = e9; s(9)8 = e9;

s(9)9 =
a9 −q9 +d9 + f9 + c9 −g9

6
;

s(9)10 =
a9 −q9 −d9 − f9

2
; s(9)11 =

c9 −g9 −d9 − f9

2
;

s(9)12 =
a9 −q9 + c9 −g9 −2d9 −2 f9

6

s(9)13 =
b9 +h9

2
; s(9)14 =

b9 +h9

2
.

Based on properties of structural matrices [5, 32], the com-
putational procedure for the nine-point DST-IV is represented
by the expression

Y9×1 =P(1)
9 W9×10P(1)

10 W10×13W(1)
13 W13×15D15W15×13

·W(0)
13 W13×17W17×10P(0)

10 W10W10×9P(0)
9 X9×1;

(39)

where
D15 = diag

(
s(9)0 ,s(9)0 , . . . ,s(9)14

)
;

W13×15 = 1⊕T3×4 ⊕ I4 ⊕T3×4 ⊕ I2;

W15×13 = 1⊕T4×3 ⊕ I4 ⊕T4×3 ⊕ I2;

W(1)
13 = 1⊕T(1)

3 ⊕ I4 ⊕T(1)
3 ⊕ I2;

W(0)
13 = 1⊕T(0)

3 ⊕ I4 ⊕T(0)
3 ⊕ I2;

W13×17 = I4 ⊕P(a)
2×4 ⊕ I5 ⊕P(b)

2×4;

W10×13 = P(b)
4×6 ⊕ I2 ⊕P(a)

4×5;

W17×10 = (12×1 ⊗ I4)⊕ I2 ⊕P7×4;

P(a)
2×4 =

[
1 1 1

1

]
; P(b)

2×4 =

[
−1 −1 −1

1

]
;

P(a)
4×5 =

 1
1 1

1 1
1 1

 ;

P(b)
4×6 =

1 1
1 −1

1 −1
1 −1

 ;

P7×4 =



1
1

1
1

1
1

1

 ;

P(0)
10 =



1
−1

1
1

1
1

1
1

1
1


;

P(1)
10 =



−1
1

1
1

1
1

1
1

1
1


;

P(0)
9 =



1
1

1
1

1
1

−1
1

−1


;

P(1)
9 =



1
−1

1
1

1
−1

1
1

1


;

15

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Marina Polyakova, Anna Witenberg, Aleksandr Cariow

Fig. 8. The data flow graph of the proposed algorithm for the computation of nine-point DST-IV

W9×10 =



1 1
1 −1

1 −1
1 −1

1 1
1 1
−1 1
−1 1
−1 1


;

W10×9 =



1
1

1
1

1
1 1 −1 −1 1 1 −1 −1

1 1
1

1
1


;

W10 =



1 1
1 1

1 1
1 1

1
1

1 −1
1 −1

1 −1
1 −1


.

Figure 8 shows a data flow graph of the synthesized algo-
rithm for the nine-point DST-IV.

3. RESULTS

The correctness of the developed algorithms was tested using
the MATLAB R2023b environment. For this purpose, the ma-
trices of coefficients of the DST-IV were calculated using ex-
pression (1) for N = 2,3,4,5,6,7,8,9. Then factorizations of
DST-IV matrices were calculated using the expressions (5),
(8), (12), (18), (23), (29), (34), (39). The coincidence of the
results for the same N indicated the correctness of the devel-
oped algorithms. And, similarly, it was tested the correctness
of the data flow graphs for the proposed algorithms. The 30
sequences of random normally distributed numbers were gen-
erated for each considered value of length N. Each sequence
was transformed according to the data flow graph and also us-
ing the direct matrix-vector product. The coincidence of the
results obtained for each N indicated the correctness of the syn-
thesized data flow graphs for the developed algorithms.

Further, the computational complexity of the proposed al-
gorithms was evaluated. The obtained results are shown in Ta-
ble 1. In parentheses, the percentage difference in the number
of operations is indicated, plus means that the number of op-
erations has risen compared to the direct method, and minus
means that it has reduced. Thus, the number of multiplications
for N = 3,4,5,6,7,8,9 was reduced by an average of 63%. At
the same time, the number of additions was increased by an
average of 8%.

16

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Paper for BPASTS

Table 1. The number of additions and multiplications of the direct
method against the proposed algorithms

N
Direct method Proposed algorithms

Adds. Mults. Adds. Mults.

2 2 4 3 (+50%) 3 (-25%)
3 6 9 7 (+17%) 4 (-55%)
4 12 16 15 (+25%) 9 (-44%)
5 20 25 23 (+15%) 7 (-60%)
6 30 36 30 (0%) 12 (-64%)
7 42 49 45 (+7%) 10 (-78%)
8 56 64 57 (+2%) 27 (-58%)
9 72 81 65 (-10%) 15 (-81%)

4. DISCUSSION OF COMPUTATIONAL COMPLEXITY

The number of multiplications and additions for the algorithms
known from the literature is shown in Table 2. Analyzing the
obtained results, we note that the number of multiplications
was reduced relative to a completely recursive algorithm [20]
for N = 4 and N = 8. But at the same time, the number of
additions was increased. The completely recursive algorithm
was developed exploiting the same approach as the proposed
algorithms, specifically, the matrix factorization approach. The
algorithms designed with the polynomial arithmetic approach
are implemented with fewer multiplications than the proposed
algorithms. However, for N = 9 the proposed algorithm re-
duced the number of multiplications by 25% compared to the
general radix algorithm developed with the polynomial arith-
metic approach [22]. At the same time the number of addi-
tions for N = 9 is increased by 41%. The reduction in multi-
plications is significantly contributed to speeding up the signal
processing since the multiplications are more expensive to use
than additions. As a result, the amount of resources used in
the signal processor is significantly reduced allowing for eas-
ier operation in real time.

The proposed DST-IV fast algorithms do not limit the length
of the input data sequence to powers of two or three. The
data flow graphs constructed for the proposed algorithms re-
veal their modular space-time structure suitable for VLSI im-
plementation.

5. THE EXAMPLE OF THE PROPOSED ALGORITHM
APPLYING FOR THE SPEECH SIGNAL DENOISING

The orthogonal transforms including DST are widely used in
speech denoising [16–18, 32, 33]. This practical example can
be explored for understanding the advantages of the proposed
algorithms. We base on the simple but effective scheme of the
speech signal denoising inscribed in [32] but use the DST-IV
instead of the DCT-II as in the original source. Then the stages
of this technique are as follows.

1. We assume that the speech signal contains additive white
Gaussian noise with zero mean and a previously known or
accurately estimated variance σ2 .

2. The initial speech signal is windowed on non-overlapping
or partly-overlapping frames of N pixels.

3. The orthogonal transform is performed for each of these
frames; in particular, we apply the proposed fast DST-IV
algorithms depending on the N. These algorithms were im-
plemented using the simulated model based on the data flow
graphs. After the DST-IV the first coefficient in each frame
is related to the mean of the signal frame and further has not
been processed.

4. The resulting signal is thresholded using the following ex-
pression [32]:

Dthr(k) =

{
D(k), if |D(k)|> T ;
D3(k)/T 2 if |D(k)| ≤ T ;

where k is a number of DST-IV coefficient in the frame, T =
βσ is a threshold value, β is a coefficient which is selected
by tuning approximately in the range from 2 to 5.

5. After the described thresholding the inverse DST-IV is ap-
plied. The fast algorithms for this transform can be easily
obtained keeping in mind that the inverse transform matrix
is the transposed matrix of the direct DST-IV.

The accuracy of the DCT-based filtering for speech signal
denoising problem was evaluated by the improvement in the
signal-to-noise ratio (SNR) in dB [32]:

ISNR = 10 log10
σ2

MSE
= SNRout −SNRin

where ISNR is the improvement in the SNR, an MSE is a mean
squared error between the initial signal and the denoised sig-
nal, SNRin is the SNR value before signal denoising, SNRout
is the SNR value after signal denoising.

To test the performance of the DST-based filtering, in this
paper the so-called Harvard phrases are used. These are the
recordings of English male voice utters which are taken from
a set of speech signals formed at McGill University in Mon-
treal, Canada [34]. The above dataset is often applied to re-
search speech signal processing techniques [32]. The duration
of each signal is approximately two seconds at the sampling
rate is 48 kHz which is also used as the standard rate together
with 44.1 kHz for high-quality audio recording.

During the research, a set of audio files was selected. The
white Gaussian noise was added to the speech signal from each
file. The noise level was chosen to obtain the noised signal with
an SNR from 0 to 10 dB because the DST-IV is better to use at
high noise levels as we observed. The initial speech signal is
windowed on non-overlapping frames of N pixels where N is
ranged from 3 to 9. The research was performed using an Intel
Core i5-7400 processor, 3 GHz CPU, 16 GB memory, Win-
dows 10 operating system, 64 bit. The provided experiment
has shown that the fast DST-IV algorithms allow for reduc-
ing the speech signal denoising time by 62–78% as compared
to direct matrix-vector product application. The researched
speech signals contained about 90,000 samples. We also re-
sampled these signals to obtain a sampling rate of about 8 kHz
and to consider the low-quality audio recordings. The resam-
pled signals consist of about 15,000 samples. In this case, the
speech signal denoising time is decreased by 53–76%. As for
the accuracy of speech signal denoising then applying DST-
IV has given similar results as compared with DCT-II in the

17

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Marina Polyakova, Anna Witenberg, Aleksandr Cariow

Table 2. The number of operations for the algorithms known from the literature

Algorithm
Reference,
publication

year

N=3 N=4 N=8 N=9

Mults. Adds. Mults. Adds. Mults. Adds. Mults. Adds.

Completely recursive radix-2 DIT algorithm [4], 2021 - - 8 12 20 36 - -
Completely recursive algorithm [20], 2018 - - 10 10 30 30 - -

Improved algorithm [24], 2008 - - 10 10 20 34 - -
General radix algorithm [22], 2008 3 6 8 12 20 36 20 38

Proposed algorithm - 4 7 9 15 27 57 15 65

statistical error limits. In particular, for N = 5 the accuracy
of DCT-based speech signal denoising is exceeded on 0.11-
0.14 dB the DST-based denoising. And this estimation was not
dependent on the signal sampling rate. For N = 5 the speech
signal denoising time is decreased by 65-67% (0.51 sec against
0.16 sec on average) if the sampling rate is equal 8 kHz, and
by 69-71% (3.12 sec against 0.95 sec on average) if the sam-
pling rate is equal 48 kHz. For N = 7 the speech signal denois-
ing time is decreased by 66-68% (0.40 sec against 0.13 sec on
average) if the sampling rate is equal 8 kHz, and by 70-72%
(2.47 sec against 0.70 sec on average) if the sampling rate is
equal 48 kHz. For N = 7 the accuracy of DCT-based speech
signal denoising is exceeded on 0.09-0.18 dB the DST-based
denoising. Therefore this practical example of applying the
proposed algorithms to speech signal denoising shows that the
denoising accuracy can be slightly decreased while the pro-
cessing time is significantly reduced.

6. CONCLUSIONS

This paper presents type-IV DST algorithms with reduced
multiplicative complexity. Experimental research of developed
algorithms compared their computational complexity with the
direct calculation of matrix-vector products. The resulting fac-
torizations of DST-IV matrices reduce the number of multipli-
cations by an average of 63% but increase the number of addi-
tions by an average of 8% in the range of signal lengths from
3 to 9. The practical example of the applying the proposed
algorithms to denoise the speech signals is provided.

If you analyze any of the signal flow graphs shown, you will
see that they contain pre-additions, post-additions, and sev-
eral multiplications in the middle like Winograd’s fast Fourier
transform algorithms. Unfortunately, for even-length input se-
quences, the reduction in the number of multiplications is not
as significant as for odd-length sequences. This is somewhat
surprising since for some other well-known discrete trigono-
metric transforms (DFT, discrete Hartley transform) the oppo-
site situation holds. However, the fact remains a fact.

The advantage of the algorithms described in the paper com-
pared to known algorithms (see, for example, [4,20]) is that the
critical path in the signal flow graph of any of the presented
algorithms contains only one multiplication. If there is more
than one multiplication in the critical path of the algorithm,
then this will create additional problems for the implemen-
tation of computations. As a result of multiplying two n-bit
operands, a 2n-bit product is obtained. The need for repeated

multiplication requires more manipulations with the operands
and therefore requires more time and effort than when deal-
ing with only a single multiplication. In fixed-point devices,
this fact can cause overflow-underflow handling. If we want
to preserve the accuracy, then double access to the memory is
required both when writing and when reading. Using floating-
point arithmetic in this case also creates additional problems
related to exponent alignment, mantissa addition, etc.

The solutions offered here are meant to be an addition to the
collection of fast discrete trigonometric transform algorithms
that numerous researchers have been honing for many years.
The future development of the research might be the imple-
mentation of the proposed algorithms to combine the discrete
transforms in hybrid forms [16]. Here, we introduce novel al-
gorithms, but we make no claims about their optimality. This
is all we have managed to obtain so far, and we want to share at
least this. If someone can show better results, we will be very
pleased.

REFERENCES

[1] V. Britanak, P. Yip and K. Rao, Discrete cosine
and sine transforms: general properties, fast al-
gorithms and integer approximations, 1st ed.; Aca-
demic Press Inc., Elsevier Science: Amsterdam, Hol-
land, 2007. [Online]. Available: https://doi.org/
10.1016/B978-0-12-373624-6.X5000-0

[2] G. Bi, and Y. Zeng, Transforms and fast algorithms for
signal analysis and representations, 1st ed.; Birkhäuser:
Boston, United States, 2004. [Online]. Available: http:
//doi.org/10.1007/978-0-8176-8220-0

[3] D.F. Chiper, and L.-T. Cotorobai, “A new approach for a
unified architecture for type IV DCT/DST with an effi-
cient incorporation of obfuscation technique”. Electron-
ics 2021, 10, 1656. [Online]. Available: http://doi.
org/10.3390/electronics12214471

[4] S.M. Perera, and L. Lingsch, “Sparse matrix-based low-
complexity, recursive, radix-2 algorithms for discrete
sine transforms”, IEEE Access 2021, 99, 1–1. [Online].
Available: http://doi.org/10.1109/ACCESS.2021.
3120051

[5] A. Cariow, “Strategies for the synthesis of fast algorithms
for the computation of the matrix-vector product”, Jour-
nal of Signal Processing Theory and Applications 2014,

18

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

https://doi.org/10.1016/B978-0-12-373624-6.X5000-0
https://doi.org/10.1016/B978-0-12-373624-6.X5000-0
http://doi.org/10.1007/978-0-8176-8220-0
http://doi.org/10.1007/978-0-8176-8220-0
http://doi.org/10.3390/electronics12214471
http://doi.org/10.3390/electronics12214471
http://doi.org/10.1109/ACCESS.2021.3120051
http://doi.org/10.1109/ACCESS.2021.3120051

Paper for BPASTS

3(1), 1–19. [Online]. Available: http://doi.org/10.
7726/jspta.2014.1001

[6] A. Cariow, M. Makowska, and P. Strzelec, “Small-
size FDCT/IDCT algorithms with reduced multiplicative
complexity”, Radioelectronics and Communications Sys-
tems 2019, 62(11), 559–576. [Online]. Available: http:
//doi.org/10.3103/S0735272719110025

[7] A. Ajmera, M. Divecha, S.S. Ghosh, I. Raval, and R.
Chaturvedi, “Video steganography: using scrambling-
AES encryption and DCT, DST steganography”, In
the Proceedings of IEEE Pune Section International
Conference (PuneCon), Pune, India, 18-20 Decem-
ber 2019. [Online]. Available: https://doi.org/10.
1109/PuneCon46936.2019.9105666

[8] V.P.S. Naidu, M. Divya, and P. Mahalakshmi, “Multi-
modal medical image fusion using multi-resolution dis-
crete sine transform”, Control and Data Fusion e-Journal
2017, 1(2), 13–26

[9] S. Garg, R. Yadav, and M. Kumar, “Discrete sine trans-
form interpolation-based design of 2-D FIR fractional
delay digital filter”, In the Proceedings of 2nd Inter-
national Conference on Computational Electronics for
Wireless Communications (ICCWC), Mangalore, India,
9-10 June 2022. [Online]. Available: https://doi.
org/10.1007/978-981-19-6661-3_38

[10] X. Zhou, C. Wang, Z. Zhang, and Q. Fu, “Interpola-
tion filter design based on all-phase DST and its appli-
cation to image de-mosaicking”, Information 2018, 9(9),
206. [Online]. Available: https://doi.org/10.3390/
info9090206

[11] L.O. Hnativ, “Discrete cosine-sine transform type VII
and fast integer transforms for intra-prediction images
and video coding”, (In Ukrainian). Cybernetics and Sys-
tems Analysis 2022, 57 (5), 175–185. [Online]. Available:
https://doi.org/10.1007/s10559-021-00408-z

[12] T.A. Chowdary, and P. Nalluri, “DST-VII based multiple
transform selection algorithms for versatile video cod-
ing”, In the Proceedings of 3rd International Conference
on Artificial Intelligence and Signal Processing (AISP),
Vijayawada, India, 18-20 March 2023. [Online]. Avail-
able: https://doi.org/10.1109/AISP57993.2023.
10134908

[13] F.S. Al-Kamali, A.F. Al-Junaid, and M.Y.H. Al-Shamri,
“New image transmission schemes for DST-based MC-
CDMA system” Arabian Journal for Science and En-
gineering 2021, 46(1), 1465–1479. [Online]. Available:
https://doi.org/10.1007/s13369-020-05173-3

[14] S. Malini, and R.S. Moni, “Use of discrete sine trans-
form for a novel image denoising technique”, Interna-
tional Journal of Image Processing 2014, 8(4), 204–213

[15] M. Masera, L. Re Fiorentin, E. Masala, G. Masera,
and M. Martina, "Analysis of HEVC transform through-
put requirements for hardware implementations", Sig-
nal Processing: Image Communication, 2017, 57, 173-
182. [Online]. Available: https://doi.org/10.1016/
j.image.2017.06.001

[16] W.A. Jassim, and N. Harte, “Comparison of dis-

crete transforms for deep-neural-networks-based speech
enhancement”, IET Signal Processing 2022, 16(4),
438–448. [Online]. Available: https://doi.org/10.
1049/sil2.12109

[17] S.R. Park, and J. Lee, “A fully convolutional neu-
ral network for speech enhancement”, In the Pro-
ceedings of the 18th Annual Conference of the In-
ternational Speech Communication Association (IN-
TERSPEECH 2017), Stockholm, Sweden, 20-24 Au-
gust 2017. [Online]. Available: https://doi.org/10.
21437/Interspeech.2017-1465

[18] Y. Hu,Y. Liu, S. Lv, M. Xing, S. Znang, Y. Fu, J. Wu,
B. Zhang, and L. Xie, “DCCRN: deep complex convolu-
tion recurrent network for phase-aware speech enhance-
ment”, In the Proceedings of the 21st Annual Conference
of the International Speech Communication Association
(INTERSPEECH 2020), Shanghai, China, 25-29 Octo-
ber 2020. Online]. Available: https://doi.org/10.
21437/Interspeech.2020-2537

[19] M. Yustisar, P. Sihombing, and S. Efendi, "Dis-
crete sine transform analysis, discrete cosine trans-
form and discrete Fourier transform for introduction
to voice register", International Journal of Research
and Review, 2020, 7(2), 155–162. [Online]. Avail-
able: https://www.ijrrjournal.com/IJRR_Vol.7_
Issue.2_Feb2020/IJRR0024.pdf

[20] S.M. Perera, “Signal flow graph approach to efficient and
forward stable DST algorithms”, Linear Algebra and its
Applications 2018, 542, 360–390. [Online]. Available:
https://doi.org/10.1016/j.laa.2017.05.050

[21] K. Bielak, A. Cariow, and M. Raciborski, “The
development of fast DST-II algorithms for short-
length input sequences”, Electronics 2024, 13(12),
2301. [Online]. Available: https://doi.org/10.
3390/electronics13122301

[22] M. Püschel, and J.M.F. Moura, “Algebraic signal pro-
cessing theory: Cooley-Tukey type algorithms for DCTs
and DSTs”, IEEE Transactions on Signal Processing
2008, 56(4), 1502–1521. [Online]. Available: https:
//doi.org/10.1109/TSP.2007.907919

[23] H. Li, P. Li, Y. Wang, Q. Wang, and L. Gao, “A new
decomposition algorithm of DCT-IV/DST-IV for real-
izing fast IMDCT computation”, IEEE Signal Process-
ing Letters 2009, 16(9), 735–738. [Online]. Available:
https://doi.org/10.1109/LSP.2009.2022789

[24] X. Shao, and S.G. Johnson, “Type-IV DCT, DST and
MDCT algorithms with reduced number of arithmetic
operations”, Signal Processing 2008, 88(6), 1313–1326.
[Online]. Available: https://doi.org/10.1016/j.
sigpro.2007.11.024

[25] D.F. Chiper, and L.-T. Cotorobai, “An improved al-
gorithm for an efficient VLSI implementation of type
IV DST using short quasi-band correlation struc-
ture”, In the Proceedings of 14th International Con-
ference on Electronics, Computers and Artificial In-
telligence (ECAI), Ploiesti, Romania, 30 June - 1
July 2022. [Online]. Available: https://doi.org/10.

19

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

http://doi.org/10.7726/jspta.2014.1001
http://doi.org/10.7726/jspta.2014.1001
http://doi.org/10.3103/S0735272719110025
http://doi.org/10.3103/S0735272719110025
https://doi.org/10.1109/PuneCon46936.2019.9105666
https://doi.org/10.1109/PuneCon46936.2019.9105666
https://doi.org/10.1007/978-981-19-6661-3_38
https://doi.org/10.1007/978-981-19-6661-3_38
https://doi.org/10.3390/info9090206
https://doi.org/10.3390/info9090206
https://doi.org/10.1007/s10559-021-00408-z
https://doi.org/10.1109/AISP57993.2023.10134908
https://doi.org/10.1109/AISP57993.2023.10134908
https://doi.org/10.1007/s13369-020-05173-3
https://doi.org/10.1016/j.image.2017.06.001
https://doi.org/10.1016/j.image.2017.06.001
https://doi.org/10.1049/sil2.12109
https://doi.org/10.1049/sil2.12109
https://doi.org/10.21437/Interspeech.2017-1465
https://doi.org/10.21437/Interspeech.2017-1465
https://doi.org/10.21437/Interspeech.2020-2537
https://doi.org/10.21437/Interspeech.2020-2537
https://www.ijrrjournal.com/IJRR_Vol.7_Issue.2_Feb2020/IJRR0024.pdf
https://www.ijrrjournal.com/IJRR_Vol.7_Issue.2_Feb2020/IJRR0024.pdf
https://doi.org/10.1016/j.laa.2017.05.050
https://doi.org/10.3390/electronics13122301
https://doi.org/10.3390/electronics13122301
https://doi.org/10.1109/TSP.2007.907919
https://doi.org/10.1109/TSP.2007.907919
https://doi.org/10.1109/LSP.2009.2022789
https://doi.org/10.1016/j.sigpro.2007.11.024
https://doi.org/10.1016/j.sigpro.2007.11.024
https://doi.org/10.3390/electronics12010243

Marina Polyakova, Anna Witenberg, Aleksandr Cariow

3390/electronics12010243
[26] D.F. Chiper, and A. Cracan, “An area-efficient unified

VLSI architecture for type IV DCT/DST having an effi-
cient hardware security with low overheads”, Electron-
ics 2023, 12(21), 4471. [Online]. Available: https:
//doi.org/10.3390/electronics12214471

[27] M. Ponomarenko, O. Miroshnichenko, V. Lukin, and K.
Egiazarian, “Blind estimation of noise level based on pix-
els values prediction”, In the Proceedings of IS&T In-
ternational Symposium on Electronic Imaging (EI 2022),
online, 17-26 January 2022. [Online]. Available: https:
//doi.org/10.2352/EI.2022.34.14.COIMG-152

[28] V. Lukin, S. Krivenko, and V. Oliinyk, “Blind es-
timation of noise variance for 1D signal denoising”.
Telecommunications and Radio Engineering 2020, 79(
7), 567–581. [Online]. Available: https://doi.org/
10.1615/TelecomRadEng.v79.i7.30

[29] M. Polyakova, A. Witenberg, and A. Cariow, ”The
design of fast type-V discrete cosine transform algo-
rithms for short-length input sequences”, Electronics
2024, 13(21), 4165. [Online]. Available: https://doi.
org/10.3390/electronics13214165

[30] A. Cariow, and Ł. Lesiecki, ”Small-size algo-

rithms for type-IV discrete cosine transform
with reduced multiplicative complexity”, Ra-
dioelectronics and Communications Systems
2020, 63(9), 465–487. [Online]. Available:
https://doi.org/10.3103/S0735272720090022

[31] M. Raciborski, A. Cariow, J. Bandach, "The devel-
opment of fast DST-I algorithms for short-length
input sequences", Electronics. 2024, 13, 5056. [On-
line]. Available: https://doi.org/10.3390/
electronics13245056

[32] P. Brysin, and V. Lukin, ”DCT-based denoising of speech
signals”, Herald of Khmelnytskyi National University.
2024, 4(339), 301–309. [Online]. Available: https://
doi.org/10.31891/2307-5732-2024-339-4-48

[33] Luo, Y; Mesgarani, N. ”Conv-TasNet: surpassing ideal
time–frequency magnitude masking for speech separa-
tion”, IEEE/ACM Transactions on Audio, Speech, and
Language Processing 2019, 27(8), 1256–1266

[34] TSP speech database. [Online]. Available: https:
//www.mmsp.ece.mcgill.ca/Documents/Data/
TSP-Speech-Database/TSP-Speech-Database.
pdf

20

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

https://doi.org/10.3390/electronics12010243
https://doi.org/10.3390/electronics12214471
https://doi.org/10.3390/electronics12214471
https://doi.org/10.2352/EI.2022.34.14.COIMG-152
https://doi.org/10.2352/EI.2022.34.14.COIMG-152
https://doi.org/10.1615/TelecomRadEng.v79.i7.30
https://doi.org/10.1615/TelecomRadEng.v79.i7.30
https://doi.org/10.3390/electronics13214165
https://doi.org/10.3390/electronics13214165
https://doi.org/10.3103/S0735272720090022
https://doi.org/10.3390/electronics13245056
https://doi.org/10.3390/electronics13245056
https://doi.org/10.31891/2307-5732-2024-339-4-48
https://doi.org/10.31891/2307-5732-2024-339-4-48
https://www.mmsp.ece.mcgill.ca/Documents/Data/TSP-Speech-Database/TSP-Speech-Database.pdf
https://www.mmsp.ece.mcgill.ca/Documents/Data/TSP-Speech-Database/TSP-Speech-Database.pdf
https://www.mmsp.ece.mcgill.ca/Documents/Data/TSP-Speech-Database/TSP-Speech-Database.pdf
https://www.mmsp.ece.mcgill.ca/Documents/Data/TSP-Speech-Database/TSP-Speech-Database.pdf

	Introduction
	State-of-art of the Problem
	The Main Contributions of the Paper

	Material and methods
	Preliminary Remarks
	Algorithm for 2-point DST-IV
	Algorithm for 3-point DST-IV
	Algorithm for 4-point DST-IV
	Algorithm for 5-point DST-IV
	Algorithm for 6-point DST-IV
	Algorithm for 7-point DST-IV
	Algorithm for 8-point DST-IV
	Algorithm for 9-point DST-IV

	Results
	Discussion of Computational Complexity
	The example of the proposed algorithmapplying for the speech signal denoising
	Conclusions

