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Dynamic event-triggered sliding-mode fault-tolerant
bipartite consensus control for multi-agent systems

based on adaptive observer
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Abstract. For a class of nonlinear second-order leader-follower multi-agent systems with actuator faults, an adaptive observer-based dynamic
event-triggered sliding-mode fault-tolerant bipartite consensus control strategy is proposed. Firstly, an adaptive fault observer is designed.
The position, velocity and actuator fault degree of the agents at the current moment are obtained. Secondly, a dynamic event-triggered mechanism
is proposed to save network resources. Then, a dynamic sliding-mode face and a sliding-mode fault-tolerant bipartite consensus control strategy
are given based on the output of the fault observer and the dynamic event-triggered mechanism. So that the bipartite consensus of the second-order
multi-agent system can still be realized when there is an actuator fault. The conditions for the convergence of the error of fault-tolerant bipartite
consensus for multi-agent systems are given. Finally, in a leader-follower multi-agent system connected by an undirected graph, the effectiveness
of the designed control strategy is verified through simulations.

Keywords: multi-agent systems; adaptive observer; dynamic event-triggered mechanism; sliding-mode fault-tolerant control; bipartite consensus
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1. INTRODUCTION
In the last decade, the control problem of multi-agent systems
has been widely studied due to the increasing number of applica-
tions for multi-agent systems. As the foundation of multi-agent
system control, the consistency problem has been a hot topic
in the research of multi-agent system control strategies. Various
approaches have been proposed for different aspects of the con-
sistency problem of multi-agent system, including input satura-
tion, optimal control, impulse control, and fuzzy adaptive con-
trol [1–5]. In [1], a dynamic consistency protocols for nonlinear
saturated multi-agent system were introduced, and the limita-
tions of low-gain feedback methods for input-saturated linear
systems were emphasized. In [2], a distributed optimal coherent
control algorithm for continuous-time multi-agent system was
proposed, where the trade-off between the speed of convergence
and the energy cost over a finite time horizon was emphasized.
In [3], a hybrid protocol to achieve leader-follower consistency
in multi-agent systems was proposed, where continuous and
impulse control were combined. In [4], the leader-follower con-
sistency problem in nonlinear multi-agent systems with interval
time-varying delays using impulse control was studied. In [5],
an energy coordination control method based on multi-agent
systems and neural networks is proposed and applied to energy
management and voltage control of DC microgrids.

In all of the above studies of consistency in multi-agent sys-
tems, it is assumed that the agents have only one cooperative
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relationship with each other. That is, all agents are approach-
ing the same consistency goal. However, in practical situations,
agents have not only cooperative, but also competitive rela-
tionships with each other. That is, the states of the agents move
toward opposite goals, such as the bidirectional flight of a swarm
of UAVs, the relative motion of multiple robotic arms, and so
on. Bipartite consensus in a multi-agent system is when agents
with competing relationships eventually reach a state of oppo-
site sign but equal size. Due to the wide range of applications,
the literature on bipartite consensus for multi-agent systems has
grown significantly in recent years [6–10]. In [6], a bipartite con-
sensus for nonlinear multi-agent systems under directed signed
graphs was focused on, where a new Lipschitz type condition
was introduced to handle nonlinear terms. In [7], a bipartite con-
sensus for multi-agent systems with noise on Markov switching
topologies was studied. In [8], a differential privacy preserving
bipartite consensus for multi-agent systems with opposing in-
formation was investigated and the importance of structurally
balanced topological graphs was emphasized. In [9], the equiv-
alence between the dichotomous consensus problem and the
traditional consensus problem is established through the state
feedback and output feedback control methods. The existing
state feedback and input feedback consensus algorithms are di-
rectly applied to solve the problem of bipartite consensus for
multi-agent systems. In [10], a mean-square bipartite consensus
was studied for multi-agent systems with measurement noise
and communication delay.

Due to equipment aging, communication errors, and other
reasons, multi-agent systems may experience a variety of failures
in real-world applications. These faults will affect the state of
some agents. If faults are not handled or isolated in time, then the

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. e155893, 2026 1

https://orcid.org/0000-0002-0544-0289
https://orcid.org/0009-0005-0727-2556
mailto:fxj@bistu.edu.cn


X. Fu and D. Xia

fault information will be quickly passed to other agents, which
may eventually lead to system paralysis or destruction. Generally
speaking, fault-tolerant control of multi-agent systems can be
categorized into passive fault-tolerant control and active fault-
tolerant control. Passive fault-tolerant control mainly relies on
the robustness of the system to offset the effects of faults, or
to predetermine the types of faults based on experience and
compensate for them when they occur. In practice, passive fault-
tolerant methods are costly and ineffective. Different from the
passive fault-tolerant method, the active fault-tolerant method
estimates the faults occurring in the system through adaptive
law or fault observer, and then compensates the faults through
the active fault-tolerant control strategy. This method has lower
cost and better fault-tolerance effect. Therefore, in recent years,
the research of active fault-tolerant control algorithms is a hot
issue in the fault-tolerant control of multi-agent systems.

Many different observers have been designed in order to es-
timate the state and the degree of failure of multi-agent sys-
tems [11–13]. In [11], a sliding-mode observer was proposed
and was used to estimate actuator faults in linear multi-agent
systems. In [12], various graph topologies were considered,
a proportional-integral observer was proposed, where actua-
tor faults in a leader-follower linear multi-agent system are
estimated in a distributed manner. In [13], a class of second-
order leader-follower multi-agent systems with actuator faults
was considered, where a super-twisted observer was designed
and the velocity and actuator faults of each agent were estimated.
Various fault-tolerant control methods have been proposed for
the multi-agent system failure problem [14–18]. In [14], a class
of second-order multi-agent systems with actuator faults is dis-
cussed. In [15], a leader state observer is constructed and used to
estimate the state of the leader. Meanwhile, a fault-tolerant con-
troller with finite time convergence was designed. A multi-agent
system containing multiple leaders and followers was studied.
In [16], a neural network based adaptive observer was designed
and the unmeasurable states of the system are estimated. Based
on the measurements, a fault-tolerant control law was designed.
A class of nonlinear multi-agent systems with multiple leaders
and followers is also considered. In [17], an improved distributed
observer based on which the unmeasurable states of the system
are estimated was designed. A finite time fuzzy fault-tolerant
controller was designed. A class of multi-agent systems with
incipient actuator faults in fixed and switched topologies is con-
sidered. In [18], a new distributed fault-tolerant consistency
tracking controller is proposed. However, there are not many
studies on fault-tolerance for multi-agent systems when failures
occur during the realization of bipartite consensus. In fact, when
the multi-agent systems experience a fault, it will be difficult for
the systems to realize the bipartite consensus.

Sliding-mode control strategies have been widely used in
multi-agent systems control methods because of their robust-
ness to disturbances and unmodeled dynamics [19–21]. In [19],
the consistency problem of a class of second-order multi-agent
systems with unknown disturbances was considered. A sliding-
mode control protocol based on the equivalent approximation
law and state information between agents was proposed. In [20],
a class of high-order uncertain random multi-agent systems was

studied. Consistency and tracking error were combined. A new
distributed fuzzy sliding-mode controller was designed. In [21],
a class of high-order nonlinear multi-agent systems was studied.
By using backstepping, a distributed recursive linear sliding-
mode control scheme was proposed. Although the sliding-mode
control strategy has good robustness, most existing studies have
not fully utilized its advantages to address the fault-tolerant bi-
partite consensus problem in multi-agent systems.

In multi-agent systems, the control information acquired by
each agent depends on neighbor agents. When the system con-
tains a large number of agents, each communication is accompa-
nied by a large amount of information transfer. However, not all
of this information is useful. Consequently, many scholars have
introduced event-triggered mechanisms into multi-agent sys-
tems to reduce the waste of network resources [22–26]. In [22],
the event-triggered control method was extended to general lin-
ear multi-agent systems. In [23], a method was proposed for sys-
tems with identical linear dynamic models, where edge-based
event-triggered control in a directed communication topology
was introduced. In [24], positive lower bounds on non-zeno be-
haviors and inter-event intervals were ensured, and the problem
of event-triggered time-varying formation control for general
linear multi-agent systems was studied. In [25], a class of multi-
agent systems with input saturation and actuator failure was
considered. A fully distributed dynamic event-triggered control
was proposed. In [26], the problem of event-triggered control of
a class of first-order multi-agent systems with structurally bal-
anced topological graphs was studied. Synergistic criteria for
trigger condition parameters and validation cycles were estab-
lished, and the bipartite consensus of the system was guaranteed.
However, in the current research, event-triggered mechanisms
are seldom applied to the bipartite fault-tolerant consistency
of multi-agent systems. In fact, there is also a large amount
of network resource waste in the process of realizing bipartite
fault-tolerant consistency for multi-agent systems. The use of
event-triggered mechanism or dynamic event-triggered mecha-
nism can well save the network resources of multi-agent systems.

In fact, actuator faults or sensor faults have a significant im-
pact on multi-agent systems. If these faults are not properly ad-
dressed, it becomes difficult for the system to achieve bipartite
consensus. The strong robustness of the sliding-mode control
law allows nonlinear disturbances in multi-agent systems to be
effectively handled. Since the execution of control laws in multi-
agent systems generally involves substantial network resource
consumption, the use of a dynamic event-triggered mechanism
can effectively reduce this resource waste. Although several
studies have investigated the bipartite consensus problem of
multi-agent systems based on event-triggered mechanisms, very
little literature has focused on the fault-tolerant bipartite con-
sensus problem of multi-agent systems under such mechanisms.
In addition, few studies have applied sliding-mode control laws
to the bipartite consensus control of multi-agent systems.

Based on the above analysis, a class of second-order non-
linear multi-agent systems with cooperative and competitive
relationships is considered, and actuator faults are assumed to
occur in the system. An adaptive fault observer is designed to
estimate the states and actuator faults of the system, and the
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necessary conditions for the convergence of the observation er-
ror are derived. Based on the output of the fault observer, a
sliding-mode fault-tolerant bipartite consensus control is pro-
posed. This ensures that the bipartite consensus of multi-agent
systems with actuator faults and nonlinear disturbances can still
be achieved, and the conditions for the convergence of the sys-
tem bipartite consensus error are provided. Finally, to reduce the
waste of network resources, a dynamic event-triggered mech-
anism is designed and incorporated into the multi-agent sys-
tems and sliding-mode fault-tolerant bipartite consensus con-
trol. The main contributions of this paper are summarized as
follows: 1) Considering that the states of multi-agent systems are
difficult to obtain directly, distributed adaptive fault observers
are designed to estimate both the states and actuator faults of
the systems. 2) The effect of actuator faults on the bipartite con-
sensus of multi-agent systems is considered. A sliding-mode
fault-tolerant bipartite consensus control is designed, ensuring
that bipartite consensus can still be achieved in the presence
of actuator faults. 3) A dynamic event-triggered mechanism is
introduced into the multi-agent systems and sliding-mode fault-
tolerant bipartite consensus control. This significantly reduces
the number of communications in the system, thereby minimiz-
ing the waste of network resources.

2. PROBLEM STATEMENT AND PREPARATION

In this paper, a class of second-order leader-follower multi-agent
systems composed of 1 leader and 𝑁 followers is considered. Its
communication topology can be depicted by graph 𝚪 = (𝝊,𝜺,A),
where the node set of graph Γ is denoted by 𝜐 = {0,1, · · · , 𝑁}
and the edge set is denoted by 𝜀 ⊂ 𝜐×𝜐. The adjacency matrix
of graph Γ is denoted by A =

(
a𝑖 𝑗

)
𝑁×𝑁 . If the information of

the follower agent 𝑗 can be received by the follower agent 𝑖 and
the relationship between the follower agent 𝑖 and the follower
agent 𝑗 is cooperative, then a𝑖 𝑗 = 1. If the information of the
follower agent 𝑗 can be received by the follower agent 𝑖 and the
relationship between the follower agent 𝑖 and the follower agent 𝑗
is competitive, then a𝑖 𝑗 = −1. If the information of the follower
agent 𝑗 cannot be received by follower agent 𝑖, then a𝑖 𝑗 = 0.
The set of edges is described as 𝜀 = 𝜀+∪ 𝜀− , where the sets the
positive and negative edges are denoted by 𝜀+ = {( 𝑗 , 𝑖) |𝑎𝑖 𝑗 = 1}
and 𝜀− = {( 𝑗 , 𝑖) |𝑎𝑖 𝑗 = −1}, respectively. The in-degree of node

𝑖 is defined as 𝑑𝑖 =

𝑁∑︁
𝑗=1
𝑖≠ 𝑗

𝑎𝑖 𝑗 . For the whole system there are

D = 𝑑𝑖𝑎𝑔{𝑑1, · · · , 𝑑𝑁 } ∈ 𝑅𝑁×𝑁 . The Laplace matrix of graph Γ

is denoted as L = D−A. The graph Γ is said to form a spanning
tree with a certain node as the root if there exists a node in Γ

that can transmit information to all other nodes.
In this paper, the considered second-order leader-follower

multi-agent systems have 1 leader agent and 𝑁 follower agents.
The mathematical model of the navigator agent can be described
as follows: {

¤𝑝0 (𝑡) = 𝑣0 (𝑡),
¤𝑣0 (𝑡) = −𝑢0 (𝑡),

(1)

where the leader position and velocity are denoted by 𝑝0 (𝑡) ∈
𝑅𝑛 and 𝑣0 (𝑡) ∈ 𝑅𝑛, respectively. Leader inputs are denoted by
𝑢0 (𝑡) ∈ 𝑅𝑝 .

The mathematical model of follower agent 𝑖 can be described
as follows: {

¤𝑝𝑖 (𝑡) = 𝑣𝑖 (𝑡),
¤𝑣𝑖 (𝑡) = −𝑢𝐹

𝑖
(𝑡) + 𝑑𝑖 (𝑡),

(2)

where 𝑖 = 1,2, ..., 𝑁 , the position and velocity of follower 𝑖 are
denoted by 𝑝𝑖 (𝑡) ∈ 𝑅𝑛 and 𝑣𝑖 (𝑡) ∈ 𝑅𝑛, respectively, the fault
input of follower 𝑖 is denoted by 𝑢𝐹

𝑖
(𝑡) ∈ 𝑅𝑝 , and the nonlinear

dynamics of follower 𝑖 is denoted by 𝑑𝑖 (𝑡).
In this paper, follower 𝑖 is assumed to experience actuator

faults, and the mathematical model of the fault inputs can be
described as follows:

𝑢𝐹𝑖 (𝑡) = 𝑢𝑖 (𝑡) + 𝑓𝑖 (𝑡), (3)

where the degree of actuator faults is described by 𝑓𝑖 (𝑡) ∈ 𝑅𝑝 .
The bipartite consensus error of the follower agent 𝑖 with the

leader is described:{
𝛿𝑖𝑝 (𝑡) = 𝑝𝑖 (𝑡) −𝑚𝑖 𝑝0 (𝑡),
𝛿𝑖𝑣 (𝑡) = 𝑣𝑖 (𝑡) −𝑚𝑖𝑣0 (𝑡),

(4)

where the relationship between the follower agent 𝑖 and the
leader is denoted by 𝑚𝑖 . If the relationship between follower
𝑖 and the leader is cooperative, then 𝑚𝑖 = 1, and conversely,
𝑚𝑖 = −1. Therefore, the bipartite consensus error of multi-agent
systems is described as{

𝛿𝑝 (𝑡) = 𝑝(𝑡) −𝑀𝑝0 (𝑡),
𝛿𝑣 (𝑡) = 𝑣(𝑡) −𝑀𝑣0 (𝑡)

(5)

where
𝑝 = [𝑝1 (𝑡), 𝑝2 (𝑡), · · · , 𝑝𝑁 (𝑡)]𝑇 , 𝑣 = [𝑣1 (𝑡), 𝑣2 (𝑡), · · · , 𝑣𝑁 (𝑡)]𝑇 ,
𝑝0 (𝑡) = 1𝑁 ⊗ 𝑝0 (𝑡), 𝑣0 (𝑡) = 1𝑁 ⊗ 𝑣0 (𝑡),
M = 𝑑𝑖𝑎𝑔(𝑚1,𝑚2, · · · ,𝑚𝑁 ).

The goal of this paper is to design a fault-tolerant con-
troller such that the bipartite consensus errors of multi-agent
systems (1), (2) with actuator faults (3) satisfy the following
conditions: 

lim
𝑡→∞

𝛿𝑝 (𝑡) ≤ 𝜑1 ,

lim
𝑡→∞

𝛿𝑣 (𝑡) ≤ 𝜑2 ,
(6)

where 𝜑1 and 𝜑2 are both positive constants or bounded vari-
ables.

In this paper, the following lemmas and assumptions will be
used.

Lemma 1. (see [27]) The following inequality holds for a con-
stant 𝜇 and a positive definite matrix P:

2𝑥𝑇 𝑦 ≤ 1
𝜇
𝑥𝑇P𝑥 + 𝜇𝑦𝑇P−1𝑦. (7)

Assumption 1. The leader control input is 0 and its state can
be acquired.
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Assumption 2. There exists a lower bound 𝐹 for the derivative
of actuator faults 𝑓 (𝑡), which can be described as ¤𝑓 (𝑡) ≥ 𝐹.
There exists an upper bound 𝐷 for the derivative of nonlinear
disturbances 𝑑 (𝑡), which can be described as 𝑑 (𝑡) ≤ 𝐷.

3. MAIN DESIGN AND ANALYSIS

3.1. Design and analysis of adaptive fault observer

In order to design an active fault-tolerant controller. The state
of the multi-agent systems and the degree of actuator faults
must be obtained. So, a fault observer is designed and the above
information is obtained.

Equation (2) and equation (3) are combined and the state of
the system can be rewritten as:

¤𝑥𝑖 (𝑡) = A𝑥𝑖 (𝑡) +B(𝑢𝑖 (𝑡) + 𝑓𝑖 (𝑡)) +D𝑑𝑖 (𝑡), (8)

where 𝑥𝑖 (𝑡) =
[
𝑝𝑖 (𝑡)
𝑣𝑖 (𝑡)

]
, A =

[
0 1
0 0

]
, B =

[
0
−1

]
, D =

[
0
1

]
, and the

system output is defined:

𝑦𝑖 (𝑡) = C𝑥𝑖 (𝑡), (9)

where C =

[
1 1

]
, so the following equation is obtained:{

¤𝑥𝑖 (𝑡) = A𝑥𝑖 (𝑡) +B𝑢𝑖 (𝑡) +𝐵 𝑓 𝑓𝑑𝑖 (𝑡),
𝑦𝑖 (𝑡) = C𝑥𝑖 (𝑡),

(10)

where {
B 𝑓 = B+D,

𝑓𝑑𝑖 (𝑡) = 𝑓𝑖 (𝑡) + 𝑑𝑖 (𝑡).
(11)

In this paper, adaptive laws are combined. By using the resid-
uals of the system output, actuator faults and nonlinear distur-
bances are estimated. The observer are described as follows:

¤̂𝑥𝑖 (𝑡) = A𝑥𝑖 (𝑡) +B𝑢𝑖 (𝑡) +B 𝑓 𝑓𝑑𝑖 (𝑡) +H𝑒𝑦𝑖 (𝑡),
𝑦̂𝑖 (𝑡) = C𝑥𝑖 (𝑡),

𝑓𝑑𝑖 (𝑡) = 𝐹𝑅𝑒𝑦𝑖 (𝑡),

(12)

where the state observation matrix H ∈ R𝑛×1 is denoted, 𝑅 > 0
is the fault observation gain, and 𝐹 > 0 is the adaptive learning
rate gain. Both 𝑅 and 𝐹 are design parameters introduced in
the observer to estimate the actuator fault values. The obser-
vation error of the observer is obtained from equation (9) and
equation (12): 

𝑒𝑥𝑖 (𝑡) = 𝑥𝑖 (𝑡) − 𝑥𝑖 (𝑡),

𝑒 𝑓 𝑖 (𝑡) = 𝑓𝑑𝑖 (𝑡) − 𝑓𝑑𝑖 (𝑡),
𝑒𝑦 (𝑡) = 𝑦𝑖 (𝑡) − 𝑦̂𝑖 (𝑡).

(13)

Theorem 1. An adaptive fault observer (11) that satisfies the
following conditions can observe the states 𝑥𝑖 (𝑡) and 𝑓𝑑𝑖 (𝑡) of
the leader-follower multi-agent systems (1) and (2) with actuator

faults (3), and the observation error will eventually converge to
zero.

(A−HC)𝑇P1 +P1 (A−HC) 0 0
∗ −𝐺1 0
∗ ∗ −𝐹−1𝐺1𝐹

−1

 < 0, (14)

(
P1B 𝑓

)𝑇
= RC, (15)

where 𝐺1 > 0 is the coefficient to be determined, and P1 ∈ R𝑛×𝑛

is a positive definite matrix to be designed.

Proof. Taking the derivative of the observation error:

¤𝑒𝑥𝑖 (𝑡) = A𝑒𝑥𝑖 (𝑡) +B 𝑓 𝑒 𝑓 𝑖 (𝑡) −HC𝑒𝑥𝑖 (𝑡)
= (A−HC)𝑒𝑥𝑖 (𝑡) +B 𝑓 𝑒 𝑓 𝑖 (𝑡), (16)

¤𝑒 𝑓 𝑖 (𝑡) = ¤𝑓𝑑𝑖 (𝑡) −𝐹𝑅C𝑒𝑥𝑖 (𝑡). (17)

Define the Lyapunov function

𝑉1 (𝑡) = 𝑒𝑇𝑥𝑖 (𝑡)P1𝑒𝑥𝑖 (𝑡) + 𝑒𝑇𝑓 𝑖 (𝑡)𝐹
−1𝑒 𝑓 𝑖 (𝑡). (18)

Taking the derivative for 𝑉1 (𝑡) gets:

¤𝑉1 (𝑡) = 2𝑒𝑇𝑥𝑖 (𝑡)P1 ¤𝑒𝑥𝑖 (𝑡) +2𝑒𝑇𝑓 𝑖 (𝑡)𝐹
−1 ¤𝑒 𝑓 𝑖 (𝑡)

= 𝑒𝑇𝑥𝑖 (𝑡)
[
(A−HC)𝑇P1 +P1 (A−HC)

]
𝑒𝑥𝑖 (𝑡)

+ 2𝑒𝑇𝑥𝑖 (𝑡)P1B 𝑓 𝑒 𝑓 𝑖 (𝑡) +2𝑒𝑇𝑓 𝑖 (𝑡)F
−1 ¤𝑓𝑑𝑖 (𝑡)

− 2𝑒𝑇𝑓 𝑖 (𝑡)𝑅C𝑒𝑥𝑖 (𝑡).

From equation (14):

¤𝑉1 (𝑡) = 𝑒𝑇𝑥𝑖 (𝑡)
[
(A−HC)𝑇P1 +P1 (A−HC)

]
𝑒𝑥𝑖 (𝑡)

+ 2𝑒𝑇𝑓 𝑖 (𝑡)𝐹
−1 ¤𝑓𝑑𝑖 (𝑡). (19)

It is obtained from Lemma 1:

2𝑒𝑇𝑓 𝑖 (𝑡)𝐹
−1 ¤𝑓𝑑𝑖 (𝑡) ≤ −𝑒𝑇𝑓 𝑖 (𝑡)G1 ¤𝑒 𝑓 𝑖 (𝑡)

− ¤𝑓 𝑇𝑑𝑖 (𝑡)𝐹
−1G1𝐹

−1 ¤𝑓𝑑𝑖 (𝑡). (20)

Therefore, equation (19) can be rewritten as:

¤𝑉1 (𝑡) ≤ 𝑒𝑇𝑥𝑖 (𝑡)
[
(A−HC)𝑇P1 +P1 (A−HC)

]
𝑒𝑥𝑖 (𝑡)

− 𝑒𝑇𝑓 𝑖 (𝑡)G1𝑒 𝑓 𝑖 (𝑡) − ¤𝑓 𝑇𝑑𝑖 (𝑡)F
−1G1F−1 ¤𝑓𝑑𝑖 (𝑡)

≤

𝑒𝑥𝑖 (𝑡)
𝑒 𝑓 𝑖 (𝑡)
¤𝑓𝑑𝑖 (𝑡)


𝑇

∗Ω∗

𝑒𝑥𝑖 (𝑡)
𝑒 𝑓 𝑖 (𝑡)
¤𝑓𝑑𝑖 (𝑡)

 , (21)

where

Ω =


(A−HC)𝑇P1 +P1 (A−HC) 0 0

∗ −G1 0
∗ ∗ −𝐹−1G1𝐹

−1

 .
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From equation (14): ¤𝑉1 (𝑡) < 0. According to the Lyapunov
stability criterion, the observation error of the adaptive fault ob-
server will eventually converge to zero. Therefore, the following
equation holds: 

lim
𝑡→∞

𝑒𝑥𝑖 (𝑡) = 0,

lim
𝑡→∞

𝑒 𝑓 𝑖 (𝑡) = 0.
(22)

Proof complete. □

Remark 1. In practice, equation (14) and equation (15) are
difficult to satisfy at the same time. According to the litera-
ture [24], solving equation (15) can be transformed into solving
the following inequality:����� 𝐼 B𝑇

𝑓
P1 −𝑅C

(B𝑇
𝑓
P1 −𝑅C)𝑇 𝐼

����� > 0. (23)

3.2. Design and analysis of dynamic event-triggered
bipartite fault-tolerant consistency controller

To save the communication resources of multi-agent systems
in executing a bipartite fault-tolerant consensus controller, a
dynamic event-triggered mechanism is designed. Sampling is
performed when the system meets the trigger condition and the
controller inputs are updated at the same time. Define the 𝑘-th
sampling moment of the system as 𝑡𝑘 , when the state of agent 𝑖 at
the 𝑘-th sampling moment is 𝑥𝑖 (𝑡𝑘). The state of the system will
only be updated when the trigger condition is satisfied, otherwise
the state will remain the same as the last updated value. Since the
state information of the system is obtained through the observer,
the state of the multi-agent systems is 𝑥𝑖 (𝑡𝑘) at the 𝑘-th sampling
moment. Define the sampling error of agent 𝑖 at 𝑡𝑘 as:

𝜉𝑖 (𝑡) = 𝑥𝑖 (𝑡) − 𝑥𝑖 (𝑡𝑘), (24)

where the dynamic event-triggered mechanism is designed as:

𝑡𝑘+1
Δ
= min {𝑡 > 𝑡𝑘 | 𝜂𝑖 + 𝜃 (𝜌 ∥𝑥𝑖 (𝑡)∥ +𝜛− ∥𝜉𝑖 (𝑡)∥) < 0} , (25)

where 𝜃 > 0 and 𝜌 > 0 are normal numbers and 𝜛 > 0 is a fixed
threshold. The dynamic variable of agent 𝑖 is defined as 𝜂𝑖 and
is used to dynamically adjust the trigger interval. Its update law
is designed as follows:

¤𝜂𝑖 = −𝜂𝑖 +𝜛− ∥𝜉𝑖 (𝑡)∥ . (26)

Based on equation (4), equation (8), and equation (12), the
bipartite consensus error of multi-agent systems can be writ-
ten as:

𝛿𝑖 (𝑡) = 𝑥𝑖 (𝑡) −𝑚𝑖𝑥0 (𝑡), (27)

where the observation of 𝛿𝑖 (𝑡) is defined as 𝛿𝑖 (𝑡), and 𝛿𝑖 (𝑡) =[
𝛿𝑖𝑝 (𝑡)
𝛿𝑖𝑣 (𝑡)

]
. With the event-triggered mechanism (25), equation

(27) can also be written as:

𝛿𝑖 (𝑡𝑘) = 𝑥𝑖 (𝑡𝑘) −𝑚𝑖𝑥0 (𝑡𝑘). (28)

Therefore, the control objective of the system can be ex-
pressed as

lim
𝑡𝑘→∞

𝛿(𝑡𝑘) ≤ 𝜑, (29)

where 𝜑 is a constant or bounded variable. Assume that each
agent in the multi-agent systems can only communicate with its
neighbor agents and the set of neighbor agents of agent 𝑖 is 𝑁𝑖 .
Based on the fault observer (12), the state error between agent 𝑖
and its neighbors can be expressed as:

𝑤𝑖 (𝑡) =
∑︁
𝑗∈𝑁𝑖

𝑎𝑖 𝑗
(
𝑥𝑖 (𝑡) − sgn(𝑎𝑖 𝑗 )𝑥 𝑗 (𝑡)

)
+ 𝑔𝑖

(
𝑥𝑖 (𝑡) −𝑚𝑖𝑥0 (𝑡)

)
(30)

or 

𝑤𝑖
𝑝 (𝑡) =

∑︁
𝑗∈𝑁𝑖

𝑎𝑖 𝑗
(
𝑝𝑖 (𝑡) − sgn(𝑎𝑖 𝑗 )𝑝 𝑗 (𝑡)

)
+ 𝑔𝑖 (𝑝𝑖 (𝑡) −𝑚𝑖 𝑝0 (𝑡)),

𝑤𝑖
𝑣 (𝑡) =

∑︁
𝑗∈𝑁𝑖

𝑎𝑖 𝑗
(
𝑣̂𝑖 (𝑡) − sgn(𝑎𝑖 𝑗 )𝑣̂ 𝑗 (𝑡)

)
+ 𝑔𝑖 (𝑣̂𝑖 (𝑡) −𝑚𝑖 𝑣̂0 (𝑡)),

(31)

where the observations of 𝑝𝑖 (𝑡), 𝑝 𝑗 (𝑡), 𝑝0 (𝑡), 𝑣𝑖 (𝑡), 𝑣 𝑗 (𝑡) and
𝑣0 (𝑡) are denoted by 𝑝𝑖 (𝑡), 𝑝 𝑗 (𝑡), 𝑝0 (𝑡), 𝑣̂𝑖 (𝑡), 𝑣̂ 𝑗 (𝑡) and 𝑣̂0 (𝑡),
respectively. The position and velocity errors of agent 𝑖 based
on neighbor information are denoted by 𝑤𝑖

𝑝 (𝑡) and 𝑤𝑖
𝑣 (𝑡), re-

spectively.
Combined with the graph theory, the position error and ve-

locity error of multi-agent systems can be represented as:{
𝑤𝑝 (𝑡) = (𝐿 +𝐺) 𝑝(𝑡) −𝐺𝑝0 (𝑡),
𝑤𝑣 (𝑡) = (𝐿 +𝐺) 𝑣̂(𝑡) −𝐺𝑣0 (𝑡),

(32)

where
𝑤𝑝 (𝑡) =

[
𝑤1

𝑝 (𝑡),𝑤2
𝑝 (𝑡), · · · ,𝑤𝑁

𝑝 (𝑡)
]𝑇 ,

𝑤𝑣 (𝑡) =
[
𝑤1

𝑣 (𝑡),𝑤2
𝑣 (𝑡), · · · ,𝑤𝑁

𝑣 (𝑡)
]𝑇 ,

𝑝0 (𝑡) = 1𝑁 ⊗ 𝑝0 (𝑡), 𝑣0 (𝑡) = 1𝑁 ⊗ 𝑣0 (𝑡),
G = 𝑑𝑖𝑎𝑔 {𝑔1, 𝑔2, · · · , 𝑔𝑁 }. The Laplace matrix of the multi-

agent systems (1), (2) is assumed to be L and L =
[
𝑙𝑖 𝑗

]
∈ 𝑅𝑁×𝑁 .

The following equation is satisfied:
𝑙𝑖𝑖 =

∑︁
𝑗∈𝑁𝑖

𝑎𝑖 𝑗 ,

𝑙𝑖 𝑗 = −𝑎𝑖 𝑗 , 𝑖 ≠ 𝑗 .

(33)

Combining Assumption 1 and taking the derivative of equa-
tion (32), the following equation can be obtained:

¤𝑤𝑝 (𝑡) = (𝐿 +𝐺) ¤𝑝(𝑡) −𝐺 ¤𝑝0 (𝑡)
= (𝐿 +𝐺) 𝑣(𝑡) −𝐺𝑣0 (𝑡),

¤𝑤𝑣 (𝑡) = (𝐿 +𝐺) ¤𝑣(𝑡) −𝐺 ¤𝑣0 (𝑡)
= (𝐿 +𝐺) (−𝑢(𝑡) − 𝑓 (𝑡) + 𝑑 (𝑡)) .

(34)
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In order to make multi-agent systems (1), (2) bipartite con-
sensus can still be realized under the action of actuator faults (3).
A sliding-mode fault-tolerant bipartite consensus control is de-
signed. The sliding-mode variable 𝜎𝑖 (𝑡) for agent 𝑖 is designed
as follows:

𝜎𝑖 (𝑡) = 𝑐1𝑤
𝑖
𝑝 (𝑡) +𝑤𝑖

𝑣 (𝑡), (35)

where 𝑐1 is the normal number.
At the trigger moment 𝑡𝑘 , the sliding-mode variable of multi-

agent systems can be expressed as:

𝜎(𝑡𝑘) = 𝑐1𝑤𝑝 (𝑡𝑘) +𝑤𝑣 (𝑡𝑘), (36)

where 𝜎(𝑡𝑘) = [𝜎1 (𝑡𝑘),𝜎2 (𝑡𝑘), · · · ,𝜎𝑁 (𝑡𝑘)]𝑇 . Taking the deri-
vative of equation (36) yields the following equation:

¤𝜎(𝑡𝑘) = 𝑐1 ¤𝑤𝑝 (𝑡𝑘) + ¤𝑤𝑣 (𝑡𝑘)
= 𝑐1𝑤𝑣 (𝑡𝑘) + (L+G) (−𝑢(𝑡𝑘) − 𝑓 (𝑡) + 𝑑 (𝑡)) . (37)

Chattering is an unavoidable problem for sliding-mode con-
trollers. To reduce the amplitude of chattering, a sliding-mode
variable 𝜎(𝑡𝑘) is designed based on 𝑠(𝑡𝑘) and is expressed as
follows:

𝑠(𝑡𝑘) = 𝑐2𝜎(𝑡𝑘) + ¤𝜎(𝑡𝑘)
= 𝑐2𝜎(𝑡𝑘) + 𝑐1𝑤𝑣 (𝑡𝑘)
+ (L+G) (−𝑢(𝑡𝑘) − 𝑓 (𝑡) + 𝑑 (𝑡)) , (38)

where 𝑐2 > 0 is the sliding-mode gain, which determines the
convergence rate of the sliding surface (38). Under the assump-
tion ¤𝑢(𝑡𝑘) = 𝑟 (𝑡𝑘) and with Assumption 2, the derivative of
equation (38) is derived as follows:

¤𝑠(𝑡𝑘) = 𝑐2 ¤𝜎(𝑡𝑘) + 𝑐1 ¤𝑤𝑣 (𝑡𝑘) + (L+G)
(
− ¤𝑢(𝑡𝑘) − ¤𝑓 (𝑡) + ¤𝑑 (𝑡)

)
= 𝑐2 (𝑐1𝑤𝑣 (𝑡𝑘) + (L+G) (−𝑢(𝑡𝑘) − 𝑓 (𝑡) + 𝑑 (𝑡)))
+ 𝑐1 (L+G) (−𝑢(𝑡𝑘) − 𝑓 (𝑡) + 𝑑 (𝑡))
+ (L+G)

(
−𝑟 (𝑡𝑘) − ¤𝑓 (𝑡) + ¤𝑑 (𝑡)

)
= 𝑐1𝑐2𝑤𝑣 (𝑡𝑘) + (𝑐1 + 𝑐2) (L+G) (−𝑢(𝑡𝑘) − 𝑓 (𝑡) + 𝑑 (𝑡))
+ (L+G)

(
−𝑟 (𝑡𝑘) − ¤𝑓 (𝑡) + ¤𝑑 (𝑡)

)
. (39)

Assume that the sliding-mode variable 𝑠(𝑡) has the following
exponential convergence law:

¤𝑠(𝑡𝑘) = −𝜀sgn(𝑠(𝑡𝑘)) − 𝑘𝑠(𝑡𝑘), (40)

where 𝜀 > 0 and 𝑘 > 0 are positive control gains that determine
the convergence rate of the sliding-mode surface. Combining
equation (39) and equation (40) yields the following equation:

− 𝜀sgn(𝑠(𝑡𝑘)) − 𝑘𝑠(𝑡𝑘)
= 𝑐1𝑐2𝑤𝑣 (𝑡𝑘) + (𝑐1 + 𝑐2) (L+G) (−𝑢(𝑡𝑘) − 𝑓 (𝑡) + 𝑑 (𝑡))
+ (L+G)

(
−𝑟 (𝑡𝑘) − ¤𝑓 (𝑡) + ¤𝑑 (𝑡)

)
. (41)

Therefore, 𝑟 (𝑡𝑘) can be designed:

𝑟 (𝑡𝑘) = (L+G)−1
[
𝜀sgn(𝑠(𝑡𝑘)) + 𝑘𝑠(𝑡𝑘) + 𝑐1𝑐2𝑤𝑣 (𝑡𝑘)

+ (𝑐1 + 𝑐2) (L+G)
(
−𝑢(𝑡𝑘) − 𝑓 (𝑡) + 𝑑𝑐 (𝑡)

)
+ 𝑘𝑠

𝑡𝑘∫
0

𝑤𝑣 (𝜏) d𝜏− (L+G)
(
𝐹 −𝐷

) ]
, (42)

where 𝑑𝑐 is a positive real number related to the bounds of the
disturbance, 𝑘𝑠 > 0 is the constant of integration. The values of
𝐹 and 𝐷 are the upper bounds specified in Assumption 2.

Therefore, the sliding-mode fault-tolerant bipartite consensus
control law 𝑢(𝑡𝑘) can be described as:

𝑢(𝑡𝑘) =
∫

𝑟 (𝑡𝑘) d𝑡𝑘 . (43)

Substituting equation (42) into equation (39), the following
equation can be obtained:

¤𝑠(𝑡𝑘) = 𝑐1𝑐2𝑤𝑣 (𝑡𝑘) + (𝑐1 + 𝑐2) (L+G) (−𝑢(𝑡𝑘) − 𝑓 (𝑡) + 𝑑 (𝑡))

+ (L+G)
(
− ¤𝑓 (𝑡) + ¤𝑑 (𝑡)

)
− (L+G) 𝑟 (𝑡𝑘)

= −𝜀sgn(𝑠(𝑡𝑘)) − 𝑘𝑠(𝑡𝑘) − 𝑘𝑠

𝑡𝑘∫
0

𝑤𝑣 (𝜏) d𝜏

+ (𝑐1 + 𝑐2) (L+G)
(
𝑓 (𝑡) − 𝑓 (𝑡) + 𝑑 (𝑡) − 𝑑𝑐 (𝑡)

)
+ (L+G)

(
𝐹 − ¤𝑓 (𝑡)

)
+ (L+G)

( ¤𝑑 (𝑡) −𝐷
)
. (44)

It follows from Theorem 1 and Assumption 2:

¤𝑠(𝑡𝑘) ≤ −𝜀sgn(𝑠(𝑡𝑘)) − 𝑘𝑠(𝑡𝑘)

− 𝑘𝑠

𝑡𝑘∫
0

𝑤𝑣 (𝜏) d𝜏 + (𝑐1 + 𝑐2) (L+G) (𝑑 (𝑡) − 𝑑𝑐 (𝑡)). (45)

Assume that the lower and upper bounds of the nonlinear
disturbance 𝑑 (𝑡) are denoted as 𝑑𝑙 and 𝑑𝑢, respectively, that is,

𝑑𝑙 ≤ 𝑑 (𝑡) ≤ 𝑑𝑢. Defining 𝑑1 =
𝑑𝑢 − 𝑑𝑙

2
and 𝑑2 =

𝑑𝑢 + 𝑑𝑙
2

. Then
𝑑𝑐 can be designed as:

𝑑𝑐 = 𝑑2 + 𝑑1sgn(𝑠(𝑡𝑘)). (46)

In order to prove the effectiveness of the designed sliding-
mode fault-tolerant bipartite consensus control (42). The fol-
lowing theorem is given.

Theorem 2. Under the action of a sliding-mode fault-tolerant
bipartite consensus control (43) that satisfies the following con-
ditions. The sliding-mode variables 𝜎(𝑡𝑘) of the multi-agent
systems (1), (2) with actuator faults (3) can be driven to the
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equilibrium point 𝜎(𝑡𝑘) = 0.

𝜓1 =
1

2𝑘𝑠
(−𝑘𝑠𝑐1 − 𝑘𝑠𝑐2 −1

+
√︃
𝑐12𝑘𝑠

2 −2𝑘𝑠2𝑐1𝑐2 + 𝑐22𝑘𝑠
2 +2𝑘𝑠𝑐1 +2𝑘𝑠𝑐2 +1)

< 0,

𝜓1 =
1

−2𝑘𝑠
(𝑘𝑠𝑐1 + 𝑘𝑠𝑐2 +1

+
√︃
𝑐12𝑘𝑠

2 −2𝑘𝑠2𝑐1𝑐2 + 𝑐22𝑘𝑠
2 +2𝑘𝑠𝑐1 +2𝑘𝑠𝑐2 +1)

< 0.

(47)

Proof. Define the Lyapunov function 𝑉2 (𝑡𝑘) =
1
2
𝑠(𝑡𝑘)2 +

1
2
𝐼 (𝑡𝑘)2 where 𝐼 (𝑡𝑘) =

∫ 𝑡𝑘

0 𝑤𝑣 (𝜏) d𝜏, and the derivative of𝑉2 (𝑡)
is obtained:

¤𝑉2 (𝑡𝑘) = 𝑠(𝑡𝑘) ¤𝑠(𝑡𝑘) + 𝐼 (𝑡𝑘) ¤𝐼 (𝑡𝑘)

≤ 𝑠(𝑡𝑘) [−𝜀sgn(𝑠(𝑡𝑘)) − 𝑘𝑠(𝑡𝑘) − 𝑘𝑠

𝑡𝑘∫
0

𝑤𝑣 (𝜏) d𝜏

+ (𝑐1 + 𝑐2) (L+G) (𝑑 (𝑡) − 𝑑𝑐 (𝑡))] + 𝐼 (𝑡𝑘)𝑤𝑣 (𝑡𝑘)
≤ 𝑠(𝑡𝑘) [−𝜀sgn(𝑠(𝑡𝑘)) − 𝑘𝑠(𝑡𝑘)
+ (𝑐1 + 𝑐2) (L+G) (𝑑 (𝑡) − 𝑑𝑐 (𝑡))]

+𝑤𝑣 (𝑡𝑘)
𝑡𝑘∫

0

𝑤𝑣 (𝜏) d𝜏− 𝑘𝑠𝑠(𝑡𝑘)
𝑡𝑘∫

0

𝑤𝑣 (𝜏)d𝜏. (48)

Since
𝑡𝑘∫

0

𝑤𝑣 (𝜏) d𝜏 = 𝑤𝑝 (𝑡𝑘) and ¤𝑤𝑝 (𝑡𝑘) = 𝑤𝑣 (𝑡𝑘), the last

two terms of equation (48) can be reduced to:

¤𝑤𝑝 (𝑡𝑘)𝑤𝑝 (𝑡𝑘) − 𝑘𝑠𝑠(𝑡𝑘)𝑤𝑝 (𝑡𝑘)
= ¤𝑤𝑝 (𝑡𝑘)𝑤𝑝 (𝑡𝑘) − 𝑘𝑠 [𝑐1𝑐2𝑤𝑝 (𝑡𝑘)2

+ (𝑐1 + 𝑐2)𝑤𝑝 (𝑡𝑘) ¤𝑤𝑝 (𝑡𝑘) +𝑤𝑝 (𝑡𝑘) ¥𝑤𝑝 (𝑡𝑘)]
= −𝑘𝑠𝑐1𝑐2𝑤𝑝 (𝑡𝑘)2 − (𝑘𝑠 (𝑐1 + 𝑐2) +1)𝑤𝑝 (𝑡𝑘) ¤𝑤𝑝 (𝑡𝑘)
− 𝑘𝑠𝑤𝑝 (𝑡𝑘) ¥𝑤𝑝 (𝑡𝑘). (49)

Let the above equation be equal to zero, so the following
equation can be obtained:

0 = −𝑘𝑠𝑐1𝑐2𝑤𝑝 (𝑡𝑘)2 − (𝑘𝑠 (𝑐1 + 𝑐2) +1)𝑤𝑝 (𝑡𝑘) ¤𝑤𝑝 (𝑡𝑘)
− 𝑘𝑠𝑤𝑝 (𝑡𝑘) ¥𝑤𝑝 (𝑡𝑘). (50)

The differential equation (50) is solved to obtain:

𝑤𝑝 (𝑡𝑘) = 0 (51)

or
𝑤𝑝 (𝑡𝑘) = 𝑐1𝑒

𝜓1𝑡𝑘 + 𝑐2𝑒
𝜓2𝑡𝑘 , (52)

where 𝜓1 and 𝜓2 are the two constants to be solved in equa-
tion (47). The set of inequalities (47) can be substituted into
equation (52) to obtain that it will eventually converge to zero.
Therefore, equation (50) will hold whether equation (51) or
equation (52) is used. Consequently, equation (48) can be re-
duced to:

¤𝑉2 (𝑡𝑘) ≤ 𝑠(𝑡𝑘)
[
− 𝜀sgn(𝑠(𝑡𝑘)) − 𝑘𝑠(𝑡𝑘)

+ (𝑐1 + 𝑐2) (L+G) (𝑑 (𝑡) − 𝑑𝑐 (𝑡))
]
. (53)

If 𝑠(𝑡) > 0. By substituting equation (46) into equation (47),
equation (53) can be simplified as follows:

¤𝑉2 (𝑡𝑘) ≤ 𝑠(𝑡𝑘) [−𝜀− 𝑘𝑠(𝑡𝑘)
+ (𝑐1 + 𝑐2) (L+G) (𝑑 (𝑡) − 𝑑2 (𝑡) − 𝑑1 (𝑡))]

≤ 𝑠(𝑡𝑘) [−𝜀− 𝑘𝑠(𝑡𝑘)

+ (𝑐1 + 𝑐2) (L+G)
(
𝑑 (𝑡) − 𝑑𝑢 + 𝑑𝑙

2
− 𝑑𝑢 − 𝑑𝑙

2

)
]

≤ 𝑠(𝑡𝑘) [−𝜀− 𝑘𝑠(𝑡𝑘)
+ (𝑐1 + 𝑐2) (L+G) (𝑑 (𝑡) − 𝑑𝑢)]

< 0. (54)

Similarly, if 𝑠(𝑡) < 0, equation (53) can be reduced to:

¤𝑉2 (𝑡) ≤ 𝑠(𝑡𝑘) [𝜀− 𝑘𝑠(𝑡𝑘)
+ (𝑐1 + 𝑐2) (L+G) (𝑑 (𝑡) − 𝑑2 (𝑡) + 𝑑1 (𝑡))]

≤ 𝑠(𝑡𝑘) [𝜀− 𝑘𝑠(𝑡𝑘)

+ (𝑐1 + 𝑐2) (L+G)
(
𝑑 (𝑡) − 𝑑𝑢 + 𝑑𝑙

2
+ 𝑑𝑢 − 𝑑𝑙

2

)
]

≤ 𝑠(𝑡𝑘) [𝜀− 𝑘𝑠(𝑡𝑘) + (𝑐1 + 𝑐2) (L+G) (𝑑 (𝑡) − 𝑑𝑙)]
< 0 (55)

According to the Lyapunov stability condition, 𝑠(𝑡𝑘) can be
converged to zero eventually. From equation (36) and equation
(38), the sliding-mode variable 𝜎(𝑡𝑘) can be driven to the equi-
librium point 𝜎(𝑡𝑘) = 0. The proof is completed. □

Remark 2. From the dynamic event-triggered mechanism (25),
the triggering interval is non-negative due to the existence of the
fixed threshold 𝜛. Therefore, the multi-agent systems (1) and
(2) that have applied the dynamic event-triggered mechanism
(25) will not have zeno behavior.

Theorem 3. Multi-agent systems (1), (2) with actuator faults
(3) can have their bipartite consensus errors 𝑤𝑝 (𝑡𝑘) and 𝑤𝑣 (𝑡𝑘)
converged to zero by the action of the sliding-mode fault-tolerant
bipartite consensus control (42), that is, the control objective (6)
can be achieved.

Proof. By Theorem 2, 𝜎(𝑡𝑘) = 0. From the sliding-mode vari-
able (36):

𝑐1𝑤𝑝 (𝑡𝑘) +𝑤𝑣 (𝑡𝑘) = 0. (56)

Because of ¤𝑤𝑝 (𝑡𝑘) = 𝑤𝑣 (𝑡𝑘), the following equation holds:

𝑐1𝑤𝑝 (𝑡𝑘) + ¤𝑤𝑝 (𝑡𝑘) = 0. (57)
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By solving (57), 𝑤𝑝 (𝑡𝑘) = 𝑐1𝑒
−𝑐1𝑡𝑘 , so there is lim

𝑡𝑘→∞
𝑤𝑝 (𝑡𝑘) = 0.

Substituting into equation (56), one gets lim
𝑡𝑘→∞

𝑤𝑣 (𝑡𝑘) = 0, so the
control objective (6) can be realized. The proof is completed. □

3.3. Application simulation

In order to verify the effectiveness of the design. The designed
fault observer, sliding-mode fault-tolerant controller and dy-
namic event-triggered mechanism are acted on faulty multi-
agent systems.

Multi-agent systems consisting of 1 leader and 4 followers
are considered. Its communication topology is shown in Fig. 1,
where the leader is agent 0 and the follower agents are num-
bered 1 to 4. Follower agent 1 and follower agent 2 are in a
cooperative relationship with the leader. Follower agent 3 and
follower agent 4 are in competitive relationship with the leader.
The weight values of the edges are all 1. From Fig. 1, the Laplace
matrix L and connection matrix G of this multi-agent systems
can be represented as:

L =


2 −1 1 0
−1 3 1 1
1 1 2 0
0 1 0 1


,

G = 𝑑𝑖𝑎𝑔(1,1,0,0).

Fig. 1. Communication topology between agents

The dynamics of multi-agent systems are described by equa-
tion (1) and equation (2). After describing the system state as

equation (8), there are A =

[
0 1
0 0

]
, B =

[
0 −1

]𝑇
, C =

[
1 1

]
,

D =

[
0 0.1

]𝑇
. Therefore, (A,B) is controllable and (A,C)

is observable. By solving the inequality in Theorem 1, there

are P1 =

[
1.0976 0

0 1.0976

]
, G1 = 0.0766, C =

[
1 1

]
, D =[

0 0.1
]𝑇

.

According to equation (42). The parameters of the sliding-
mode fault-tolerant bipartite consensus control law for multi-
agent systems are chosen as: 𝜀 = 0.5, 𝑘 = 1, 𝑐1 = 20, 𝑐2 = 20,
𝑘𝑠 = 0.1. Substituting into equation (47) gives:



𝜓1 =
1

2𝑘𝑠

(
− 𝑘𝑠𝑐1 − 𝑘𝑠𝑐2 −1

+
√︃
𝑐12𝑘𝑠

2 −2𝑘𝑠2𝑐1𝑐2 + 𝑐22𝑘𝑠
2 +2𝑘𝑠𝑐1 +2𝑘𝑠𝑐2 +1

)
= −10,

𝜓1 =
1

−2𝑘𝑠

(
𝑘𝑠𝑐1 + 𝑘𝑠𝑐2 +1

+
√︃
𝑐12𝑘𝑠

2 −2𝑘𝑠2𝑐1𝑐2 + 𝑐22𝑘𝑠
2 +2𝑘𝑠𝑐1 +2𝑘𝑠𝑐2 +1

)
= −40.

(58)

Therefore, the conditions of Theorem 2 can be satisfied.
Note 3: In order to avoid steady state errors in the system,

the integral of the velocity error is utilized in the design of
the derivative 𝑟 (𝑡𝑘) of the sliding-mode fault-tolerant bipartite
consensus control. In order to prevent the system from inte-
gral saturation, the integration coefficient 𝑘𝑠 is replaced by a
slowly decaying variable 𝑘𝑖 and 𝑘𝑖 = 𝑘𝑠𝑒

−𝜗𝑡𝑘 , where the decay
coefficient 𝜗 is taken as 0.01.

According to Assumption 1, the control input of the Pilot is
set to 𝑢0 (𝑡) = 0. Nonlinear disturbances are defined as 𝑑 (𝑡) =
0.1sin(𝑡), and the multi-agent systems actuator faults input is
defined as 𝑢𝐹 (𝑡) = 𝑢(𝑡) + 𝑓 (𝑡). Assume that the actuator faults
𝑓 (𝑡) are of the following form from the 5th second onwards:

𝑓 (𝑡) =


𝑓1 (𝑡)
𝑓2 (𝑡)
𝑓3 (𝑡)
𝑓4 (𝑡)


=


2sin(𝑡)
2cos(𝑡)

2sin(𝑡) cos(5𝑡)
0


.

For the dynamic event-triggered mechanism, 𝜃 = 0.1, 𝜌 =

0.005, 𝜛 = 0.5 are chosen. The initial state of the leader agent

is taken as 𝑥0 (𝑡) =
[
10 10

]𝑇
. The initial states of the fol-

lower agent are defined as: 𝑥1 (𝑡) =
[
−3 3

]𝑇
, 𝑥2 (𝑡) =

[
−4 1

]𝑇
,

𝑥3 (𝑡) =
[
0 2

]𝑇
, 𝑥4 (𝑡) =

[
4 8

]𝑇
, respectively.

Remark 3. For the selection of the parameters of the dynamic
event-triggered mechanism, a large amount of experimental ex-
perience is used in this paper to select each parameter. The value
of 𝜃 has little effect on the number of samples, but a low value
of 𝜃 will exacerbate the chattering of the system. 𝜌 also has little
effect on the number of samples, but a high value will exacer-
bate the chattering of the system, and it is appropriate to take
a smaller value in order to inhibit the amplitude of the chatter-
ing. The fixed threshold 𝜛 is directly related to the sampling
frequency, too high will lead to system instability, too low will
lead to more unnecessary sampling.
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As shown in Fig. 2 and Fig. 3, the position state of follower
agent 1 and follower agent 3 and their observations are repre-
sented, respectively.
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Fig. 2. Position state of follower agent 1 and its observation
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Fig. 3. Position state of follower agent 3 and its observation

It can be seen that the adaptive observer is more effective
in observing the position state of follower agent 1 and follower
agent 3.

The four follower agent actuator faults and their observations
are represented in Figs. 4–7, respectively.

It can be seen that the observations of the faults are chattering
due to the sliding-mode fault-tolerant controller. However, the
observations still track the actuator faults better and faster.

The state values of the multi-agent systems are represented in
Fig. 8 and Fig. 9, respectively.

It can be seen that the states of the multi-agent systems (1)
and (2) can achieve bipartite consensus, both in the position state
and the velocity state. Since there is a cooperative relationship
between follower agent 1 and follower agent 2 and the leader
agent, follower 1 and follower 2 can always track the state of
the leader agent. Moreover, due to the competitive relationship
between follower agent 3 and follower agent 4 with the leader
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Fig. 4. Actuator fault of agent 1 and its estimate
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Fig. 5. Actuator fault of agent 2 and its estimate
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Fig. 6. Actuator fault of agent 3 and its estimate

agent, the states of follower agent 3 and follower agent 4 are
completely opposite to the state of the leader agent. This is
consistent with the bipartite consensus of multi-agent systems.
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Fig. 7. Actuator fault of agent 4 and its estimate
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Fig. 8. Position state of multi-agent system
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Fig. 9. Velocity state of multi-agent system

The observation errors of the states of multi-agent systems
are represented in Fig. 10 and Fig. 11, respectively.

From Fig. 10 and Fig. 11, it can be seen that the fault observer
is effective in observing the overall system state.
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Fig. 10. Position state observation error of multi-agent system
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Fig. 11. Velocity state observation error for multi-agent system

The state errors of the multi-agent systems are represented in
Fig. 12 and Fig. 13, respectively.

It can be seen that the bipartite consensus errors for both the
position state and velocity state of the multi-agent systems con-
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Fig. 12. Bipartite consensus error in the position of multi-agent system
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Fig. 13. Bipartite consensus error in the velocity of multi-agent system

verge to near zero. The effectiveness of the bipartite consensus
controller is proved.

Figure 14 represents the trigger moment for dynamic event-
trigger of multi-agent systems.
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Fig. 14. Release instant and release interval

As can be seen in Fig. 14, the sampling of the system under
the dynamic event-triggered mechanism is adopted. As can be
seen in Fig. 14, the sampling times of the system are well re-
duced after the dynamic event-triggered mechanism is adopted,
and the waste of the system network resources is also reduced.
If periodic sampling is adopted and the sampling period of the
system is set to 0.01 s, the number of state updates of the multi-
agent systems in 10 s will be in 1000 times. As shown in Fig. 14,
when the dynamic event-triggered mechanism is used, the num-
ber of state updates from agent 1 to agent 4 are 119, 120, 120 and
120 times, respectively. The number of communications was re-
duced by 88 percent. It can be seen that after the introduction of
the dynamic event-triggered mechanism, the number of updates
to the state of multi-agent systems is obviously reduced, and the
network resources of multi-agent systems are greatly saved.

To further illustrate the excellence of the sliding-mode fault-
tolerant bipartite consensus control designed in this paper.
For second-order multi-agent systems (1), (2) with actuator
faults (3). A general robust fault-tolerant controller based on
a fault observer (12) and a dynamic event-triggered mechanism
(25) is designed

𝑢(𝑡𝑘) = 𝑘𝑤(𝑡𝑘) − 𝑓 (𝑡). (59)

The robust fault-tolerant controller (59) is applied to multi-
agent systems (1) and (2) and numerically simulated. The ve-
locity state, position state, velocity state error, and position state
error of the system are shown in Figs. 15–18, respectively.
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Fig. 15. Velocity state under the action of control law (59)
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Fig. 16. Position state under the action of control law (59)

From Fig. 15 and Fig. 16, it can be seen that the fault-tolerant
controller (59) can also realize the bipartite consensus of multi-
agent systems. Comparing Fig. 17 with Fig. 14 and Fig. 18 with
Fig. 13, it can be seen that the system error under the action of
the sliding-mode fault-tolerant bipartite consensus control (43)
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Fig. 17. Velocity error under the action of control law (59)
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Fig. 18. Position error under the action of control law (59)

designed in this paper has a faster convergence rate. The con-
vergence of the error is better, which further illustrates the ex-
cellence of the control law (43).

4. CONCLUSIONS AND FUTURE WORK

In this paper, a new sliding mode bipartite fault-tolerant con-
sensus control method for leader-follower multi-agent systems
applicable to undirected topology communication structures is
proposed. Techniques such as adaptive strategies, dynamic event
triggered mechanisms and sliding mode control are combined
and utilized, and fault observers and sliding mode bisection
fault-tolerant controllers are designed. Based on the Lyapunov
stability theory, the conditions under which the final consistency
of the bipartite consensus error is bounded are given. The pa-
rameters of the fault observer and fault-tolerant controller pro-
posed in this paper do not require the solution of complex linear
matrix inequalities. The fault tolerance and robustness of the de-
signed control method for leader-follower multi-agent systems
with actuator faults are verified through numerical simulations.

The excellence of the design is further illustrated by comparison.
Future research could explore extending the proposed sliding-
mode fault-tolerant consensus control to directed topologies, or
considering more complex actuator fault models.
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