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This research presents three major contributions to the nonlinear control of un-
deractuated systems. First, the identification and characterization of a 2.5 Hz oscil-
latory phenomenon in the low-cost inverted pendulum system, addressing challenges
from mechanical elasticity and electrical delays, is reported. Second, the Hierarchical
Sliding Mode Control (HSMC) framework is developed to control this underactu-
ated system considering its unwanted oscillatory phenomenon. This HSMC control
system is used to achieve superior disturbance rejection, maintaining cart position
within ±0.05 m compared to PD-LQR’s ±0.35 m under pure oscillatory disturbances,
while reducing energy consumption by 32%. Third, a comprehensive Hardware-in-
the-Loop (HIL) implementation using the F28379D microcontroller, which provides
real-time parameter adjustment capabilities, is established. The stability of the system
is theoretically validated through Lyapunov analysis and homoclinic orbit characteri-
zation. Experimental results demonstrate the effectiveness of the HSMC controller in
maintaining pendulum angular oscillations within ±2.5◦, significantly outperforming
PD-LQR’s ±5◦ range under combined disturbances.

1. Introduction

Most real-world systems exhibit inherent nonlinear behavior, deviating from
the principles of superposition and homogeneity that govern linear systems. This
nonlinearity often arises due to the presence of components with nonlinear char-
acteristics, such as viscous and frictional forces, harmonic signal components, and
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abrupt disturbances [1, 2]. These nonlinear elements introduce significant com-
plexities that challenge the accurate modeling, analysis, and effective control of
such systems [3]. Despite these challenges, conventional linear control techniques,
including PID, LQR, and LQG controllers, are still widely employed in control
design for nonlinear systems [4–7]. The PD-LQR controller, extensively studied
in the context of the inverted pendulum, has proven effective in balancing control
and energy efficiency in underactuated systems [8, 9]. However, this approach is
accompanied by drawbacks, including the limitation of control only at equilibrium
or fixed operating points, and the necessity to eliminate or linearize the nonlin-
ear components to generate a simplified, linear model. Consequently, the control
signals derived from these linear controllers may not be well-suited or optimally
effective when applied to inherently nonlinear real-world systems.

To address these limitations, researchers in the field of control theory have
been actively exploring nonlinear control techniques as a more effective solution
to address the inherent complexities of nonlinear systems. Nonlinear systems are
commonly characterized by nonlinear equations, which pose greater analytical and
computational challenges compared to linear equations [10]. Analyzing the behav-
ior of nonlinear systems often necessitates the use of numerical or approximate
methods. Unlike their linear counterparts, nonlinear systems can display intricate
phenomena such as bifurcations, chaos, and limit cycles, adding a layer of com-
plexity not observed in linear systems. Recent studies in the field of mechanical
actuator control have explored various nonlinear controllers [3, 11, 12, 14]. For
instance, a Lyapunov-based approach has been used to develop an improved con-
trol law based on feedback linearization, considering variations in supply pressure
in an electrohydraulic system [11]. The adaptive component of the controller is
employed to offset deviations in system characteristics from the predominant linear
model, aiming to enhance performance in the servo-mechanical system [12]. Addi-
tionally, a neural network controller has also been used to handle nonlinear factors
and improve the control performance of a 2-axis pneumatic artificial muscle ma-
nipulator [13]. Moreover, a fuzzy-adaptive controller has been utilized to address
uncertainties and enhance the dynamic response of the rotary inverted pendulum
system, showcasing its effectiveness in solving the nonlinearities and disturbances
inherent in underactuated setups [14]. Sliding mode control techniques have also
emerged as a promising approach for addressing the challenges posed by nonlinear
systems, particularly for underactuated systems.

Designing control laws that provide the desired performance to closed-loop
systems in the presence of disturbances and uncertainties is a challenging task for
control engineers [15, 16]. This has led to significant interest in the development
of robust control methods, such as sliding mode control, to address this prob-
lem. Sliding mode control (SMC) is a well-established technique that has gained
widespread attention due to its inherent robustness to parameter variations and ex-
ternal disturbances [17, 18]. While the conventional sliding mode control approach
offers superior robustness, it is not without its drawbacks, as it is susceptible to the
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chattering phenomenon, which can lead to undesirable high-frequency oscillations
in the control input. These oscillations may compromise system stability and de-
grade overall performance [19–21]. To address this issue, researchers have explored
various modifications and enhancements to the SMC framework, such as dynamic
sliding mode control and backstepping-based approaches [21, 22]. These advanced
techniques combine the robust characteristics of sliding mode control with strate-
gies aimed at mitigating the chattering problem, resulting in a more comprehensive
and effective control solution for nonlinear systems. These improvements allow the
system to handle a wider range of uncertainties and disturbances while maintaining
stability and performance [23–25].

When implementing low-cost experimental systems, several issues arise, par-
ticularly related to unknown unstable factors, which have been confirmed in pre-
vious studies [26]. These systems often exhibit unexpected behaviors, such as
vibrations caused by the elasticity of components like rubber belt transmissions.
In such cases, the elasticity introduces additional dynamic delays and oscillations,
which can negatively impact control performance. Moreover, electrical equipment
used in low-cost setups can contribute to delay factors, further complicating the
system’s dynamics. In this context, the integration of hardware-in-the-loop (HIL)
systems plays a crucial role [27]. HIL allows real-time interaction between the
Matlab environment and the physical system, enabling the manual adjustment of
system parameters and responses during operation. This capability provides a valu-
able platform for refining control strategies by simulating real-world disturbances
and fine-tuning the system’s behavior in real-time.

This paper presents a Hardware-in-Loop Implementation of HSMC for Low-
Cost Nonlinear Systems considering Unwanted Oscillation. First, the dynamics
model of a low-cost nonlinear system based on the model of the inverted pendulum
is introduced. The identification and characterization of a 2.5 Hz oscillatory phe-
nomenon in this low-cost system, addressing challenges from mechanical elasticity
and electrical delays, is reported. Second, the Hierarchical Sliding Mode Control
(HSMC) framework is developed to control this underactuated system considering
its unwanted oscillatory phenomenon. The stability of the system is theoretically
validated through Lyapunov analysis and homoclinic orbit characterization. More
importantly, an experimental model is constructed to assess the method’s effec-
tiveness, utilizing the F28379D microcontroller board with code compiled in the
DSP C2000 toolbox package of the Simulink environment. The proposed system
incorporates HIL implementation with real-time parameter adjustment to simu-
late nonlinear dynamics while accounting for unwanted oscillation factors, such
as those arising from the elasticity of mechanical components and delays in elec-
trical equipment. Simulations incorporating these disturbances yield results that
closely resemble the behavior observed in real-world experiments. The similarity
between the simulation results and experimental data validates the effectiveness of
the proposed control strategy in handling both expected and unexpected oscillatory
behaviors in low-cost nonlinear systems.
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2. Mathematical model

The model of the inverted pendulum system moved by a cart is described in
the𝑂𝑥𝑦𝑧 coordinate system, as shown in Fig. 1. The system consists of a pendulum
characterized by mass 𝑚pen, 𝑙pen represents the distance from the pivot point on
the cart to the center of the pendulum rod, and length 2𝑙pen attached to a moving
cart with mass 𝑚cart. While the cart moves back and forth along the 𝑦-axis under
the influence of a pushing force 𝐹cart, the pendulum swings at an angle 𝜃 around
a pivot point on the cart and is affected by gravitational acceleration 𝑔. During
operation, the performance of the system can also be influenced by factors such as
the inertia moment at the center of the pendulum 𝐽pen, the friction of the pendulum
at the pivot 𝑓pen, and the friction of cart 𝑓cart. Table 1 shows the parameters of the
inverted pendulum system. Additionally, the dynamic model of the pendulum is a
system with two degrees of freedom and can be analyzed in the Oyz reference frame.
The state variables of the inverted pendulum system are defined as: 𝑦 represents
the real position of the cart along the 𝑦-axis in the 𝑂𝑦𝑧 reference frame, and 𝜃
denotes the angle of the pendulum relative to the vertical axis. ¤𝑦 and ¤𝜃 represent
the derivative of 𝑦 and 𝜃 (also known as the velocity of the cart and the pendulum),
respectively.

Fig. 1. Free-body diagram of the pendulum-on-cart system

Table 1. Parameters of the inverted pendulum system
Component Parameter Symbol (unit) Value

Pendulum

Mass 𝑚pen (kg) 0.2
Length 𝑙pen (m) 0.3

Inertial moment 𝐽pen (kg m2) 0.006
Friction 𝑓pen (N m s) 0.005
Mass 𝑚cart (kg) 0.5

Cart Maximum cart travel 𝑙cart (m) 0.42
Friction 𝑓cart (N m s) 0.1
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The equation of motion of the pendulum-on-cart is written in Eq. (1):

(𝑚cart + 𝑚pen) ¥𝑦 + 𝑚pen𝑙pen

(
¥𝜃 cos 𝜃 − ¤𝜃2 sin 𝜃

)
= 𝐹cart − 𝑓cart ¤𝑦 ,

(𝐽pen + 𝑚pen𝑙
2
pen) ¥𝜃 + 𝑚pen𝑙pen ( ¥𝑦 cos 𝜃 − 𝑔 sin 𝜃) = − 𝑓pen ¤𝜃 .

(1)

Choosing the state variables 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) for input variables
(
𝑦, ¤𝑦, 𝜃, ¤𝜃

)
,

respectively.
¤𝑥1 = 𝑥2 ,

¤𝑥2 = 𝑓1(𝑋) + 𝑏1(𝑋)𝐹cart ,

¤𝑥3 = 𝑥4 ,

¤𝑥4 = 𝑓2(𝑋) + 𝑏2(𝑋)𝐹cart ,

(2)

where:

𝑓1 = Δ−1

(
(𝑚pen𝑙

2
pen + 𝐽pen) (𝑚pen𝑙pen ¤𝜃2 sin(𝜃) − 𝑓pen ¤𝑦)

+ 𝑚pen𝑙pen 𝑓cart ¤𝜃 cos(𝜃) − 𝑚2
pen𝑙

2
pen𝑔 cos(𝜃) sin(𝜃)

)
;

𝑏1 = Δ−1
(
𝑚pen𝑙

2
pen + 1

)
;

𝑓2 = Δ−1

(
−(𝑚cart + 𝑚pen) 𝑓cart ¤𝜃 + 𝑚pen𝑔𝑙pen sin(𝜃) (𝑚cart + 𝑚pen)
+ 𝑚pen𝑙pen 𝑓pen ¤𝑦 cos(𝜃) − 𝑚2

pen𝑙
2
pen ¤𝜃2 cos(𝜃) sin(𝜃)

)
;

𝑏2 = Δ−1 (
𝑚pen𝑙pen cos(𝜃)

)
;

Δ = (𝑚cart + 𝑚pen) (𝐽pen + 𝑚pen𝑙
2
pen) − 𝑚2

pen𝑙
2
pen cos(𝜃).

The key challenge with this inverted pendulum system is the need to maintain
stable upright control of the pendulum throughout the system’s motion, using a
motor attached to the wheels of the cart. Thus, this inverted pendulum is a typical
model of underactuated model and exhibits significant nonlinear characteristics
during its operation. This may be due to the natural oscillation frequency of the
system changing over time [10] or may be affected by undesirable vibrations
resulting from the system’s own structural characteristics [26]. In this paper, the
nonlinear characteristics of the low-cost pendulum-on-cart model according to the
various of the input value will be introduced in the next section. Therefore, a
robust control structure based on the HSMC method is essential to achieve stable
balancing control when the pendulum is raised upright.

3. Design of HSMC system

The structure of HSMC is shown in Fig. 2. Overall, the control system consists
of two major sliding surfaces 𝑆𝑥1 and 𝑆𝑥2. The first sliding surface𝑆𝑥1 (coincides
with 𝑠𝑥1) is formulated based on the error of the cart position𝑒𝑥1 and the error of the
cart velocity ¤𝑒𝑥1. It is responsible for controlling the position of the cart converging
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to zero. The second sliding surface 𝑆𝑥2 is also structured by sliding surface 𝑆𝑥1 and
sub-sliding surface 𝑠𝑥2 which is formed by the error of the pendulum’s angle 𝑒𝑥1 and
pendulum’s rotational velocity ¤𝑒𝑥2. This surface is tasked with maintaining stability
in all state variables of the system, and its control law significantly influences the
system.

(a) Structure of sliding surfaces for HSMC

(b) Control system of the inverted pendulum with HSMC

Fig. 2. Structure of the HSMC approach to control the balance of the inverted pendulum

The HSMC is designed to control the inverted pendulum system considering
its nonlinear characteristics and effects of unwanted oscillations as the following:

• Step 1: Choosing the sub-sliding surfaces 𝑠𝑥1 and 𝑠𝑥2

𝑠𝑥1 = 𝑐𝑥1𝑒𝑥1 + ¤𝑒𝑥1 ,

𝑠𝑥2 = 𝑐𝑥2𝑒𝑥2 + ¤𝑒𝑥2 ,
(3)

with: 𝑐𝑥1, 𝑐𝑥2 (positive constant): coefficients for errors of cart position and
pendulum angle, respectively. 𝑒𝑥1, 𝑒𝑥2 is the error of the cart position and
pendulum angle, respectively.

𝑒𝑥1 = 𝑦 − 𝑦𝑑 ,
𝑒𝑥2 = 𝜃 − 𝜃𝑑
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in that, 𝑦 and 𝜃 are the real cart position and pendulum angle; 𝑦𝑑 , 𝜃𝑑 for the
desired cart position and pendulum angle.
Due to the balance point of the system at the original point, the desired cart
position and pendulum angle should become zero (𝑦𝑑 = 0, 𝜃𝑑 = 0).
Thus, the Eq. (3) can be written as the following:

𝑠𝑥1 = 𝑐𝑥1𝑦 + ¤𝑦 ,
𝑠𝑥2 = 𝑐𝑥2𝜃 + ¤𝜃.

(4)

• Step 2: The control law for the first sliding surface 𝑆𝑥1 is designed.
The sliding surface 𝑆𝑥1 is used to control the position and velocity of the
cart. Thus, the configuration of 𝑆𝑥1 and its derivative ¤𝑆𝑥1 is introduced:

𝑆𝑥1 = 𝑠𝑥1 = 𝑐𝑥1𝑦 + ¤𝑦 , (5)
¤𝑆𝑥1 = 𝑐𝑥1 ¤𝑦 + ¥𝑦 = 𝑐𝑥1 ¤𝑦 +

(
𝑓1(𝑋) + 𝑏1(𝑋)𝑢𝑒𝑞1

)
(6)

with the control law for this surface:

𝑢1 = 𝑢𝑒𝑞1 + 𝑢𝑠𝑤1 ,

where, 𝑢𝑒𝑞1 and 𝑢𝑠𝑤1 are the equivalent control law and switching control
law of the first surface, respectively. While as, 𝑢𝑠𝑤1 is selected as in Eq. (7),
𝑢𝑒𝑞1 is determined by giving ¤𝑆𝑥1 to zero.

𝑢𝑒𝑞1 = −𝑏−1
1 (𝑋) (𝑐1 ¤𝑦 + 𝑓1(𝑋)) , (7)

𝑢𝑠𝑤1 = −𝑏−1
1 (𝑋) (𝑘1𝑆𝑥1 + 𝜂1sign(𝑆𝑥1)) , (8)

𝑢1 = −𝑏−1
1 (𝑋) (𝑐1 ¤𝑦 + 𝑓1(𝑋) + 𝑘1𝑆𝑥1 + 𝜂1sign(𝑆𝑥1)) . (9)

• Step 3: Proving the stability of the system which is represented by the cart
position.
First of all, the Lyapunov function for the first sliding surfaces and its deriva-
tive following the time are determined based on Eqs. (5)–(9):

𝑉1 =
1
2
𝑆2
𝑥1 , (10)

¤𝑉1 = 𝑆𝑥1 ¤𝑆𝑥1 = 𝑆𝑥1 (−𝑘1𝑆𝑥1 − 𝜂1sign(𝑆𝑥1)) = −𝑘1𝑆
2
𝑥1 − 𝜂1 |𝑆𝑥1 | , (11)

where,

𝑆𝑥1 = 𝑠𝑥1 = 𝑐𝑥1𝑦 + ¤𝑦,
¤𝑆𝑥1 = 𝑐𝑥1 ¤𝑦 + ¥𝑦

= 𝑐𝑥1 ¤𝑦+
(
𝑓1(𝑋)+𝑏1(𝑋)

[
−𝑏−1

1 (𝑋)
(
𝑐1 ¤𝑦+ 𝑓1(𝑋)+𝑘1𝑆𝑥1+𝜂1sign(𝑆𝑥1)

) ] )
= −𝑘1𝑆𝑥1 − 𝜂1sign(𝑆𝑥1).
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Therefore, based on Eqs. (10) and (11), the derivative of 𝑉1 will become:

¤𝑉1 = −2𝑘1𝑉1 − 𝜂1
√

2𝑉0.5
1 ⩽ −𝜂1

√
2𝑉0.5

1 . (12)

Based on the Lemma for proving the asymptotic stability proof and finite-
time convergence [28–30], the system is asymptotically stable (𝑉1 converges
to zero). Therefore, the sliding surface 𝑆𝑥1 converges to the origin in finite
time. This results in the cart position to zero.

• Step 4: The control law for the second sliding surface 𝑆𝑥2 is designed.
The second sliding surface 𝑆𝑥2 is encompassed by all state variables.

𝑆𝑥2 = 𝛼𝑆𝑥1 + 𝑠𝑥2 (the coefficient 𝛼 is a positive constant) (13)

with the control law for the second major sliding surface is formulated as:

𝑢2 = 𝑢𝑒𝑞1 + 𝑢𝑒𝑞2 + 𝑢𝑠𝑤2 , (14)

where, 𝑢𝑒𝑞2 and 𝑢𝑠𝑤2 are the equivalent control law and switching control
law of the second surface, respectively.

𝑢𝑒𝑞2 = −𝑏−1
2 (𝑋) (𝑐2𝜃 + 𝑓2(𝑋)) ,

𝑢𝑠𝑤2 = −
𝛼𝑏1(𝑋)𝑢𝑒𝑞2 + 𝑏2(𝑋)𝑢𝑒𝑞1 + 𝑘2𝑆𝑥2 + 𝜂2sign(𝑆𝑥2)

𝛼𝑏1(𝑋) + 𝑏2(𝑋)
.

Thus:

𝑢2 =
𝛼𝑏1(𝑋)𝑢𝑒𝑞1 + 𝑏2(𝑋)𝑢𝑒𝑞2 − 𝑘2𝑆𝑥2 − 𝜂2sign(𝑆𝑥2))

𝛼𝑏1(𝑋) + 𝑏2(𝑋)
. (15)

• Step 5: Proving the stability of the whole system.
The Lyapunov function for the first sliding surfaces and its derivative fol-
lowing the time are determined:

𝑉2 =
1
2
𝑆2
𝑥2 , (16)

¤𝑉2 = 𝑆𝑥2 ¤𝑆𝑥2 = −𝑘2𝑆
2
𝑥2 − 𝜂2𝑆𝑥2sign(𝑆𝑥2) ⩽ −𝑘2𝑆

2
𝑥2 − 𝜂2 |𝑆𝑥2 | , (17)

where,

𝑆𝑥2 = 𝛼 (𝑐1𝑥1 + 𝑥2) + (𝑐2𝑥3 + 𝑥4) ,
¤𝑆𝑥2 = 𝛼 (𝑐1 ¤𝑥1 + ¤𝑥2) + (𝑐2 ¤𝑥3 + ¤𝑥4)

= 𝛼
(
−𝑏1𝑢𝑒𝑞1

)
+

(
−𝑏2𝑢𝑒𝑞2

)
+ (𝛼𝑏1 + 𝑏2)

𝛼𝑏1(𝑋)𝑢𝑒𝑞1 + 𝑏2(𝑋)𝑢𝑒𝑞2 − 𝑘2𝑆𝑥2 − 𝜂2sign(𝑆𝑥2)
𝛼𝑏1(𝑋) + 𝑏2(𝑋)

= −𝑘2𝑆𝑥2 − 𝜂2sign(𝑆𝑥2).
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Therefore, based on Eqs. (16) and (17), the derivative of 𝑉1 will become:

¤𝑉2 = −2𝑘2𝑉2 − 𝜂2
√

2𝑉0.5
2 ⩽ −𝜂2

√
2𝑉0.5

2 . (18)

Thus, similar to 𝑆𝑥1, 𝑆𝑥2 converges to the origin in finite time and the
pendulum is stable.

4. Experimental model

The experimental inverted pendulum system is shown in Fig. 3 with its pa-
rameters presented in Table 1. A frame holds the entire system in place. Through
a coupling, a uniform rod is fastened to the cart. The motor’s responsibility is to
move the cart, which is powered by a belt, so that the rod stays stable. The cart’s
maximum travel distance is limited to a distance of 0.42 m. To detect the angular
position of the rod, the first encoder sensor is attached to the rod’s pivot. To measure
the sliding cart’s displacement and speed, a second angle sensor is mounted on the
other side of the engine. Fig. 4 depicts the electrical connection diagram for the
inverted pendulum system. The DC motor operates with a rated voltage of 24 V.
The H-bridge circuit used is the Hbr-H 250 W – 15 A. Subsequently, the 5 V power
supply is regulated through an LM2596 voltage regulator from the 24 V source to
sustain the operation of the central C2000 control circuit, as well as the angle and
position sensors. Signals from these sensors are feedback to the C2000 control unit.
The central control unit then calculates control values and outputs PWM signals
to regulate the motor through the H-bridge. The model executes both the PD-LQR
and HSMC algorithms, with the comparison results presented in the following
sections. The PD-LQR controller employs a proportional-derivative (PD) control
law, where Kp is the proportional gain and Kd is the derivative gain. The LQR
minimizes the cost function with 𝑄 and 𝑅 as weighting matrices. While the LQR
gains are fixed because the 𝐾 gains are precomputed and remain constant, PD gains

Fig. 3. Experimental setup of the inverted pendulum system
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Fig. 4. Actuator, sensor, and control system

are manually tuned. For HSMC, the sliding surface parameters 𝑐𝑥1 and 𝑐𝑥2 can be
adjusted. Both controllers are fine-tuned to achieve the best possible performance.

Fig. 5 illustrates the hardware-in-loop setup for the inverted pendulum, tran-
sitioning from Simulink to the F28379D hardware. Initially, the peripherals are
configured, comprising the Enhanced Pulse Width Modulation (ePWM) block re-
sponsible for generating varying voltages to control the DC motor through an
H-bridge. The Enhanced Quadrature Encoder Pulse (eQEP) blocks are utilized in
conjunction with a linear or rotary incremental encoder to gather position, direc-
tion, and speed information from both the pendulum and cart. GPIO blocks are
employed to manage the direction of the DC motor through the H-bridge, and the
SCI transmit block is engaged to send scalar or vector data using the specified
SCI USB. Following this, a Simulink block containing Matlab code is employed

Fig. 5. The hardware-in-loop setup for the inverted pendulum
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to manage the code for the HSMC and PD-LQR algorithm. Subsequently, these
blocks are interlinked, forming a comprehensive code structure for the system. Ul-
timately, the experimental system is implemented after generating the code using
Matlab/Simulink.

5. Results and discussion

5.1. Oscillation analysis and system response

The experimental analysis reveals oscillatory behavior in the inverted pendu-
lum under varying conditions. This behavior is influenced by cart displacement,
velocity, and the initial release angle, as shown in Fig. 6. The time-domain data

(a) Time-domain analysis

(b) Frequency-domain analysis

Fig. 6. Oscillation signal and frequency of inverted pendulum under various conditions
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illustrate that oscillation amplitude is directly correlated with both the cart’s dis-
placement and speed; for instance, larger displacements and higher velocities, such
as the 0.5 m displacement at 1 m/s, produce more pronounced oscillations than
lower-energy scenarios, exemplified by the 0.3 m displacement at 0.5 m/s. In the
frequency domain, each condition exhibits unique resonant peaks, with notable
frequency components around 10 Hz and 20 Hz for controlled scenarios. In con-
trast, the free-fall condition, where the pendulum is released from a 67◦ angle,
introduces a distinctive low-frequency oscillation near 2.5 Hz. This unwanted os-
cillation likely arises from the nonlinear dynamics of the system when released
from a high angle, where gravitational forces and angular momentum generate
complex, uncontrolled motion. The persistence of this 2.5 Hz component, absent
in other scenarios, highlights a critical system instability associated with unreg-
ulated, high-energy states. This behavior underscores the importance of control
mechanisms in mitigating oscillatory instabilities in nonlinear systems like the
inverted pendulum. The presence of such low-frequency oscillations in free-fall
conditions suggests that advanced nonlinear control techniques, such as feedback
linearization or adaptive control, may be essential for stabilizing the system and
suppressing chaotic responses, especially when operating outside conventional
control limits.

Fig. 7 illustrates the simulation results for the inverted pendulum system. The
starting point of the simulation is when the pendulum angle is at 10◦ offset from the
equilibrium position. Since the system is under unwanted oscillation, a harmonic
input signal is added with an amplitude of 0.1 m, frequency of 2.5 Hz, and step
size of 0.2 seconds acting as the nonlinear uninvited oscillation to investigate the
simulation response of the system.

(a) Cart (b) Pendulum

Fig. 7. Cart and Pendulum response under input oscillation with 10◦ angle offset
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5.2. Simulation results with disturbances

The simulation results presented in Fig. 8 demonstrate the dynamic behav-
ior of the inverted pendulum system under four distinct disturbance conditions.
The HSMC controller’s performance was evaluated through systematic testing,
including baseline operation (no disturbances), pure oscillatory disturbance, pulse
disturbance, and combined oscillatory and pulse disturbance scenarios. Pulse dis-
turbance is applied to the pendulum at the 10th second (after the swing-up phase
and reaching steady state) with an amplitude of −10◦ to simulate unwanted nonlin-
ear disturbance behavior in the simulation model. The response characteristics are
displayed through four key state variables: cart position (m), pendulum angle (◦),
cart velocity (m/s), and pendulum angular velocity (◦/s) over a 10 second simula-
tion period, demonstrating the HSMC method’s capability in disturbance rejection
and stability maintenance.

(a) Cart response (b) Cart velocity response

(c) Pendulum response (d) Pendulum angular velocity response

Fig. 8. System response under various disturbance conditions
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Case 1: No Oscillation, No Disturbance
In this baseline scenario, without oscillation or pulse disturbance, the cart and

pendulum achieve stable responses quickly. The cart position reaches a maximum
deviation of approximately 0.2 m at around 𝑡 = 2 s before stabilizing near zero. The
pendulum angle exhibits a peak overshoot of 150◦ initially, which then stabilizes
close to 0◦ after about 5 s. The cart and pendulum angular velocities, similarly,
show initial fluctuations but settle within a few seconds, with minimal oscillations
indicating successful stabilization by the HSMC control.

Case 2: No Oscillation, With Pulse Disturbance
When a pulse disturbance is introduced, the response exhibits a notable tran-

sient deviation compared to the baseline. The cart position, after initial stabilization,
briefly deviates by approximately 0.1 m around 10 s due to the pulse but returns
to zero, demonstrating the HSMC’s robustness against transient disturbances. The
pendulum angle similarly experiences a momentary shift around 10 s but returns
to 0◦, indicating effective disturbance rejection. Both cart and pendulum angular
velocities show minor peaks corresponding to the pulse disturbance but rapidly
stabilize, underscoring the HSMC’s resilience in damping the transient effects.

Case 3: With Oscillation, No Pulse Disturbance
In the presence of oscillation disturbance alone, the system shows periodic

fluctuations, particularly in the cart’s position and velocity responses. The cart
position oscillates slightly more than in the baseline case, with oscillations peaking
around 0.1 m. The pendulum angle stabilizes after initial oscillations but retains
small periodic deviations due to the persistent oscillation disturbance. Similarly,
both cart velocity and pendulum angular velocity exhibit sustained oscillatory
behavior, with the angular velocity of the pendulum reaching peaks around 100◦/s
periodically. This behavior indicates that while the HSMC manages the oscillations,
it does not entirely eliminate their influence.

Case 4: With Both Oscillation and Pulse Disturbance
Under combined oscillation and pulse disturbances, the system faces the most

challenging environment. The cart position shows significant deviations, with a
peak of 0.3 m around 𝑡 = 10 s during the pulse disturbance and continued os-
cillations afterward. The pendulum angle response shows marked fluctuations,
momentarily exceeding 150◦ in the initial response and demonstrating oscilla-
tory behavior superimposed on transient deviations from the pulse. Both cart and
pendulum angular velocities reflect these compounded disturbances, with angular
velocities reaching peaks up to 200◦/s during the pulse and oscillating thereafter.
This case highlights the limitations of the HSMC in fully neutralizing combined
disturbances, though it still achieves eventual stabilization.
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The HSMC control method effectively mitigates disturbances in most cases,
particularly in scenarios with isolated disturbances. However, when faced with
combined oscillation and pulse disturbances, the system exhibits transient and os-
cillatory behavior that the control strategy only partially dampens. Overall, the
results demonstrate the HSMC’s robustness, with quick stabilization in less com-
plex disturbance scenarios and some limitations under compounded disturbances.

A homoclinic orbit as shown in Fig. 9 refers to a trajectory in phase space that
starts and ends at the same equilibrium point, often around an unstable fixed point.
Fig. 9 depicts the phase portrait of a system, likely an inverted pendulum, showing
the angular position (𝜃) on the 𝑥-axis and the angular velocity (d𝜃/d𝑡) on the y-axis.
The plot indicates a homoclinic orbit, which occurs in systems with saddle points.
The spiral shape indicates that the pendulum is oscillating with decaying energy
as it approaches the equilibrium point. The trajectory starts with larger amplitude
oscillations, which gradually reduce, indicating damping in the system.

Fig. 9. Homoclinic orbit

The values of angular displacement (𝜃) range from about −150◦ to 200◦ in
the plot, suggesting the pendulum undergoes large angular movements that go
beyond typical stable regions. The angular velocity (d𝜃/d𝑡) varies between ap-
proximately −600◦/s to 600◦/s, indicating rapid swings. As the system approaches
the homoclinic orbit, the velocity diminishes, which reflects that the pendulum is
approaching a critical threshold where it switches from swinging to stabilizing at
an unstable position. The inward spirals seen in the plot suggest a gradual loss of
energy, which could be due to damping forces such as friction or air resistance. As
energy is dissipated, the pendulum exhibits smaller oscillations around the equi-
librium point. The trajectory’s progression towards the center in the phase space
(closer to zero velocity and position) signifies the system’s tendency to stabilize
around the unstable point, typical in control mechanisms trying to swing-up and
balance an inverted pendulum.
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The homoclinic orbit demonstrates the boundary between stable oscillations
and unstable dynamics of the inverted pendulum system. This trajectory is critical
in understanding the control strategies required for balancing an inverted pendulum.
The numerical values show large oscillations that eventually reduce, which reflects
energy dissipation and a movement toward an unstable equilibrium.

5.3. Comparison between conventional PD-LQR and HSMC controllers

The experimental results for the inverted pendulum system are illustrated in
Fig. 10 and Fig. 11. The plots presented compare the performance of two control
strategies PD-LQR and HSMC in managing both cart position and pendulum

(a) Cart position

(b) Pendulum angle

Fig. 10. Experimental response with unwanted oscillation assumption
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angle under oscillatory disturbances. Fig. 10a illustrates the cart’s position over
time, while Fig. 10b shows the angular response of the pendulum. Additionally, a
simulation-only line is included to visualize the system’s natural response without
any active control intervention.

Fig. 11. Experimental control signal with unwanted oscillation assumption

In the cart position plot, the PD-LQR (represented by a red dashed line) shows
a notable oscillatory behavior with amplitudes reaching as high as 0.35 m. The
oscillations decrease in amplitude over time, but the damping is relatively slow,
suggesting limited effectiveness in stabilizing the cart’s position rapidly. In contrast,
the HSMC approach (depicted by a solid black line) demonstrates much tighter con-
trol over the cart’s position. The amplitude of oscillation for the HSMC controller
remains within ±0.05 m after the initial transients, significantly outperforming PD-
LQR in terms of positional accuracy. The simulation line (blue dashed) serves as a
baseline, indicating the natural oscillatory frequency and amplitude of the system
in the absence of any control, with an initial amplitude peak of approximately
0.4 m, which gradually decreases.

The pendulum angle response, further highlights the superior performance of
the HSMC control. The PD-LQR strategy again shows pronounced oscillations,
with angles reaching up to ±10◦ initially and then tapering to a range of ±5◦.
However, HSMC maintains a more stable angle trajectory, keeping oscillations
within ±2.5◦, reflecting a much higher level of control over the pendulum’s orien-
tation. The simulation line indicates the pendulum’s natural response with initial
oscillations close to ±10◦, which the HSMC controller successfully mitigates.

Overall, these plots illustrate the advantages of HSMC over PD-LQR in terms
of minimizing oscillatory behavior in both cart position and pendulum angle, lead-
ing to faster stabilization and reduced error. The more effective disturbance rejection
and oscillation damping of HSMC make it a more suitable choice for systems re-
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quiring precise control under challenging conditions. This demonstrates robustness
and reliability of HSMC system as a control solution for underactuated systems
facing real-world disturbances. Furthermore, for the HSMC, the control value is
smaller in the first 0.3 s compared to the PD-LQR controller. This implies that less
energy is consumed to control the system. Additionally, the HSMC also limits the
cart’s oscillation within the range [−0.1 : 0.1] m, which is shorter than the cart’s
travel range controlled by the PD-LQR controller in the range [−0.1 : 0.15] m.
Fig. 11 presents a comparative analysis of control signals of PD-LQR, HSMC,
and simulation, under unwanted oscillation conditions over a 9-second period. The
simulation shows idealized behavior with regular oscillation patterns, serving as a
baseline for comparing actual controller performances. The PD-LQR controller ex-
hibits more scattered and higher amplitude oscillations, frequently reaching ±10 V,
suggesting less efficient control and higher energy consumption. In contrast, The
HSMC controller maintains control signals within ±5 V during steady-state op-
eration, reflecting systematic and energy-efficient performance. The reduction of
energy consumption (32.6% as shown in Table 2) is defined as the ratio of the de-
crease in control energy with HSMC to the control energy with PD-LQR, compared
to the control power with PD-LQR. Moreover, the HSMC is more refined control
behavior, characterized by lower amplitude signals and more organized patterns,
which suggests better disturbance rejection and system stability while potentially
reducing mechanical wear and stress on electrical components. This visualization
effectively validates the superior performance of HSMC over PD-LQR in terms of
both control effort and energy efficiency.

Table 2. Performance comparison between HSMC and PD-LQR

Criteria (unit)
Method Improvement

percentageHSMC PD-LQR
Position control range (m) 0.05 0.35 85.7%
Angle control range (◦) 2.5 10 75%
Settling time (s) 2 5 60%
Energy consumption (W) 15.3 22.7 32.6%
Cart travel range (m) 0.2 0.25 33.3%

The performance of the proposed HSMC is extensively compared with the
conventional PD-LQR controller as shown in Table 2, demonstrating significant
improvements across multiple performance indexes. The HSMC system achieves
superior position control with steady-state maintenance within ±0.05 m compared
to ±0.35 m under oscillatory disturbances of PD-LQR, representing an 85.7%
improvement. Furthermore, the angle stabilization capabilities shows the marked
enhancement, maintaining angular deviations within ±2.5◦ compared to the range
of PD-LQR ±5◦. While other advanced control methodologies such as Neural
Network (NN) based controllers and adaptive backstepping approaches previous
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works [31] direct performance comparisons prove challenging due to their re-
quirement for extensive training data and complex implementation procedures.
A distinctive aspect of this study lies in its comprehensive treatment of unwanted
oscillations, particularly the identified 2.5 Hz phenomenon characteristic of low-
cost implementations. This consideration of real-world disturbances sets this work
apart from existing literature, where controllers are typically designed and eval-
uated under ideal conditions. The proposed HSMC framework achieves robust
performance without the need for extensive system identification or training pro-
cedures, offering immediate applicability in practical settings. The demonstrated
ability to maintain stability and performance in the presence of real-world oscilla-
tory disturbances, while achieving energy efficiency improvements, establishes the
practical superiority of the proposed approach in low-cost implementation scenar-
ios. This research thus bridges a critical gap between theoretical control design and
practical implementation considerations, particularly in the context of unwanted
oscillations in low-cost systems.

5.4. Experimental results with disturbances

The experimental validation of the proposed HSMC system is conducted
through a comprehensive series of tests examining the controller’s performance
under pulse and step disturbances as shown in Figs. 12–15. The system response
is analyzed across three distinct phases: initial swing-up, disturbance response,
and sustained oscillation behavior. The system demonstrated robust stabilization
capabilities during the initial swing-up phase (0–5 s). The cart position exhibits
controlled oscillations with a maximum displacement of ±0.15 m while achieving
velocity peaks of ±1.5 m/s. The pendulum angle successfully is moved from its
initial hanging position to the upright configuration, with the controller effectively
damping out the initial high-frequency oscillations. This phase establishes the abil-

Fig. 12. Experimental cart response under single pulse disturbances
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ity of the controller to manage the complex nonlinear dynamics inherent in the
swing-up process.

Fig. 13. Experimental pendulum response under single pulse disturbances

Fig. 14. Experimental cart response under step disturbances

The system’s disturbance rejection capabilities were evaluated by applying a
pulse disturbance at 𝑡 = 10 s, with an amplitude of 1 V and a duration of approxi-
mately 2 s. The controller demonstrated superior performance by limiting the cart’s
maximum position deviation to 0.15 m with a recovery time of approximately 3 s.
The pendulum angle is maintained within ±4◦ throughout the disturbance period,
with the system exhibiting a settling time of 2.5 s. This response indicates robust
disturbance rejection characteristics and effective stabilization properties of the
HSMC implementation.
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Fig. 15. Experimental pendulum response under step disturbances

The sustained oscillation response phase (15–45 s) provided crucial insights
into the controller’s long-term stability characteristics. During this period, the cart
position is consistently maintained within±0.05 m while experiencing a 2.5 Hz os-
cillatory disturbance. The pendulum angle indicates remarkable stability, remaining
within ±4◦ despite the continuous perturbation. The system maintains these tight
control bounds while keeping the cart velocity within ±0.5 m/s, demonstrating the
controller’s ability to balance performance requirements with energy efficiency.

Quantitative analysis of the system performance revealed impressive metrics
across multiple criteria. The RMS position error is contained to 0.028 m, while
the RMS angle error remained within 1.35◦. The controller achieved these results
while maintaining efficient energy utilization, as evidenced by the smooth control
signals and minimal chattering observed in the response data. The system exhibits
consistent performance indexes over extended operation periods, with position
maintenance within ±0.05 m and angle stabilization within ±4◦ during steady-
state operation.

The experimental results confirm the HSMC’s theoretical framework and prac-
tical efficacy in managing nonlinear dynamics. The ability of the controller to
maintain stability while rejecting both step disturbances and sustained oscillations
suggests its potential applicability to a broader class of underactuated systems. Fur-
thermore, the achieved performance metrics represent a significant improvement
over conventional control strategies, particularly in terms of disturbance rejection
and energy efficiency. These findings demonstrate the capability of HSMC system
to provide robust control performance while maintaining system stability under var-
ious disturbance conditions. The experimental validation confirms the controller’s
effectiveness in practical implementations, suggesting its viability for real-world
applications requiring precise control of underactuated systems.
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The experimental results reveal a distinctive offset phenomenon in the cart’s
position response under step disturbance conditions. When subjected to a 1.0 V
step disturbance at 𝑡 = 10 s, the system exhibits an immediate negative position
offset of approximately −0.15 m, followed by sustained oscillations around this
offset position. This behavior is characterized by a consistent oscillation pattern
with amplitude bounds of ±0.05 m and a dominant frequency of 2.5 Hz. The offset
demonstrates a gradual recovery profile over approximately 10 seconds, suggesting
the presence of an integral action within the control system. Unlike the pulse distur-
bance response, where the cart maintains oscillations around the zero position, the
step disturbance induces this temporary but significant positional bias. This offset
phenomenon can be attributed to the controller’s strategy in maintaining pendulum
stability while simultaneously managing the sustained nature of the step input. The
system prioritizes pendulum angle stabilization (maintained within ±4.0◦) while
allowing this temporary position offset, demonstrating the inherent trade-off be-
tween position accuracy and angle stability in underactuated systems. The gradual
recovery from the offset position, without compromising the pendulum’s stability,
validates the capacity of HSMC to handle complex disturbance scenarios while
maintaining overall system stability. The Performance Metrics under disturbances
are shown in Table 3.

Table 3. Performance of HSMC controller under disturbances

Performance metric Step
distur. resp.

Pulse
distur. resp.

Disturbance duration (s) inf 2

Disturbance amplitude (V) 1 1

Maximum cart deviation (m) ±0.15 ±0.05

Recovery time (s) 3 2.5

Steady-state error (m) ±0.05 ± 0.05

Peak velocity (m/s) ±0.5 ±0.4

Initial offset (m) −0.15 none

Oscillation around offset (m) ±0.05 no offset

Offset duration (s) 10 no offset

Offset recovery pattern gradual return
to zero no offset

Maximum angle deviation (◦) ±4.0 ±4.0

Angular velocity peak (◦/s) ±1.0 ±1.0

Settling time (s) ∼ 2.5 ∼ 2.5

Oscillation frequency (Hz) ∼ 2.5 ∼ 2.5

Position bound after recovery (m) ±0.05 ±0.05

Angle bound after recovery (◦) ±4.0 ±4.0
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6. Conclusions

This research has made several impactful contributions to the field of nonlinear
control systems, focusing specifically on the challenges associated with underactu-
ated inverted pendulum systems. A key highlight of the study is the novel approach
to oscillation analysis and handling. This is the first comprehensive study to identify
and address the 2.5 Hz unwanted oscillatory phenomenon commonly observed in
low-cost inverted pendulum systems. By successfully integrating these real-world
oscillations into the control system design, this research effectively bridges the gap
between theoretical control models and practical implementations, ensuring that
the control strategies are better suited to address the unpredictability of real-world
environments.

The development of an advanced HSMC framework marks another significant
achievement. The enhanced HSMC structure not only manages the intrinsic non-
linearities within the system but also effectively counteracts unexpected oscillatory
behaviors. From a hardware perspective, this study introduces a novel, cost-effective
approach by implementing the HSMC algorithm on the F28379D microcontroller
platform. This is further supported by the development of a hardware-in-the-loop
(HIL) testing framework that facilitates real-time parameter adjustments, allowing
for optimal system response tuning.

In terms of theoretical validation, the research provides a rigorous stabil-
ity analysis through the Lyapunov criteria and characterizes the system’s behavior
using homoclinic orbit analysis. Additionally, the controller’s robustness was exten-
sively demonstrated under diverse disturbance scenarios, including pure oscillatory
disturbances, pulse disturbances, and combined disturbance conditions.
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