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This study investigates the application of wavelet transforms in identifying aircraft
longitudinal motion dynamics. The Output Error Method, enhanced with wavelet
transforms, specifically Haar wavelets at varying decomposition levels, was used to
estimate system parameters. The impact of filtering wavelet coefficients and the use of
a coherence function in determining parameter changes were analyzed to assess their
effect on model identification accuracy. The identification process involved estimating
the parameters of a linear model by fitting its responses to those of a nonlinear system,
which were noise-perturbed and treated as measurement data. The results demonstrate
the successful application of wavelet transforms in system identification for flying
objects, with recommendations for further optimization.

1. Introduction

System identification is a methodology for building mathematical models of
dynamic systems by using measurements of the system’s input and output signals
[1]. This process is one of the three main problems associated with the dynamics of
any system: simulation, control, and identification [2]. The interconnected nature
of these problems highlights the utility of system identification in tasks such as de-
veloping models for flight simulators [3], formulating control principles, assessing
aerodynamic properties, and validating tunnel test results.

Research on this topic began in the early stages of aviation development. In
1919, H. Glauert published his work on phugoidal motion studies [4], and be-
tween 1919 and 1923, F.H. Norton focused on deriving stability derivatives [5]. In
1951, M. Shinbort proposed using the least squares method to determine stability
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derivatives [6], an approach equivalent to the Output Error Method. A significant
breakthrough occurred with the widespread adoption of digital computers and the
implementation of software for the maximum likelihood method by K.J. Astrom
and T. Bohlin in 1965 [7].

Subsequent work on system identification led to the development of various as-
pects of this methodology. One of the most renowned methods describing the entire
identification process is the Quad-M method (Maneuver, Measurement, Methods,
Models) [2]. The first two elements of the method refer to planning and conducting
measurements during flight campaigns. The last two elements focus on the devel-
opment of a mathematical model for the studied system.

In the case of identification methods, the most frequently used approaches in-
clude the Output Error Method, Equation Error Method, and Filter Error Method.
The main classification of methods is the division according to the domain of rep-
resentation of measurement data used for calculations. The two main domains are
time and frequency.

Time-domain methods are easier to interpret and are popular in the identifica-
tion of both manned aircraft [8] and unmanned aerial vehicles [9], with detailed
implementation provided by R.V. Jategaonkar [2]. Frequency-domain methods are
more commonly employed for the identification of rotorcraft [10] and in the design
of input signals [11], with comprehensive descriptions found in the book by M.B
Tischler [12].

However, in recent years, there has been a noticeable trend in flying object
identification towards solutions that combine these two domains, such as through
the application of wavelet transforms. The wavelet transform is a widely used tool
in numerous applications, including image compression [13], medical signal anal-
ysis [14], and mechanical fault diagnostics [15]. In the aerospace field, it is applied
for flutter prediction [16], automatic maneuver detection [17], fault detection in dy-
namic systems [18], and system-identification maneuver design [19, 20]. Wavelet
transforms have been successfully applied a few times for the identification of
transport aircraft [21], spinning projectile [22], unmanned aerial vehicles [23] or
flexible aircraft model [24]. Some studies also highlight the potential of combining
wavelet transforms with artificial neural networks for system identification [25].

In the aforementioned applications of wavelet transforms for aircraft identifi-
cation, authors primarily focused on demonstrating the feasibility of using wavelet
transforms for successful system identification. This paper provides a deeper anal-
ysis of the influence of wavelet transform parameters, such as the decomposition
levels and the impact of weighting functions, including coherent and arithmetic
mean weighting functions, on the identification results. Although the use of wavelet
transforms with coherent weighting functions has been used in [21, 22], the pre-
sented results were limited to a single computational case. Additionally, this paper
investigates the impact of applying high-pass filtering to wavelet transform coeffi-
cients, a topic not addressed in other studies.
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The article is organized as follows. At the beginning, the model section de-
scribes the non-linear model of longitudinal motion along with the linearization
of this model. Then, the designed excitation signal is presented. The next chapter
focuses on identification methods. The Output Error Method and the use of wavelet
analysis are described. The further parts of the article contain information about the
filters and weight functions used for signal processing during identification using
the wavelet transform. The next section contains the results of the tests performed.
Finally, conclusions are presented.

2. Model

To identify the aircraft’s longitudinal channel, a nonlinear simulation model
of the F-16 was employed as the reference data source in the identification process.
This simulation model is considered reliable, as it has been validated and used in
flight simulators [26]. The model’s responses to the designed input signals, after
adding artificial noise, were treated as the actual aircraft’s responses. The use of
a complex mathematical model as a reference data source is a common approach
in system identification, as it significantly reduces both costs and time during the
testing phase of new methods.

The model was then identified as linear. To derive the equations of motion for
this linear model, the physical model was simplified to a linear mathematical form,
which is discussed in more detail in the subsequent subsection. Several assumptions
were made to achieve this:

• The aircraft is a rigid body with six degrees of freedom.
• The aircraft’s inertial moments remain constant during flight.
• The object is symmetrical in terms of both geometry and mass distribution

along the vertical plane.
• A constant engine thrust is maintained, and the only controlled surface is the

elevator.
• The airflow is quasi-steady.
• The atmosphere is stationary.
• The Earth’s curvature is neglected, and the gravity field is uniform.

During the analysis, it was assumed that the aircraft operates at an altitude of
10,000 ft with a speed of 502 ft/s.

2.1. Nonlinear model

To determine the dynamic equations of motion, the body-fixed coordinate sys-
tem𝑂𝑥𝑦𝑧 associated with the aircraft was adopted. The second coordinate system,
𝑂𝑥𝑔𝑦𝑔𝑧𝑔 is related to the gravity field acting on the aircraft. Both coordinate system
origins were set at the aircraft’s center of gravity, and the relationships between the
systems are presented in Fig. 1. The figure also illustrates the orientation angles of
the aircraft — Euler angles: Φ roll, Θ pitch and Ψ yaw.
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Fig. 1. Coordinates system

The equations of motion were developed from the momentum Π and angular
momentum 𝐾𝑂 change theorems:

˜𝛿Π
𝛿𝑡

+Ω × Π = 𝐹, (1)

˜𝛿𝐾𝑂

𝛿𝑡
+Ω × 𝐾𝑂 = 𝑀𝑂, (2)

where Ω = [𝑃,𝑄, 𝑅]𝑇 is the angular velocity vector, 𝐹 = [𝑋,𝑌, 𝑍]𝑇 and 𝑀𝑂 =

[𝐿, 𝑀, 𝑁]𝑇 are external forces and moments vectors and
𝛿

𝛿𝑡
denotes the local

derivative in the rotating axis system [27]. By making appropriate substitutions,
the above equations can be written in matrix form [28]:

𝑚
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0 𝐼𝑦𝑦 0

−𝐼𝑥𝑧 0 𝐼𝑧𝑧



𝑃

𝑄

𝑅

 =


𝐿

𝑀

𝑁

 , (4)

where 𝑚 is mass of the aircraft, 𝐼𝑥𝑥 , 𝐼𝑦𝑦 , 𝐼𝑧𝑧 , 𝐼𝑥𝑧 are inertia moments,𝑈, 𝑉 ,𝑊 and
𝑃, 𝑄, 𝑅 denotes linear and angular velocities with respect to 𝑂𝑥𝑦𝑧 axis.
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The forces acting on the aircraft can be divided into components: gravity
force 𝐹𝑔 = 𝑚𝑔, aerodynamic force 𝐹𝑎 = [𝑋𝑎, 𝑌𝑎, 𝑍𝑎]𝑇 , thrust 𝐹𝑇 = [𝑇, 0, 0]𝑇 .
The resultant moment of forces consists of the torque from: gyroscopic forces,
aerodynamic forces 𝑀𝑎 = [𝐿𝑎, 𝑀𝑎, 𝑁𝑎]𝑇 and thrust.

Aerodynamic forces and thrust are related to the aircraft’s system, in contrast
to the gravitational force, which is associated with the Earth’s system. To express
the gravitational force vector in the 𝑂𝑥𝑦𝑧 system, the transformation matrix Λ was
used.

Λ =


1 0 0
0 cosΦ sinΦ
0 − sinΦ cosΦ



cosΘ 1 − sinΘ

0 1 0
sinΘ 0 cosΘ




cosΨ sinΨ 0
− sinΨ cosΨ 0

0 0 1

 . (5)

By substituting the components of forces and moments into the Eqs. (3)–(4)
and using the transformation matrix, the nonlinear equations of motion of aircraft
were obtained.

𝑋𝑎 + 𝑇 − 𝑚𝑔 sinΘ = 𝑚( ¤𝑈 +𝑄𝑊 − 𝑅𝑉),
𝑌𝑎 + 𝑚𝑔 sinΦ cos 𝜃 = 𝑚( ¤𝑉 + 𝑅𝑈 − 𝑃𝑊),
𝑍𝑎 + 𝑚𝑔 cosΦ sin 𝜃 = 𝑚( ¤𝑊 + 𝑃𝑉 −𝑄𝑈),

(6)

𝐿𝑎 = 𝐼𝑥𝑥 ¤𝑃 − 𝐼𝑥𝑧 ¤𝑅 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑄𝑅 − 𝐼𝑥𝑧𝑃𝑄,
𝑀𝑎 − 𝑅𝐻𝑇 = 𝐼𝑦𝑦 ¤𝑄 + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑃𝑅 + 𝐼𝑥𝑧 (𝑃2 − 𝑅2),
𝑁𝑎 +𝑄𝐻𝑇 = 𝐼𝑧𝑧 ¤𝑅 − 𝐼𝑧𝑥 ¤𝑃 + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑃𝑄 + 𝐼𝑥𝑧𝑄𝑅.

(7)

To determine the derivatives of the aircraft’s spatial orientation angles, kine-
matic equations linking changes in Euler angles to the components of the object’s
angular velocity were used.

¤Φ = 𝑃 +𝑄 sinΦ tanΘ + 𝑅 cosΦ tanΘ,
¤Θ = 𝑄 cosΦ − 𝑅 sinΦ,

¤Ψ =
𝑄 sinΦ + 𝑅 cosΦ

cosΘ
.

(8)

2.2. Linear model

To linearize Eqs. (6)–(8), small perturbation theory was used [29]. It is as-
sumed that at the equilibrium point, the aircraft’s flight is steady, rectilinear and
symmetrical. Since the longitudinal motion is analyzed in this paper, the change
in the aircraft’s elevator deflection 𝛿𝐸 was used as the perturbation introduced
into the system. The linearized system of equations for the longitudinal channel is
represented as:



90 Michał MODZELEWSKI, Piotr LICHOTA

¤𝑢 = 𝑋𝑢𝑢 + 𝑋𝑤𝑤 + 𝑋𝑞𝑞 − 𝑔𝜃 + 𝑋𝑑𝐸𝛿𝐸 ,

¤𝑤 = 𝑍𝑢𝑢 + 𝑍𝑤𝑤 + 𝑍𝑞𝑞 + 𝑍𝑑𝐸𝛿𝐸 ,
¤𝑞 = 𝑀𝑢𝑢 + 𝑀𝑤𝑤 + 𝑀𝑞𝑞 + 𝑀𝑑𝐸𝛿𝐸 ,

¤𝜃 = 𝑞.

(9)

In the above equation 𝑢, 𝑤, 𝑞 and 𝛿𝐸 represent the perturbations of longi-
tudinal velocity, vertical velocity, pitch angular velocity, and elevator deflection,
respectively. The designations 𝑋 𝑗 , 𝑍 𝑗 ,𝑀 𝑗 adopted in the formulas are the stability
and control derivatives for the longitudinal force, vertical force and pitching mo-
ment, respectively, and are defined below. The subscripts 𝑗 appearing next to the
derivatives refer to a specific flight parameter or control surface.

𝑋 𝑗 =
1
𝑚

𝛿𝑋

𝛿 𝑗
, 𝑍 𝑗 =

1
𝑚

𝛿𝑍

𝛿 𝑗
, 𝑀 𝑗 =

1
𝐼𝑦𝑦

𝛿𝑀

𝛿 𝑗
. (10)

During the simulation, calculations were initialized for the aircraft in equilib-
rium. The values of state and control vectors in this state are shown in the following
Table 1. The calculations were conducted with respect to changes around the equi-
librium point, however, the final results (see Fig. 6 in Section 5) are presented for
standard values, which account for the equilibrium point values listed in Table 1.

Table 1. State and control vector values in equilibrium
𝑈 [ft/s] 𝛼 [deg] 𝑞 [deg/s] 𝜃 [deg] 𝛿𝐸 [deg]

502 0.065 0 0.065 -3.83

3. Input signal

The design of the excitation signal significantly impacts the identification
results. When selecting the type of excitation, both multisine signals and various
types of rectangular signals were considered [27]. However, the 3-2-1-1 signal was
selected for this study due to its effectiveness in providing broad frequency content
and its relative simplicity in implementation. This input consists of alternating
rectangular pulses with durations in the ratio of 3-2-1-1, creating a wideband signal
that is capable of exciting multiple dynamic modes of the aircraft, specifically the
longitudinal modes such as the short-period and phugoid modes. This makes it
well-suited for system identification, as it enhances the accuracy of parameter
estimation by capturing a comprehensive range of the system’s dynamics.

The structure of the 3-2-1-1 signal is rectangular and shares similarities with
the Haar wavelet, which is employed later in the identification process. Both sig-
nals feature abrupt transitions, facilitating the capture of changes in the system’s
response and potentially improving the coherence between the excitation signal
and the identification method.
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In addition to its broad frequency coverage, the 3-2-1-1 signal is relatively easy
to implement in flight tests, which reduces the risk of errors during execution. Given
its balanced combination of simplicity and effectiveness, the 3-2-1-1 input signal
is an appropriate choice for identifying the longitudinal dynamics of an aircraft in
this study. The elevator deflection signal used in the identification process is shown
in Fig. 6.

4. System identification – method

4.1. Output Error Method

The unknown stability and control derivatives were estimated using the Output
Error Method (OEM). The OEM is one of the most common identification methods
in the time domain. This method is also known as the response curve fitting method.
It works by minimizing the error between the measured response and the estimated
response value of the mathematical model [2, 27]. Error minimization involves
iteratively adjusting parameters of the mathematical model until the desired level
of convergence between signals is achieved.

Fig. 2. Block schematic of the Output Error Method [2]

The OEM’s implementation is based on Maximum Likelihood Estimation
(MLE). The objective of using the MLE is to estimate a model parameters vector
Θ for which the probability 𝑝 of observing the measurements was the highest. As
the algorithm iterates, it progressively reduces the difference between the mea-
surements and response of a mathematical model system, leading to increasingly
accurate results.

Θ̂ = arg max
Θ

𝑝(𝑧 |Θ), (11)
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where 𝑧 denotes the measured response,Θ are model parameters, hat symbol stands
for the estimates and 𝑝(𝑧 |Θ) is the probability of 𝑧 given Θ.

Due to the exponential characteristics of many density functions, the logarithm
of the likelihood function, sharing the same optimal solution, is typically preferred.
Consequently, the maximum likelihood estimate is acquired as such:

Θ̂ = arg{min
Θ

ln 𝑝(𝑧 |Θ)}. (12)

Assuming that the function 𝑝(𝑧 |Θ) is twice differentiable, finding the optimal
parameters using the maximum likelihood method comes down to the following
equation.

𝜕 ln(𝑝(𝑧 |Θ))
𝜕Θ

= 0. (13)

The probability density function for multi-channel response systems, described
with 𝑁 discrete time steps, can be expressed in the form of the following equation.

𝑝(𝑧1, . . . 𝑧𝑁 |Θ)=
(√︁
(2Π𝑛)

√︁
|𝑅 |

)−𝑁/2
exp

(
−1

2

𝑁∑︁
𝑘=1

[𝑧(𝑡𝑘)−𝑦(𝑡𝑘)]𝑇𝑅−1[𝑧(𝑡𝑘)−𝑦(𝑡𝑘)]
)

(14)
where 𝑦 is the response vector of the system at a given moment 𝑘 , and 𝑅 is the
measurement covariance matrix, expressed as:

𝑅 =
1
𝑁

𝑁∑︁
𝑘=1

[𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)] [𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]𝑇 . (15)

The solution of the Eq. (13) can be reduced to minimizing the objective function 𝐽.
By substituting the measurement covariance matrix into Eq. (14) and neglecting
the constant terms, the cost function can be reduced to the following form.

𝐽 (Θ) = |𝑅 |. (16)

During optimization, the estimates and the measurement noise covariance
matrix influence each other. To manage this interdependence, a relaxation strategy
is applied. This involves alternately optimizing the cost function with respect to the
covariance matrix or the estimates, while holding the other constant. The process
continues until the results stabilize and converge.

4.2. Wavelet transform

The wavelet transform is a transformation similar to the Fourier transform, with
the distinction that instead of sinusoidal functions, it employs functions known
as wavelets as the basis of this transformation. The wavelet transform can be
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understood as the representation of the original signal as a sum of wavelets, which
are tailored to the signal by adjusting two parameters: scaling parameter 𝑎 and
position parameter 𝑏. This approach allows the transformation to serve as a tool
for simultaneous analysis in both the frequency and time domains [30].

Ψ𝑎,𝑏 (𝑡) =
1
√
𝑎
Ψ

(
𝑡 − 𝑏
𝑎

)
, (17)

where Ψ is the basic wavelet function.
In numerical analysis using wavelets, a primary tool used is the discrete wavelet

transform, which allows the decomposition of the signal into different frequency
bands while maintaining information about the location of wavelets in the time
domain. However, the accuracy of localizing a wavelet at a given frequency band is
associated with uncertainty, referred to as Heisenberg’s uncertainty principle [31].

The algorithm for discrete wavelet transformation was proposed by S. Mallat
and is based on multiresolution analysis. This algorithm can be understood as a
group of two types of filters (Fig. 3): high-pass and low-pass filters, which divide
the signal into low-frequency components (approximation) and high-frequency
components (detail). The response of the low-pass filter can undergo further filtra-
tion by high-pass and low-pass filters, to perform the next level of signal division
into low and high-frequency components. This procedure can be repeated multiple
times, and the number of high-pass and low-pass filtrations is referred to as the
decomposition level. The scheme of this decomposition is often called the Mallat’s
tree.

Fig. 3. Schematic diagram of wavelet decomposition – Mallat’s tree

The outcome of discrete wavelet transformation is a set of coefficients 𝐴𝑖 and
𝐷𝑖 describing the components of the signal, representing approximation and detail,
where i denotes the level of signal decomposition.

In conducting the decomposition, the Haar wavelet was selected for its ef-
fectiveness in extracting information regarding object dynamics based on time
histories of aircraft rigid body flight mechanic states [21, 22]. The Haar wavelet,
like most wavelets, consists of two functions: the scaling function Φ, used for
approximation, and the wavelet function Ψ, utilized to describe detail (Fig. 4).
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Fig. 4. Haar wavelet

In this work, wavelet analysis has been used to decompose the response of
the identified system. The decomposition enables the extraction of coefficients that
describe the signal in different frequency bands. The primary goal of this decompo-
sition is to separate the signal into components corresponding to various frequency
ranges. This allows for the isolation of components resulting from the aircraft’s
oscillations from those caused by, for example, measurement noise, sensor drift,
or engine vibrations. By applying an inverse discrete transformation, it is possible
to reconstruct these individual signal components and analyze them separately,
providing deeper insight into the underlying dynamics of the system.

An example of the decomposition and reconstruction of the components of the
system’s response to the input signal (described in Section 3) is shown in Fig. 5.

Fig. 5. Example of decomposition and reconstruction of system’s response (angle of attack) to the
input signal – 2nd level of decomposition
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This decomposition into component signals allows the identification algo-
rithms to be used on given components in given frequency bands. This means that
during a single iteration of the algorithm for identification, a parameter change vec-
tor is determined for each frequency band. Therefore, with a decomposition level
of 7 (8 components), 8 vectors of changes in the system parameters are obtained.
From these vectors, it is possible to determine the resultant parameter change vector
ΔΘ, which will be used to determine the new system parameters. The formula for
calculating the vector ΔΘ is shown below.

ΔΘ = 𝑐𝐴𝑛 ΔΘ𝐴𝑛 +
𝑛∑︁
𝑖=1

𝑐𝐷𝑖 ΔΘ𝐷𝑖 . (18)

In this formula, ΔΘ𝐴𝑛 and ΔΘ𝐷𝑖 denote the parameter change vectors derived
from approximation and detail components, respectively, of the aircraft response
signals subjected to an n-level decomposition. The coefficients 𝑐𝐴𝑛 and 𝑐𝐷𝑖 are
weights determined based on the weighting functions described in the following
subsection.

4.3. Weight function

When identifying real systems and analyzing measurements, certain signal
components are known to constitute noise, potentially compromising the accuracy
of the identification results. If specific frequency bands are identified as containing
noise, the parameter change vectors from these bands might distort the final iden-
tification by leading to an inaccurate resultant vector. To address this, a weighting
function can be applied to determine the weights (𝑐𝐴𝑛 and 𝑐𝐷𝑖) from Eq. (18) for
calculating the resultant parameter change vector ΔΘ.

As this article focuses on the analysis of the application of wavelet transforms
in system identification, two types of weighting functions were employed to deter-
mine the resultant parameter change vector. The first approach uses an arithmetic
mean, assigning equal weight to each parameter change vector. Another approach
is to use a weighted average, where the weights are selected based on signal anal-
ysis. In this study, wavelet transformations were tested at the 3rd and 7th levels
of decomposition. The signal sampling rate was 256 Hz, which means that the
decomposed signal components are in the intervals shown in Table 2.

Table 2. Frequency bands for the 3rd and 7th level of decomposition
Components

3rd level of decomposition
A3 D3 D2 D1

Components
7th level of decomposition

A7 D7 D6 D5 D4 D3 D2 D1

Frequency band [Hz] 0-1 1-2 2-4 4-8 8-16 16-32 32-64 64-128
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For a pilot-controlled aircraft, the frequency range of the system response is
typically in the range (0.01; 2.0) Hz [27]. It implies that the detail signals primarily
represent measurement noise. Therefore, it was decided that the resultant parameter
change vector would be calculated from a weighted average of the parameter change
vectors calculated for all signal components. A coherence function [32] was used to
determine the weights, which compared the measurements with the mathematical
model.

𝐶𝑥𝑦 ( 𝑓 ) =
|𝐺𝑥𝑦 ( 𝑓 ) |2

𝐺𝑥𝑥 ( 𝑓 )𝐺𝑦𝑦 ( 𝑓 )
, (19)

where 𝐺𝑥𝑦 is the reciprocal spectral density of the signals 𝑥(𝑡) and 𝑦(𝑡), and 𝐺𝑥𝑥

and 𝐺𝑦𝑦 are the spectral density of the signals 𝑥(𝑡) and 𝑦(𝑡), respectively. 𝐶𝑥𝑦 is
the correlation coefficient, the value of which is always in the range ⟨0; 1⟩.

Determining the weights involves calculating a vector of mean coherence
coefficients for the relevant frequency bands, followed by normalizing the resulting
vector.

4.4. Wavelet coefficients filter

Another way to modify the OEM using wavelet transforms is to apply a high-
pass filter to the coefficients obtained from the discrete wavelet transform. This
approach is commonly used in image compression and filtering [13]. The method
involves sorting all the coefficients of the decomposed components from the discrete
wavelet transform and removing those with the smallest values. These coefficients
are considered to have minimal impact on the original signal’s representation,
which allows for signal compression producing a similar signal that occupies less
memory or for noise reduction through signal filtering. In this study, the High-
Pass Wavelet Coefficients (HPWC) filtering method is used to filter signals. To
reconstruct the signal, the filtered coefficients are subjected to an inverse wavelet
transform.

5. Results

To evaluate the proposed methods of using wavelet transforms in identification,
a series of experiments were conducted in the implemented simulation environ-
ment. The identification process involved estimating the parameters of the linear
model (Section 2.2) to match its responses to that of the non-linear system (Section
2.1). Additionally, measurement noise, representing 4 percent, was added to the
non-linear system responses. The resulting data were then treated as measurement
data.

The non-linear model data were obtained using the SIDPAC software module
written in MATLAB [26], while the linear model and the rest of the software,
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including the identification algorithms, were implemented in Python. Discrete
solvers were used for the wavelet transforms as well as for the rest of the software
with sampling frequency 256 Hz.

The identification process was carried out for 7 computational cases. For these
cases, the following designations were adopted. The first part of the designation
indicates the type of wavelet function, and all calculations employed the Haar
wavelet. The second part specifies the decomposition level. The third part denotes
the type of weighting function used to determine the resultant parameter change
vector (E – arithmetic mean, C – coherence function). The fourth part refers to the
HPWC filter coefficients (percentage of coefficients retained for use).

A comparison of the measurement data and the responses of the linear systems
obtained during the identification is shown in Fig. 6. To compare the results, the
integrated differences between the noise-free response of the non-linear model and
the obtained responses were calculated and presented in Table 3.

The analysis began with the simplest case, Haar_3_E_100, where the iden-
tification was performed using the 3rd decomposition level, the arithmetic mean
as the weighting function, and all coefficients from the decomposed signals. The
identified system’s response closely matched the measurements for 𝛼, 𝑞, and 𝜃,
though larger discrepancies were observed for the velocity𝑈.

To improve the results, the next two cases explored the impact of the HPWC
filter, with calculations conducted using filter coefficients of 90 and 80. As shown
in Table 3, the HPWC filter significantly reduced the error for velocity 𝑈 (over
twice as much in the case of Haar_3_E_80), with only a slight degradation in the
results for 𝜃, and minimal changes for 𝛼 and 𝑞.

The fourth case, Haar_3_C_100, evaluated the use of coherence functions for
weighting, without applying the HPWC filter. This case yielded the smallest error
for longitudinal velocity, along with strong alignment for 𝛼, 𝑞, and 𝜃, similar to
the previous cases. Analysis of the coherence-based weights indicated a higher
emphasis on low-frequency components, which likely contributed to the improved
identification accuracy by reducing the impact of measurement noise.

Based on the positive results from the 3rd decomposition level, both the HPWC
filter and coherence-based weight function were further tested at the 7th decompo-
sition level, using filter coefficients of 100 (no filtering), 90, and 80. As shown in
Table 3, these cases achieved some of the lowest errors for 𝛼, 𝑞, and 𝜃, but on the
other hand, showed some of the largest errors for longitudinal velocity𝑈.

For reference, Table 3 also presents results for the linear model obtained
through numerical linearization. While this model shows relatively low error for
velocity 𝑈, both Haar_3_C_100 and Haar_7_C_100 demonstrate lower overall
errors across all responses.

To compare the estimated parameter values across different identification cases,
all values were plotted on common charts (Fig. 7). Additionally, reference parameter
values (indicated by orange horizontal lines), which represent the stability and
control derivatives obtained during numerical linearization, were highlighted.
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Fig. 6. Measurement data and responses of the linear models obtained as a result of the identification

Analyzing the charts in Fig. 7, it is evident that for some parameters, such
as 𝑀𝑤 , 𝑀𝑞 and 𝑀𝑑𝐸 , all computational cases yielded similar estimates. On the
other hand, there are significant discrepancies in the estimates between some iden-
tification cases, particularly for the derivatives 𝑋𝑤 , 𝑋𝑞 and 𝑋𝑑𝐸 . It is important
to note that these parameters are used to determine the aircraft’s longitudinal ve-
locity 𝑈, for which the largest discrepancies between the identified models and
the measurements were observed. Additionally, it is worth mentioning that these
parameters mainly affect short-period oscillations. In such cases, it is advisable
to use not only the 3-2-1-1 input signal for identification but also the 1-1 doublet
signal with a switching time of less than one second to excite more short-period
oscillations.
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Table 3. Integrated differences between the measurement data (without measurement noise)
and the responses of the identified linear models

Method 𝜖𝑈 [ft] 𝜖𝛼[deg· s] 𝜖𝑞[deg] 𝜖𝜃 [deg· s]
Haar_3_E_100 34.408 1.235 1.412 0.878
Haar_3_E_90 30.611 1.833 1.837 1.476
Haar_3_E_80 14.605 1.145 1.647 1.787
Haar_3_C_100 12.994 1.249 1.529 1.496
Haar_7_C_100 34.518 1.172 1.350 0.856
Haar_7_C_90 29.503 1.170 1.369 0.961
Haar_7_C_80 31.770 1.247 1.377 0.953

Numerical linearization 14.875 1.349 2.577 4.279

Fig. 7. Comparison of identified parameters for different computational cases (blue dots) with
parameters obtained through numerical linearization (orange lines)

To compare the estimated parameter values between different computational
cases, an additional coefficient 𝜈𝑖 was introduced, representing the sum of relative
estimation errors for each computational case.

𝜈𝑖 =
1
𝑁

𝑁∑︁
𝑛=1

|𝜃𝑖 − 𝜃𝑟𝑒 𝑓 𝑖 |
|𝜃𝑟𝑒 𝑓 𝑖 |

, (20)

where 𝑁 denotes the number of identified model parameters.



100 Michał MODZELEWSKI, Piotr LICHOTA

The values for these coefficients for the various computational cases are sum-
marized in Table 4.

Table 4. Comparison of the average relative sum of differences
between the identified parameter values and the parameter values

obtained through numerical linearization
Method Value

Haar_3_E_100 5.55
Haar_3_E_90 11.98
Haar_3_E_80 2.02
Haar_3_C_100 2.68
Haar_7_C_100 5.42
Haar_7_C_90 4.40
Haar_7_C_80 5.68

The values in Table 4 indicate that the identification cases Haar_3_E_80, and
Haar_3_C_100 achieved derivatives closest to the reference values. It is also worth
noting that these are the cases with the smallest differences for velocity 𝑈. In the
other cases, the differences are larger.

6. Conclusions

This study demonstrated that wavelet transforms can be successfully applied
to identify the model parameters of an aircraft’s longitudinal motion. This work
is among the few studies exploring the use of wavelet transforms for this purpose,
examining the impact of different decomposition levels and weighting functions on
the identification results. Additionally, it introduced the application of a high-pass
filter for wavelet transform coefficients, which has not been employed in other
studies. The results obtained are comparable to, and in some cases even better than,
those of models derived from numerical linearization. However, it is important to
note that the calculations were conducted using artificially noised responses of a
nonlinear aircraft motion model, focusing solely on decoupled longitudinal motion,
which means the results could differ if real-world data were used.

The analysis revealed a positive impact from both the coherence-based weight
function and higher levels of HPWC filtering, particularly in reducing the error
for longitudinal velocity 𝑈, which proved to be the most challenging response to
match. This difficulty likely stems from the inherent complexity of aligning the
responses of a non-linear model with those of a linear model.

While increasing the decomposition level helped reduce the error for 𝛼, 𝑞,
and 𝜃, it did not improve the results for velocity 𝑈 as expected. It was anticipated
that a higher decomposition level combined with the coherence-based weight func-
tion would better suppress measurement noise and lead to significantly improved
identification results.
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Additionally, when using the coherence-based weight function with a higher
decomposition level, the effect of the HPWC filter became less significant. This
is likely because the combination of these methods was sufficient to minimize
the impact of measurement noise. However, it is important to note that excessive
filtering could distort the system’s response, potentially worsening the identification
results.

To improve the results, it is recommended to modify the input signal, such
as incorporating a short-duration 1-1 doublet to more effectively excite the short-
period dynamics of the system, or using multisine signals [33], which can generate
a broader frequency spectrum in the system responses and potentially enhance
signal coherence estimation. Additionally, the use of wavelet transforms for de-
signing the input signal is worth exploring [19, 20]. Another possible modification
could involve replacing the fully automated approach with a semi-automated one,
where the person conducting the identification process has control over parameter
adjustments when their values deviate from the expected range.

Additionally, replacing the linear model with a nonlinear model should be
considered. Further improvement could also be achieved by experimenting with
different levels of decomposition, weighting functions, wavelets, and filters for the
coefficients obtained from the wavelet transform.

From a physical standpoint, applying a higher level of decomposition and as-
signing greater weights when determining the parameter change vector for compo-
nents within the frequency range (0–2) Hz or eliminating other components might
be beneficial. However, it should be noted that increasing the level of decomposition
and the number of analyzed components significantly extends the computational
time, as OEM is applied to each component separately. Also, important considera-
tion is to change the sampling frequency. In this study, a high sampling frequency
of 256 Hz was used. By lowering the sampling frequency, even through artificial
downsampling, it would be possible to analyze more low-frequency bands at the
same decomposition level. This would allow for a more detailed examination of
low-frequency components while maintaining computational efficiency.
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