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Binaural audio technology has been in existence for many years. However, its popularity has significantly
increased over the past decade as a consequence of advancements in virtual reality and streaming techniques.
Along with its growing popularity, the quantity of publicly accessible binaural audio recordings has also ex-
panded. Consequently, there is now a need for automated and objective retrieval of spatial content information,
with ensemble location and width being the most prominent. This study presents a novel method for estimating
these ensemble parameters in binaural recordings of music. For this purpose, a dataset of 23 040 binaural record-
ings was synthesized from 192 publicly-available music recordings using 30 head-related transfer functions. The
synthesized excerpts were then used to train a multi-task spectrogram-based convolutional neural network
model, aiming to estimate the ensemble location and width for unseen recordings. The results indicate that
a model for estimating ensemble parameters can be successfully constructed with low prediction errors: 4.76○

(±0.10○) for ensemble location and 8.57○ (±0.19○) for ensemble width. The method developed in this study
outperforms previous spatiogram-based techniques recently published in the literature and shows promise for
future development as part of a novel tool for binaural audio recordings analysis.

Keywords: ensemble width; ensemble location; binaural; spatial audio; localization; convolutional neural net-
work; head-related transfer function; angle of arrival.

Copyright © 2025 The Author(s).
This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

1. Introduction

The human auditory system demonstrates excep-
tional proficiency in segregating, localizing, and inter-
preting diverse auditory signals, despite being limited
to two ears. This is possible, among other factors, by
internal examination of interaural differences in time,
loudness, and frequency, known as binaural hearing
(Blauert, 1996), which enables precise localization
of sound sources in complex auditory environments.
A notable advantage of binaural hearing is exemplified
by the “cocktail party effect”, highlighting humans’ ca-
pability to concentrate on foreground sound sources
while suppressing background noise (Cherry, 1953).
Understanding the auditory system is essential for
comprehending its limits but also for leveraging these
insights to create more immersive binaural experiences
for entertainment purposes (Zhang et al., 2017). It is

also important for enhancing auditory signal reception
in hearing aid devices (Hirsh, 1950; Thiemann et al.,
2016).
The advance of sophisticated machine learning

techniques, especially deep learning networks, has ini-
tiated an interesting exploration of their potential to
emulate the human auditory system. Recently emerged
studies have demonstrated that relying on the ad-
vanced spatial audio feature engineering is not neces-
sary in computational audio source localization (Pang
et al., 2019; Vera-Diaz et al., 2018; Yang, Zheng,
2022). While applying convolutional neural networks –
CNNs (LeCun et al., 1989) to audio signals is well-
established, often in conjunction with spectrograms
(Espi et al., 2015; Han et al., 2017; Thomas et al.,
2014) or other feature engineering techniques (Abdel-
Hamid et al., 2012; Sainath et al., 2013), these ap-
proaches continue to be refined and adapted for au-
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dio processing. Building on these foundations, this
study develops an audio localization method using
a spectrogram-based multi-task CNN model.
Humans tend to localize groups of sound sources

rather than individual ones (Bregman, 1994; Rum-
sey, 2002). Inspired by this fact, the objective of the
proposed model is to estimate the location and width
of these groups, termed “ensembles”, instead of the po-
sitions of individual sources. This study is unique as it
not only developed the method but also tested it on
a relatively large, realistic music corpus. The corpus
comprised 23 040 binaural excerpts synthesized using
192 multi-track music recordings (from a repository
provided by Senior (2023)) and 30 sets of publicly
available head-related transfer functions (HRTFs) ac-
quired from various sources (see Table 1 in Appendix
for a detailed list). The music recordings covered many
different genres, including rock, jazz, pop, and classical
music.
The findings demonstrate that this method is ef-

fective in accurately estimating the spatial character-
istics of groups of sound sources in near-real-world sce-
narios. This paper also demonstrates an experimen-
tal framework that facilitates the objective measure-
ment of a binaural localization technique, employing
a large-scale dataset synthesized from real-world mu-
sic signals (for applications of similar frameworks, see
studies conducted by Antoniuk and Zieliński (2023)
and Zieliński et al. (2020; 2022a; 2022b)). One of the
key advantages of the proposed method is that it does
not assume the number of audio sources. However, sig-
nificant limitations of this study include the absence
of reverberation in the synthesized recordings and the
method’s inapplicability to real-time scenarios – both
are critical areas for future research.
The developed method has the potential to be

highly beneficial in automated information retrieval
tasks, where a significant number of binaural record-
ings must be analyzed or labeled in terms of their
spatial content information. This could be utilized in
the development of a hypothetical autonomous “web-
crawler bot” that will collect binaural recordings from
publicly accessible repositories and label them accord-
ing to the spatial properties of the sound sources, such
as the location of the music ensemble or the sparsity of
audio source positions. This method may also assist au-
dio engineers in objectively assessing and segregating
binaural audio recordings with regard to their spatial
content.
This paper is structured as follows: Sec. 2 presents

related studies. The description of the method devel-
oped for this study is provided in Sec. 3, which also
includes detailed definitions of ensemble location and
width, along with a description of the experiments used
to evaluate this method. Section 4 presents and dis-
cusses the performance of the proposed method as well
as the results of the experiments conducted in this

study. Finally, Sec. 5 offers concluding remarks and
suggestions for future research.

2. Related studies

Most existing literature on computational sound
source localization reports techniques that take advan-
tage of multiple microphone arrays with more than two
channels (Chung et al., 2022; Hahmann et al., 2022;
Kaveh, Barabell, 1986; Liu et al., 2022; Pan et al.,
2021; Pavlidi et al., 2012). Although these methods
can improve localization precision by providing addi-
tional spatial information, they do not utilize binaural
hearing, rendering them ineffective for binaural record-
ings. In the context of sound source localization in bin-
aural signals, the focus of research is put on the identi-
fication of individual sound sources, rather than groups
of sounds (Benaroya et al., 2018; Dietz et al., 2011;
Ma, Brown, 2016; Ma et al., 2017; May et al., 2011;
2012; 2015; Woodruff, Wang, 2012).
Considering source direction of arrival (DoA) meth-

ods, the majority of research assumes a fixed num-
ber of sound sources (Arthi, Sreenivas, 2021; Ma
et al., 2017; Pang et al., 2019; Vera-Diaz et al.,
2018;Woodruff,Wang, 2012), which limits its prac-
tical applications as this information is rarely known
in real-life binaural recordings. Moreover, the majority
of studies have focused on relatively homogeneous sig-
nals, namely speech (Benaroya et al., 2018; Dietz
et al., 2011; Liu et al., 2018; Ma, Brown, 2016;
Ma et al., 2017; 2018; May et al., 2011; 2012; 2015;
Wang et al., 2020; Woodruff, Wang, 2012; Yang,
Zheng, 2022).
In contrast to the aforementioned studies, the pro-

posed method is not constrained by the number of
sources. Moreover, the approach is not narrowed to
speech and has been applied to a wide range of musi-
cal datasets, including instruments and vocals. In con-
trast to studies that primarily focused on individual
sources, the proposed method does not aim to sepa-
rate them, but rather considers them as a group, or in
this case – a musical ensemble – similar to how real
musical ensembles are arranged on stage. To the au-
thors’ knowledge, this is one of the first methods to
localize ensemble width (see (Antoniuk, Zieliński,
2023) for the previous ensemble-width-related study),
and the first to localize both ensemble position and
width simultaneously using a multi-task model.
Sound localization methods can be classified into

two categories based on the implementation of their
underlying algorithms, termed as glass-box and black-
box techniques. Glass-box methods could be consid-
ered as more traditional in the literature. They rely
on manually designed algorithms that mimic the au-
ditory system to explicitly extract key features for the
localization estimation, such as interaural level differ-
ences, interaural time differences, interaural coherence,
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or interaural phase differences (Blauert (1996) pro-
vides detailed descriptions of these features). Exam-
ples of glass-box methods can be found in numerous
studies, including those conducted by Dietz et al.
(2011), Ma, Brown (2016), Ma et al. (2017; 2018),
May et al. (2011; 2012; 2015), Woodruff, Wang
(2012), and Zieliński et al. (2022b). These features
are typically extracted using an auditory model. An
advanced implementation capable of extracting these
features was developed as part of the Two!Ears project
(Raake, 2016).
Black-box methods use a minimal degree of fea-

ture engineering, depending on deep neural networks
to both extract features and make estimations. While
effective, these methods do not necessarily consistently
mimic human hearing, rendering them less suitable for
objective measurement tasks (e.g., Vera-Diaz et al.
(2018), Yang and Zheng (2022)). Additionally, it is
challenging to reveal their internally extracted fea-
tures. Due to their opacity, unpredictable results, and
numerous learning parameters, these methods should
be treated more carefully. Moreover, they require large
datasets for their development and evaluation. These
datasets often contain thousands of examples, such as
the TIMIT corpus (Garofolo et al., 1993) used in
multiple studies (Benaroya et al., 2018; Ma et al.,
2017; 2018;May et al., 2015; Pang et al., 2019; Vera-
Diaz et al., 2018; Wang et al., 2020; Yang, Zheng,
2022). Some researchers have even created custom cor-
pora with hundreds of thousands of recordings (Anto-
niuk, Zieliński, 2023; Zieliński et al., 2020; 2022a;
2022b).
The necessity of having a large corpus to train

deep learning models poses a significant challenge in
gathering a sufficiently large and diverse collection of
labeled binaural recordings. However, this challenge
can be addressed through the synthesis of binaural
sounds, as demonstrated in various studies (Anto-
niuk, Zieliński, 2023;Ma et al., 2018;Yang, Zheng,
2022; Zieliński et al., 2020; 2022a; 2022b) and dis-
cussed further in Subsec. 3.2.

3. Methodology

This part of the paper presents a detailed descrip-
tion of the model developed in this study, as outlined in
Subsec. 3.1. It also describes the audio dataset used for
training and evaluating the model, as detailed in Sub-
sec. 3.2. In Subsec. 3.3., the spectrogram calculation
procedure is presented. Subsection 3.4. describes the
model topology, whereas Subsec. 3.5 addresses model
training and evaluation.

3.1. Ensemble location and width definition

The objective of the model developed in this study
is to estimate the ensemble location (θ) and width (ω),

as illustrated in Fig. 1. An ensemble is defined as
a group of audio point sources positioned on a circle
around the listener on a virtual acoustic scene with an
equal distance to the listener. The location of source
i is denoted by θi. The ensemble width (ω) is defined
as the angular distance between two extreme point
sources (maxi(θi)−mini(θi)), while the ensemble loca-
tion, designated by θ, represents the middle angle be-
tween two extreme sound sources ( (maxi(θi)+mini(θi))

2
).

For the purposes of this study, the locations of the
sources were limited to the frontal hemisphere only,
i.e., θ ∈ [−45○,45○], ω ∈ [0○,90○], as this range encom-
passes the majority of real-world recording scenarios.
It should be noted that although humans possess some
limited abilities to localize sound sources in the verti-
cal plane, in this study all sources are placed in the
horizontal plane, at the ear-level of the listener. This
covers the majority of cases for real-world recordings
(see (Ma et al., 2018; Zieliński et al., 2022a) for re-
lated studies that cover top-down discrimination).
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Fig. 1. Illustration of ensemble width (ω) and ensemble
location (θ) relative to the direction of the head orientation.
Black dots represent the positions of audio sources θi. The
ensemble location (θ) is the angular position of the center
of the ensemble relative to the direction the head is facing.
The ensemble width (ω) is the angular distance between
the two most extreme audio sources in the ensemble.

3.2. Synthesis of binaural music recordings

The experiments conducted in this study involved
23 040 binaural recordings of music. These recordings
were synthesized using 192 publicly-available multi-
track music recordings (Senior, 2023) and 30 HRTF
databases (see Table 1 in Appendix for a detailed list).
The large number of HRTF databases was necessary to
make the model as generalizable as possible. In real-
world scenarios, the HRTF used for binaural synthesis
is often unknown, so constructing a model for a single
HRTF would have limited practical utility. The aim
was to predict ensemble parameters regardless of the
specific HRTF function used. Additionally, the large
number of HRTF functions increased the amount of
data available for model training, which is particularly
beneficial in the context of deep neural networks. The
number of HRTF databases (30) was determined using
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heuristics from previous study conducted by Zieliński
et al. (2022b), which suggested this number should be
sufficient for the task.
The number of tracks in multi-track recording

ranged from 5 to 62, with median of 9. For each pair
of a multi-track recording and an HRTF database,
four binaural recordings were synthesized with differ-
ent random ensemble parameters, namely location θ
and width ω, as defined in Subsec. 3.1. Both param-
eters were drawn from a uniform random distribu-
tion. Furthermore, the tracks of the input multi-track
recordings were randomly assigned to sound source po-
sitions (θi) to enhance the diversity of the final binau-
ral corpora. Before the synthesis, the signals in each
track were equalized to −23 LKFS, in accordance with
(ITU, 2023) recommendation.
The binaural recordings were obtained in this study

using the binaural synthesis procedure, known as bin-
auralization, whose aim was to simulate the positions
of sound sources within a virtual acoustic environ-
ment (Blauert, 1996). This was achieved by convolv-
ing multi-track signals with head-related impulse re-
sponses from a specified HRTF database. The resulting
binaural output signal yc[n] for each stereo channel c
(left or right) at a sample n is given by the equation:

yc[n] =
N

∑
i=1

K−1

∑
k=0

xi[k] × hc,θi[n − k], (1)

where xi represents the signal of an individual sound
source i from the input music recording and hc,θi de-
notes the head-related impulse response for channel c
at location θi of source track i.
After the binauralization procedure, the synthe-

sized recordings were truncated to a duration of seven
seconds, with sine-squared fade-in and fade-out ef-
fects of 0.01 seconds applied. The recordings were
then RMS-normalized, scaled by a factor of 0.9, and
DC-offset corrected. They were stored as uncom-
pressed files at 48 000 samples per second and with
a 32-bit resolution.
Due to copyright restrictions, the music corpus uti-

lized in this study was not published. However, the
corpus can be provided upon reasonable request from
the authors of this paper.

3.3. Calculation of spectrograms

Prior being input into the model, the binaural
recordings of music were transformed into magnitude
spectrograms. Although spectrograms do not directly
provide information that can be translated into ensem-
ble features, especially the ensemble width, the goal of
this task was to reduce the number of independent
variables compared to the raw audio signal by extract-
ing more compressed and informative data in the fre-
quency domain. This step was also necessary to de-
crease the likelihood of overfitting, reducing the num-

ber of examples needed to train the model, and thereby
lower the overall computational power requirements. It
is worth mentioning, however, that recently published
studies have shown that CNNs are suitable for end-
to-end audio localization without the spectrogram ex-
traction step, as demonstrated by Vecchiotti et al.
(2019) and Vera-Diaz et al. (2018).
To prepare the input for the model, a Hamming

window of 40 ms with an overlap of 20 ms was applied
to each frame of the signal, resulting in a total of 349
time frames. From each frame, spectrograms were ex-
tracted using the fast Fourier transform (FFT) algo-
rithm, with 150 frequency bands spaced linearly from
100 Hz to 16 kHz. This procedure was conducted for
both the left and right channels, yielding two spectro-
grams for each binaural sample. Consequently, each
sample was represented by the 32-bit floating-point
precision matrix of dimensions 2 × 349 × 150. This
method parallels the procedure presented by Zieliński
et al. (2022b).

3.4. Network topology

The network topology employed in this study was
strongly influenced by the AlexNet convolutional neu-
ral network introduced by Krizhevsky et al. (2012).
While AlexNet was originally designed for image clas-
sification, in this study it was adapted for the audio
analysis task by converting binaural recordings into
magnitude spectrograms, as described in Subsec. 3.3.
This conversion allowed the spectrograms to be treated
as visual data, enabling them to be used in an image-
recognition-like task.
As illustrated in Fig. 2, the network architecture

consists of an input layer accepting a pair of spectro-
grams, followed by a series of convolutional units and
classification units, culminating in two outputs pre-
dicting ensemble location and width, respectively. This
design employs a multi-task approach, enabling a sin-
gle network to estimate both ensemble parameters si-
multaneously.
The topology finalized in this study was chosen,

among many alternative architectures, based on the
highest prediction quality observed on the validation
dataset. Despite the existence of numerous algorithms
for automatic topology selection (Branke, 1995; Mi-
ikkulainen et al., 2017; Shafiee et al., 2016; Stan-
ley, Miikkulainen, 2002; Zhang et al., 2018), the
final topology was determined manually, primarily
due to the high computational demands relative to
the available resources.
Various architectural configurations were assessed,

with key parameters being varied such as the num-
ber of convolutional units (from 1 to 5), the number of
classification units (from 1 to 5), the inclusion or exclu-
sion of max pooling layers after each convolution layer,
the number of filters within the convolutional lay-
ers, the dimensions of these filters (2× 2, 2× 3, or 3×3),
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Fig. 2. Topology of the CNN used for estimating ensemble location and width, illustrating the layers (grouped in “convo-
lutional” and “classification” units) and connections of the network architecture.

the stride size, and the dimensions of the max pooling
layers (2× 2, 2× 3, or 3× 3). Based on this procedure,
it was concluded that the model is robust against vari-
ations in the assessed topologies. The differences in
mean prediction error among the configurations were
minimal, typically less than 1○ for most configurations.
Among the many tested topologies that yielded similar
errors, the simplest one was selected to optimize both
the performance efficiency and model simplicity.
Despite the availability of widely used techniques

for addressing an overfitting effect, such as the dropout
layer (Srivastava et al., 2014), and for accelerat-
ing training, such as batch normalization (Ioffe,
Szegedy, 2015), neither technique was employed in
this study as they were observed to be ineffective for
the specific estimation task being undertaken. Instead,
a global average pooling layer was utilized, known for
its capabilities in reducing overfitting (Lin et al., 2013).
This was confirmed in this particular task, as the in-
clusion of this layer significantly reduced overfitting,
lowering the final mean absolute error (MAE) score by
0.83○ (average across 10 trials) compared to configura-
tions where a simple flattening layer was used instead.

3.5. Model training and evaluation

The topology described in the previous section re-
sulted in a model with 216 562 learning parameters.
The model training procedure was repeated 10 times,
employing the Monte Carlo cross-validation method,
as described by Kuhn and Johnson (2013). For each

repetition, the entire dataset was randomly divided
into two parts: a development set containing two-thirds
of the dataset (15 360 recordings) for model construc-
tion, and a test set consisting of the remaining one-
third of the dataset (7680 recordings) for its evalua-
tion. This repetition procedure was employed to ensure
more reliable and generalizable results by assessing
the model’s performance across different subsets of the
data. Additionally, it helped to account for the inher-
ent variability in neural network training, where slight
changes in initial conditions or optimization paths can
lead to different model outcomes. While a large and
diverse dataset could mitigate this issue, the binaural
excerpts used in this study were generated from only
196 multi-track music recordings. This limited source
material raised concerns by these authors about po-
tential significant variations between the development
and test sets in each repetition. In hindsight, these con-
cerns were valid, as the maximum observed difference
in MAE between repetitions reached up to 0.85○ for
ensemble width.
To ensure that the evaluation process was unbi-

ased, the data split was done in such a way that no
original multi-track recordings used for synthesis were
included in both the development and test sets simulta-
neously. However, this rule was not applied to HRTFs
databases, allowing for the possibility of HRTF infor-
mation leaking between the development and test sets.
This could be seen as a significant limitation of the
study. However, it is known that a human auditory
system uses a single HRTF represented by ears, head,
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and torso, only slightly changing throughout the en-
tire life, mainly during infancy (Clifton et al., 1988;
King et al., 2001). Therefore, this limitation could be
considered in pair how the human auditory system be-
haves in real life. Nevertheless, it is worth noting that
some studies implement HRTF-independent testing for
binaural localization models, as demonstrated by An-
toniuk and Zieliński (2023) and Zieliński et al.
(2022a; 2022b).
The development set was divided into training and

validation subsets at a 7:1 ratio, with 13 440 record-
ings in the training subset and 1920 recordings in the
validation subset. The training subset was used to up-
date the model’s learning parameters, while the vali-
dation subset was solely used for early stopping (Mor-
gan, Bourlard, 1989; Pocock, Hughes, 1989) and
model checkpointing (Eisenman et al., 2020). These
techniques were employed to select the model with the
best generalization capabilities and prevent overfitting.
The test subset, which included data not seen dur-
ing the training or validation phases, was used solely
for performance assessment once per a repetition. This
divide-train-and-evaluate process was repeated to col-
lect 10 MAEs, from which the final model error was
determined.
For each sample, the model received two spectro-

grams as input: one for the left channel and one for the
right channel. The rationale behind the application of
CNNs to this task was to automatically extract local
features from the spectrograms and use these features
to estimate two contiguous ensemble parameters: en-
semble location and width, both measured in degrees.
For model training, the Adam algorithm (Kingma,
Ba, 2014) was used. The algorithm minimized predic-
tion errors, calculated as the difference between the ac-
tual ensemble parameters (known a priori from the
binaural synthesis described in Subsec. 3.2) and
the predicted values.
The optimizer was configured with the following

hyperparameters: an initial learning rate of 10−3, a de-
cay rate of 10−6, and momentum parameters β1 = 0.9
and β2 = 0.999. Training was conducted using a batch
size of 8, with a maximum of 256 epochs set. An
early stopping technique was implemented to prevent
overfitting, terminating the process if no improvement
was observed on the validation set for 20 consecutive
epochs. Consequently, the maximum number of epochs
was never reached; instead, training concluded after 25
to 36 epochs, with a median of 27.5 epochs. During
the training process, the losses for both outputs were
combined additively, ensuring equal weighting of both
ensemble features.
The computational work for this study was con-

ducted on a workstation equipped with an RTX Nvidia
GeForce 4090 GPU and a 48-core AMD Ryzen Thread-
Ripper processor (up to 4.5 GHz). On the software
side, MATLAB (The MathWorks Inc., 2022b) with

the Audio Toolbox (The MathWorks Inc., 2022a) was
used for the binaural recording synthesis, while Python
(Van Rossum, Drake, 2009) with the SciPy package
(Virtanen et al., 2020) was used for feature extrac-
tion and Keras (Chollet et al., 2015) for training the
CNN model. The complete source code for all the ex-
perimental stages is publicly available on the GitHub
repository (Antoniuk, 2024). The spectrogram cal-
culation phase required 21 minutes, data partitioning
took 34 minutes, and the total training time for all
iterations amounted to 40 minutes, making the entire
training and evaluation process 95 minutes long.

4. Results and discussion

The overall model performance measured across 10
experiment iterations, expressed as MAE, was equal to
8.57○ (±0.19○) for ensemble width and 4.76○ (±0.10○)
for ensemble location. As both ensemble parameters
were constrained within the same range of 90○, the
results demonstrate that the model exhibits a 44 %
lower error for ensemble location compared to ensem-
ble width. This outcome is not unexpected, given that
ensemble location is a less complex parameter. Essen-
tially, it represents the average location of all sources.
Therefore, it is more resistant to temporal fluctuations
in individual audio sources than ensemble width, which
is dependent on the two most extreme sound sources
that vary over time. Furthermore, estimating ensem-
ble width necessitates the identification of these two
extreme sources, a process that is inherently more com-
plex than estimating a single average location.
Figure 3 compares the actual and predicted ensem-

ble widths for each sample, showing a heteroscedastic
relationship between them, with a slight bias towards
predicting lower ensemble width values for higher ac-
tual widths. This relationship exhibits a strong positive
correlation, with the Pearson coefficient r of 0.90. Ad-
ditionally, the results indicate that the model provides
more precise predictions for narrower ensemble widths,
with an average MAE of 5.65○ for ω < 30○. However,
performance deteriorates as the ensemble width in-
creases, resulting in an MAE of 12.44○ for ω > 80○. This

0.0° 15.0° 30.0° 45.0° 60.0° 75.0° 90.0°

Actual width,

0.0°

15.0°

30.0°

45.0°

60.0°

75.0°

90.0°

P
re

di
ct

ed
 w

id
th

, 
0

Sample
One-to-one line

Fig. 3. Comparison between the actual ensemble width ω
and the predicted ensemble width ω′ for a single iteration

(of the total ten).
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effect is more visible in Fig. 4, which highlights the im-
pact of the actual ensemble width on the precision of
prediction. The correlation between the actual ensem-
ble width and prediction error shows a weak positive
relationship, with the Pearson coefficient r of 0.27.
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Fig. 4. Impact of the actual ensemble width ω on the mean
absolute prediction error, averaged across all ten iterations,

with indicated standard deviation.

The reduced accuracy in the width prediction
can be attributed to the sparse distribution of audio
sources in wider ensembles, which amplifies the influ-
ence of extreme sound sources on prediction errors,
resulting in lower precision as the ensemble width in-
creases. Moreover, Fig. 4 reveals that the relationship
between the ensemble width and the error is nonlin-
ear, displaying a notable decrease in error between 60○

and 75○. The reason for this nonlinearity is currently
unclear and requires further investigation.
The correlation between the actual and predicted

ensemble location values exhibits a very high degree
of correlation, as illustrated in Fig. 5. In this case, the
Pearson correlation coefficient r is equal to as much
as 0.97. In contrast to the ensemble width, no signif-
icant relationship is observed between actual location
and its prediction error. This finding suggests that the
model’s ability to localize the center of the ensemble
is robust, unaffected by the actual spatial positioning
of the ensemble, including lateral locations. Figure 6
corroborates this observation, demonstrating the rela-
tively consistent location error across most positions,
with minor increases at extreme locations. The negli-
gible correlation (r = −0.03) between the absolute lo-
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Fig. 5. Comparison between the actual ensemble location θ
and the predicted ensemble location θ′ for a single iteration

(of the total ten).
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Fig. 6. Impact of the actual ensemble width ω on the mean
absolute prediction error, averaged across all ten iterations,

with indicated standard deviation.

cation value and prediction error further supports the
model’s spatial invariance in its performance.
Figure 7 illustrates the influence of both the en-

semble location and width on the mean absolute er-
ror for an ensemble location, providing a detailed per-
spective complementing the results presented in Fig. 6.
Notably, the figure highlights asymmetric anomalies,
particularly within the θ ∈ [15○,30○] range compa-
red to the θ ∈ [−30○,−15○] range, which can be at-
tributed to the sparsity of sample result data across
specific regions of this heatmap. While the figure sug-
gests that ensemble location does not significantly af-
fect the model’s precision in predicting location, it
clearly demonstrates that ensemble width has a sub-
stantial impact. Specifically, there is a positive correla-
tion between the width of the ensemble and the error in
its location prediction, with error magnitude increas-
ing as the width expands.
Figure 8 reveals a characteristic performance de-

pression in ω ∈ [30○,60○] previously shown from a dif-
ferent perspective in Fig. 4. This heatmap highlights
another interesting phenomenon in its upper corners
as the error in these areas is considerably higher. This
indicates that the model’s performance for estimat-
ing ensemble width is substantially worse at extreme
widths and locations, i.e., when both the width and
locations are near their maximum investigated values
(∣θ∣ ≈ 45○, ω ≈ 90○).
The model presented in this study demonstrates

a significant improvement in ensemble-width perfor-
mance compared to the Spatiogram-based model, first
introduced by Arthi and Sreenivas (2021) and fur-
ther investigated by Antoniuk and Zieliński (2023),
under similar evaluation conditions. While the dataset
used in this study was expanded with 40 additional
multi-track recordings and 10 HRTF databases, An-
toniuk and Zieliński (2023) showed that the Spa-
tiogram model’s performance does not improve with
further increases in dataset size. This finding enables
a direct comparison of results between the two models
in terms of the precision of the ensemble width esti-
mation, despite the differences in dataset composition.
Our model achieved a MAE of 8.57○, outperforming
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Fig. 7. Heatmap illustrating the MAE of ensemble location distribution across different ensemble locations (x -axis) and
ensemble widths (y-axis). The color intensity corresponds to the MAE values, with lighter areas indicating higher errors.
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Fig. 8. Heatmap illustrating the MAE of ensemble width distribution across different ensemble locations (x -axis) and
ensemble widths (y-axis). The color intensity corresponds to the MAE values, with lighter areas indicating higher errors.

the Spatiogram-based model’s result of 13.62○ by 5.05○.
This substantial improvement is further enhanced by
the current model’s ability to estimate ensemble loca-
tion, a feature absent in the previous model.
Assuming terms of ensemble location prediction,

the novelty of the proposed method makes direct
comparison with existing literature challenging. How-
ever, its efficacy can be only evaluated indirectly
against state-of-the-art individual-source localization
techniques. The ensemble location prediction preci-
sion (MAE = 4.76○) of the proposed method can be
contextualized with the leading-edge binaural localiza-
tion DeepEar model introduced by Yang and Zheng
(2022). Their model reported MAEs of 7.4○ and 2.3○ for
multi-source and single-source angle of arrival (AoA)
estimation, respectively. As another promising exam-
ple, the WaveLoc-CONV model developed by Vec-
chiotti et al. (2019) demonstrated errors of 0○ in ane-
choic conditions and 1.7○–2.4○ in multi-condition sce-
narios. However, these results are limited to the single-
source speech localization, a substantially less complex
task than the ensemble location prediction addressed
by the proposed method. These experiments, while
differing in objectives and datasets, provide valuable

context for the proposed method’s performance within
current DoA and AoA estimation research.

5. Conclusions

This paper introduces a novel approach to locat-
ing audio sources in binaural recordings. Unlike tradi-
tional methods that predict the locations of individual
audio sources, this study focuses on estimating “en-
semble parameters” of audio sources, thus allowing the
audio scene to be described using two parameters only:
ensemble location and width. This approach makes it
possible to avoid making restrictive assumptions about
the number of audio sources, rendering the proposed
method more suitable for real-world applications. The
study also explores the use of CNN in conjunction with
spectrograms applied to their inputs. According to the
obtained results, the networks show exceptionally good
performance, demonstrating their suitability for the in-
vestigated scenario.
The method was developed using 23 040 syn-

thesized binaural excerpts intended to mimic real-
world music recordings. The results show its out-
standing performance, with the model achieving MAE
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of 4.76○ (±0.10○) and 8.57○ (±0.19○) for the estimation
of ensemble location and width, respectively. While the
model is resilient to lateral ensemble locations, it is
sensitive to the actual ensemble width, lowering the
model accuracy as the width increases. The proposed
method demonstrates a significant improvement over
the previous technique based on spatiograms (Anto-
niuk, Zieliński, 2023), lowering the MAE by 5.05○.
Despite its high precision, the method exhibits cer-

tain limitations. Since it has been developed using the
binaural excerpts synthesized with the head-related
impulse responses being inherently anechoic in their
characteristics, the method’s performance under re-
verberant conditions has not been validated. More-
over, the proposed method is incapable of operating
in real-time scenarios. Validating the method under
reverberant conditions as well as optimizing its ar-
chitecture for practical real-time scenarios constitute

Appendix

Table 1. List of HRTF sets used to synthesize binaural audio excerpts.

No. Type Head Radius [m] Source Acronym

1. Human Human subject 1.2
RWTH Aachen University (Braren, Fels, 2020) AACHEN

2. Artificial GRAS 45BB-4 KEMAR 1

3. Human Subject 2 1.2

Austrian Academy of Science (2014) ARI
4. Human Subject 4 1.2

5. Human Subject 10 1.2

6. Artificial ARI printed head 1.2

7. Human Subject 012 1
CIPIC Interface Laboratory,

University of California (Algazi et al., 2001)
CIPIC8. Human Subject 015 1

9. Human Subject 020 1

10. Artificial Neumann KU 100 0.9 NASA (Andreopoulou et al., 2015)

CLUBFRITZ11. Artificial Neumann KU 100 1.5 Helsinki University of Technology
(Andreopoulou et al., 2015)

12. Artificial FABIAN 1.47 Technical University Berlin, Huawei Technologies,
Munich Research Centre, Sennheiser Electronic

(Brinkmann et al., 2019)
HUTUBS13. Human Subject pp2 1.47

14. Human Subject pp3 1.47

15. Human Subject 1003 1.95
IRCAM, AKG (Listen HRTF Database, n.d.) LISTEN

16. Human Subject 1002 1.95

17. Artificial KEMAR DB-4004 (DB-061) 1.4
MIT (Gardner, Martin, 1994) MIT

18. Artificial KEMAR DB-4004 (DB-065) 1.4

19. Human Subject 001 1.5

20. Human Subject 002 1.5 Tohoku University (Watanabe et al., 2014) RIEC

21. Artificial Koken SAMRAI 1.5

22. Artificial Neumann KU 100 1.2

23. Human Subject H3 1.2 University of York (Armstrong et al., 2018) SADIE II

24. Human Subject H4 1.2

25. Artificial KEMAR 1 South China University of Technology
(Yu et al., 2018)

SSCUT

26. Artificial Neumann KU 100 1 TH Köln (Pörschmann et al., 2017) STH Köln

27. Artificial FABIAN 1.7 TU Berlin
(Brinkmann et al., 2017; Wierstorf et al., 2011)

TU Berlin
28. Artificial GRAS 45BA KEMAR 1

29. Artificial GRAS 45BB-4 KEMAR
– subject A attachment

1
Aalborg University; University of Iceland

(Spagnol et al., 2019; 2020)
VIKING

30. Artificial GRAS 45BB-4 KEMAR
– subject B attachments

1

the topics for future research. Other minor limitations
include the lack of HRTF independence between the
development and test sets, and the absence of verti-
cal variations in audio source placement, as all sources
were positioned on the horizontal plane. Additionally,
the proposed approach requires substantial computa-
tional resources, particularly GPU usage, which was
not necessary for the previously used spatiogram-based
method.
These limitations, however, present opportunities

for future research. Despite the current constraints,
this study introduces a novel method for characterizing
acoustic scenes in binaural recordings of music, demon-
strating substantial potential for advancing binaural
audio analysis. The method offers promising prospects
for developing innovative tools that can objectively an-
alyze large repositories of binaural audio recordings,
focusing on spatial content.



10 Archives of Acoustics – Online First February 10, 2025

Acknowledgments

The work was supported by the grants from the
Białystok University of Technology (WI/WI-IIT/3/
2022 and WZ/WI-IIT/5/2023) and funded with re-
sources for research by the Ministry of Science and
Higher Education in Poland.

References

1. Abdel-Hamid O., Mohamed A.-r., Jiang H., Penn G.
(2012), Applying convolutional neural networks con-
cepts to hybrid NN-HMM model for speech recog-
nition, [in:] 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pp. 4277–4280, https://doi.org/10.1109/ICASSP.2012.
6288864.

2. Algazi V.R., Duda R.O., Thompson D.M., Aven-
dano C. (2001), The CIPIC HRTF database, [in:] Pro-
ceedings of the 2001 IEEE Workshop on the Applica-
tions of Signal Processing to Audio and Acoustics (Cat.
No.01TH8575), pp. 99–102, https://doi.org/10.1109/
ASPAA.2001.969552.

3. Andreopoulou A., Begault D.R., Katz B.F.G.
(2015), Inter-laboratory round robin HRTF measure-
ment comparison, [in:] IEEE Journal of Selected Topics
in Signal Processing, 9(5): 895–906, https://doi.org/
10.1109/JSTSP.2015.2400417.

4. Antoniuk P. (2024), Software repository: Estimating
ensemble location and width in binaural recordings
of music with convolutional neural networks, GitHub,
https://github.com/pawel-antoniuk/ensemble-width-cnn
(access: 07.01.2024).

5. Antoniuk P., Zieliński S.K. (2023), Blind estima-
tion of ensemble width in binaural music recordings
using ‘spatiograms’ under simulated anechoic condi-
tions, [in:] Audio Engineering Society Conference: AES
2023 International Conference on Spatial and Immer-
sive Audio.

6. Armstrong C.,Thresh L.,Murphy D.,Kearney G.
(2018), A perceptual evaluation of individual and non-
individual HRTFs: A case study of the SADIE II data-
base, Applied Sciences, 8(11): 2029, https://doi.org/
10.3390/app8112029.

7. Arthi S., Sreenivas T.V. (2021), Spatiogram: A phase
based directional angular measure and perceptual
weighting for ensemble source width, ArXiv,
https://doi.org/10.48550/arXiv.2112.07216.

8. Austrian Academy of Sciences (2014), HRTF-Data-
base, https://www.oeaw.ac.at/en/ari/das-institut/soft
ware/hrtf-database.

9. Benaroya E.L., Obin N., LiuniM., Roebel A., Rau-
mel W., Argentieri S. (2018), Binaural localization
of multiple sound sources by non-negative tensor fac-
torization, [in:] IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 26(6): 1072–1082,
https://doi.org/10.1109/TASLP.2018.2806745.

10. Blauert J. (1996), Spatial Hearing: The Psycho-
physics of Human Sound Localization, The MIT Press,
https://doi.org/10.7551/mitpress/6391.001.0001.

11. Branke J. (1995), Evolutionary algorithms for neural
network design and training, [in:] Proceedings of the
First Nordic Workshop on Genetic Algorithms and its
Application, pp. 145– 163.

12. Braren H.S., Fels J. (2020), A high-resolution indi-
vidual 3D adult head and torso model for HRTF sim-
ulation and validation: HRTF measurement, RWTH
Publications, https://doi.org/10.18154/RWTH-2020-06
761.

13. Bregman A. (1994), Auditory scene analysis: The
perceptual organization of sound, The Journal of the
Acoustical Society of America, 95(2): 1177–1178,
https://doi.org/10.1121/1.408434.

14. Brinkmann F., Dinakaran M., Pelzer R., Gros-
che P., Voss D., Weinzierl S. (2019), A cross-
evaluated database of measured and simulated HRTFs
including 3D head meshes, anthropometric features,
and headphone impulse responses, Journal of the Au-
dio Engineering Society, 67(9): 705–718,
https://doi.org/10.17743/jaes.2019.0024.

15. Brinkmann F. et al. (2017), A high resolution and
full-spherical head-related transfer function database
for different head-above-torso orientations, Journal
of the Audio Engineering Society, 65(10): 841–848,
https://doi.org/10.17743/jaes.2017.0033.

16. Cherry E.C. (1953), Some experiments on the recog-
nition of speech, with one and with two ears, The
Journal of the Acoustical Society of America, 25(5):
975–979, https://doi.org/10.1121/1.1907229.

17. Chollet F. et al. (2015), Keras, GitHub,
https://github.com/fchollet/keras (access: 07.01.2024).

18. Chung M.-A., Chou H.-C., Lin C.-W. (2022), Sound
localization based on acoustic source using multiple
microphone array in an indoor environment, Electron-
ics, 11(6): 890, https://doi.org/10.3390/electronics11
060890.

19. Clifton R.K., Gwiazda J., Bauer J.A., Clark-
sonM.G., Held R.M. (1988), Growth in head size dur-
ing infancy: Implications for sound localization, Devel-
opmental Psychology, 24(4): 477–483, https://doi.org/
10.1037/0012-1649.24.4.477.

20. Dietz M., Ewert S.D., Hohmann V. (2011), Au-
ditory model based direction estimation of concur-
rent speakers from binaural signals, Speech Com-
munication, 53(5): 592–605, https://doi.org/10.1016/
j.specom.2010.05.006.

21. Eisenman A. et al. (2020), Check-N-Run: A check-
pointing system for training recommendation models,
ArXiv.

22. Espi M., Fujimoto M., Kinoshita K., Nakatani T.
(2015), Exploiting spectro-temporal locality in deep
learning based acoustic event detection, EURASIP
Journal on Audio, Speech, and Music Processing,
2015: 26, https://doi.org/10.1186/s13636-015-0069-2.

https://doi.org/10.1109/ICASSP.2012.6288864
https://doi.org/10.1109/ICASSP.2012.6288864
https://doi.org/10.1109/ASPAA.2001.969552
https://doi.org/10.1109/ASPAA.2001.969552
https://doi.org/10.1109/JSTSP.2015.2400417
https://doi.org/10.1109/JSTSP.2015.2400417
https://github.com/pawel-antoniuk/ensemble-width-cnn
https://doi.org/10.3390/app8112029
https://doi.org/10.3390/app8112029
https://doi.org/10.48550/arXiv.2112.07216
https://www.oeaw.ac.at/en/ari/das-institut/software/hrtf-database
https://www.oeaw.ac.at/en/ari/das-institut/software/hrtf-database
https://doi.org/10.1109/TASLP.2018.2806745
https://doi.org/10.7551/mitpress/6391.001.0001
https://doi.org/10.18154/RWTH-2020-06761
https://doi.org/10.18154/RWTH-2020-06761
https://doi.org/10.1121/1.408434
https://doi.org/10.17743/jaes.2019.0024
https://doi.org/10.17743/jaes.2017.0033
https://doi.org/10.1121/1.1907229
https://github.com/fchollet/keras
https://doi.org/10.3390/electronics11060890
https://doi.org/10.3390/electronics11060890
https://doi.org/10.1037/0012-1649.24.4.477
https://doi.org/10.1037/0012-1649.24.4.477
https://doi.org/10.1016/j.specom.2010.05.006
https://doi.org/10.1016/j.specom.2010.05.006
https://doi.org/10.1186/s13636-015-0069-2


P. Antoniuk, S.K. Zieliński – Estimating Ensemble Location and Width in Binaural Recordings of Music. . . 11

23. Gardner B., Martin K. (1994), HRTF Mea-
surements of a KEMAR dummy-head microphone,
https://sound.media.mit.edu/resources/KEMAR.html
(access: 06.19.2024).

24. Garofolo J.S., Lamel L., FisherW.M., Fiscus J.G.,
Pallett D.S., Dahlgren N.L. (1993), DARPA TIMIT:
Acoustic-Phonetic Continuous Speech Corpus CD-ROM,
NIST Speech Disc 1-1.1, NIST Publications,
https://doi.org/10.6028/NIST.IR.4930.

25. HahmannM., Fernandez-Grande E., Gunawan H.,
Gerstoft P. (2022), Sound source localization us-
ing multiple ad hoc distributed microphone arrays,
JASA Express Letters, 2(7): 074801, https://doi.org/
10.1121/10.0011811.

26. Han Y., Park J., Lee K. (2017), Convolutional neu-
ral networks with binaural representations and back-
ground subtraction for acoustic scene classification,
[in:] Workshop on Detection and Classification of
Acoustic Scenes and Events.

27. Hirsh I.J. (1950), Binaural hearing aids: A review
of some experiments, Journal of Speech and Hearing
Disorders, 15(2): 114–123, https://doi.org/10.1044/
jshd.1502.114.

28. Ioffe S., Szegedy C. (2015), Batch normalization:
Accelerating deep network training by reducing inter-
nal covariate shift, [in:] Proceedings of the 32nd Inter-
national Conference on Machine Learning, pp. 448–
456.

29. ITU (2023), BS.1770: Algorithms to measure audio
programme loudness and true-peak audio level, Inter-
national Communications Union, Geneva, Switzerland.

30. Kaveh M., Barabell A. (1986), The statistical per-
formance of the MUSIC and the minimum-norm al-
gorithms in resolving plane waves in noise, [in:] IEEE
Transactions on Acoustics, Speech, and Signal Process-
ing, 34(2): 331–341, https://doi.org/10.1109/TASSP.
1986.1164815.

31. King A.J., Kacelnik O., Mrsic-Flogel T.D.,
Schnupp J.W., Parsons C.H., Moore D.R. (2001),
How plastic is spatial hearing?, Audiology and Neu-
rotology, 6(4): 182–186, https://doi.org/10.1159/0000
46829.

32. Kingma D.P., Ba J. (2014), Adam: A method for
stochastic optimization, [in:] International Conference
on Learning Representations.

33. Krizhevsky A., Sutskever I., Hinton G.E. (2012),
ImageNet classification with deep convolutional neural
networks, [in:] Advances in Neural Information Pro-
cessing Systems 25 (NIPS 2012), 25.

34. KuhnM., JohnsonK. (2013), Applied Predictive Mod-
eling, Springer, New York, https://doi.org/10.1007/
978-1-4614-6849-3.

35. LeCun Y. et al. (1989), Handwritten digit recogni-
tion with a back-propagation network, [in:] Advances
in Neural Information Processing Systems 2 (NIPS
1989), 2.

36. Lin M., Chen Q., Yan S. (2013), Network in network,
[in:] International Conference on Learning Representa-
tions.

37. Listen HRTF Database (n.d.), http://recherche.ircam.
fr/equipes/salles/listen/ (access: 06.19.2024).

38. LiuM., Hu J., Zeng Q., Jian Z., Nie L. (2022), Sound
source localization based on multi-channel cross-
correlation weighted beamforming, Micromachines,
13(7): 1010, https://doi.org/10.3390/mi13071010.

39. Liu Q., Wang W., de Campos T., Jackson P.J.B.,
Hilton A. (2018), Multiple speaker tracking in spatial
audio via PHD filtering and depth-audio fusion, [in:]
IEEE Transactions on Multimedia, 20(7): 1767–1780,
https://doi.org/10.1109/TMM.2017.2777671.

40. Ma N., Brown G.J. (2016), Speech localisation in
a multitalker mixture by humans and machines,
[in:] Interspeech 2016, pp. 3359–3363, https://doi.org/
10.21437/Interspeech.2016-1149.

41. Ma N., Gonzalez J.A., Brown G.J. (2018), Ro-
bust binaural localization of a target sound source
by combining spectral source models and deep neu-
ral networks, [in:] IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 26(11): 2122–2131,
https://doi.org/10.1109/TASLP.2018.2855960.

42. Ma N., May T., Brown G.J. (2017), Exploiting deep
neural networks and head movements for robust bin-
aural localisation of multiple sources in reverberant en-
vironments, [in:] IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 25(12): 2444–2453,
https://doi.org/10.1109/TASLP.2017.2750760.

43. May T., Ma N., Brown G.J. (2015), Robust lo-
calisation of multiple speakers exploiting head move-
ments and multi-conditional training of binaural cues,
[in:] 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2679–
2683, https://doi.org/10.1109/ICASSP.2015.7178457.

44. May T., van de Par S., Kohlrausch A. (2011),
A probabilistic model for robust localization based on
a binaural auditory front-end, [in:] IEEE Transactions
on Audio, Speech, and Language Processing, 19(1): 1–
13, https://doi.org/10.1109/TASL.2010.2042128.

45. May T., van de Par S., Kohlrausch A. (2012),
A binaural scene analyzer for joint localization and
recognition of speakers in the presence of interfer-
ing noise sources and reverberation, [in:] IEEE Trans-
actions on Audio, Speech, and Language Process-
ing, 20(7): 2016–2030, https://doi.org/10.1109/TASL.
2012.2193391.

46. Miikkulainen R. et al. (2017), Evolving deep neural
networks, ArXiv.

47. Morgan N., Bourlard H. (1989), Generalization and
parameter estimation in feedforward nets: Some exper-
iments, [in:] Advances in Neural Information Process-
ing Systems 2 (NIPS 1989).

48. Pan Z., Zhang M.,Wu J., Wang J., Li H. (2021),
Multi-tone phase coding of interaural time differ-
ence for sound source localization with spiking neu-
ral networks, [in:] IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 29: 2656–2670,
https://doi.org/10.1109/TASLP.2021.3100684.

https://sound.media.mit.edu/resources/KEMAR.html
https://doi.org/10.6028/NIST.IR.4930
https://doi.org/10.1121/10.0011811
https://doi.org/10.1121/10.0011811
https://doi.org/10.1044/jshd.1502.114
https://doi.org/10.1044/jshd.1502.114
https://doi.org/10.1109/TASSP.1986.1164815
https://doi.org/10.1109/TASSP.1986.1164815
https://doi.org/10.1159/000046829
https://doi.org/10.1159/000046829
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1007/978-1-4614-6849-3
http://recherche.ircam.fr/equipes/salles/listen/
http://recherche.ircam.fr/equipes/salles/listen/
https://doi.org/10.3390/mi13071010
https://doi.org/10.1109/TMM.2017.2777671
https://doi.org/10.21437/Interspeech.2016-1149
https://doi.org/10.21437/Interspeech.2016-1149
https://doi.org/10.1109/TASLP.2018.2855960
https://doi.org/10.1109/TASLP.2017.2750760
https://doi.org/10.1109/ICASSP.2015.7178457
https://doi.org/10.1109/TASL.2010.2042128
https://doi.org/10.1109/TASL.2012.2193391
https://doi.org/10.1109/TASL.2012.2193391
https://doi.org/10.1109/TASLP.2021.3100684


12 Archives of Acoustics – Online First February 10, 2025

49. Pang C., Liu H., Li X. (2019), Multitask learning
of time-frequency CNN for sound source localization,
[in:] IEEE Access, 7: 40725–40737, https://doi.org/
10.1109/ACCESS.2019.2905617.

50. Pavlidi D., Puigt M., Griffin A., Mouchtaris A.
(2012), Real-time multiple sound source localization
using a circular microphone array based on single-
source confidence measures, [in:] 2012 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2625–2628, https://doi.org/
10.1109/ICASSP.2012.6288455.

51. Pocock S.J., Hughes M.D. (1989), Practical prob-
lems in interim analyses, with particular regard to es-
timation, Controlled Clinical Trials, 10(4): 209–221,
https://doi.org/10.1016/0197-2456(89)90059-7.
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