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Abstract. The paper presents the mathematical and numerical analysis of a 1-DOF (one-degree-of-freedom) dynamic model of the helical
gear with time-varying mesh stiffness (TVMS). The article aims to determine an analytical solution for the presented model using a proprietary
computational environment and to verify the results with numerical simulations and other solutions available in the literature. The paper
presents the determination of a 2-DOF (two-degree-of-freedom) dynamic model and its reduction to a 1-DOF model. The concept of the created
environment, the applied libraries, and the application basics are discussed. Based on the work effects, an analytical solution using the multiple
scales method (MSM) was found and positively verified. The article presents the convergence of the obtained results and the added value as an
analytical solution. This confirms the effectiveness of the novelty approach, which provides a framework that bridges the gap between directly
determining a solution and manual calculations. It should be noted that time complexity is especially important for performance computing.
Observations suggest significant advantages to using an analytical solution due to its precision and relatively low computational cost. Although
obtaining an analytical solution is more time-consuming, it reduces the possibility of errors with numerical methods.
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1. INTRODUCTION

There is growing interest in sophisticated computational meth-
ods for gears commonly used in industry [1,2]. This is related
to the demand for increasingly heavy-duty constructions. This
is dictated by considerations of energy savings, i.e., reducing
the energy intensity of machinery and equipment. Thus, the
current trend in the design of gear is characterized by a desire
to minimize dimensions and weight. There is a direct propor-
tional relationship between energy savings and design strain.
This trend implies a change in the frequency structure of the
system (a change in eigenfrequencies) due to a change in the
basic dynamic parameters of gear such as mass and stiffness.
The demand for optimization of mass is associated with an un-
known impact on the dynamics of the system. Clearly, changing
the parameters of the system results in a completely different
dynamic response.

In connection with the outlined problem of gear design, a
demand arises for precise computational methods based on the
determination of analytical solutions [3—5]. Analytical methods
are particularly interesting from the point of view of the opti-
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mization process because they provide an explicit mathematical
description of the system in the form of clear formulas. This is
conducive to the creation of software implementations, enables
fast calculations, and obtaining results for different input data,
i.e., for different values of system parameters.

One of the important exploratory problems of gears is the
possibility of parametric resonance. The main reason for the oc-
currence of this resonance phenomenon (parametric resonance)
is the time-varying stiffness of the mesh, which is due to the
essence of the operation of gears, i.e., the meshing of mating
wheels and the associated periodically varying number of pairs
of teeth that are in the pinion at a given time instant.

This article aims to provide advanced calculational environ-
ment and to analyze the parametric vibration of a helical gear
system with time-varying mesh stiffness (TVMS) using the mul-
tiple scales method (MSM) and numerical methods within this
environment. This study considered a 2-DOF model of the heli-
cal gear system. Then, it was reduced to a 1-DOF system to find
an analytical solution, evaluate its adequacy, and analyze the
phenomenon of parametric vibrations generated in the mesh.
The 2-DOF model served as a reference model. In turn, the
1-DOF model served as the basis for determining analytical
solutions.

The characteristic of a good model is conciseness (appropriate
level of abstraction) and not size (over-expansion). Therefore,
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one of this paper’s goals is to propose a simple dynamic model
of a helical gearbox and to check whether it corresponds to the
physical operating parameters of such a gearbox. The intention
is a qualitative analysis. The authors have assumed that consid-
ering the problem at this stage of the work will not focus on
the exact selection of the system parameters and the possibility
of their physical realisation. According to the concept adopted,
the proposed approach allows, with the assumed error, to deter-
mine analytically the system dynamic characteristics, without
knowledge of numerical data — no numerical simulations are
necessary.

The following milestones were defined based on the analysis
of the set work objective and the issues to be addressed:

1. Development of an environment supporting analytical cal-
culations, providing tools to support activities at each stage
of the calculations.

2. Determination of an analytical solution in the developed
environment and verification with other publications.

3. Perform numerical simulations in the created environment
for the normative engagement model and for the MSM to
verify the effectiveness of the created framework.

4. Compare the forces for different engagement models to se-
lect the most accurate (adequate) model.

The realization of the thesis objective fills the gap between
the automatic execution of calculations in CAS systems (black
box model) and a full understanding of the MSM and manual
execution of calculations step by step. This is the added value
of the thesis and its novelty.

A comparative analysis of the analytical and numerical model
was assumed to assess the proposed methodology effective-
ness within the prepared framework and developed by authors’
DynPy library. Based on the verified analytical solution, a series
of simulations can be performed to analyze the problem under
consideration thoroughly. A mathematical model is established
describing the relationships between the key parameters affect-
ing the occurrence of parametric resonance of the gearbox. The
mathematical conditions for the occurrence of parametric reso-
nance are confirmed as the solution obtained by multiple scales
method (MSM).

As already noted (4th paragraph), a good model is charac-
terised by conciseness (an appropriate level of abstraction) rather
than size (excessive complexity) to capture the essence of a spe-
cific dynamic phenomenon, as exemplified by studies [6-8].
Notwithstanding that the considered model is relatively sim-
ple and current computing capabilities allow for solving more
complex problems, this approach offers certain advantages, al-
lowing for:

e Verify the correctness of the proposed solution (environ-
ment, methodology and mathematical dependencies) by
analysis and comparison with publications on a similar topic,
for example [6,7,9].

e Easier understanding of the phenomenon essence of inter-
tooth dynamics — considerations focus only on meshing vi-
brations, such as references [8, 10].

e Complementary knowledge of the phenomena involved is
essential for the efficient analysis of more complex systems,
which is why this approach allows for a better understanding

of the problem under consideration, thereby enhancing our
understanding of real-world systems.

Mathematical modeling has been used for many years. Var-
ious mathematical models have recently been created for nu-
merous applications [10, 11]. The flagship research article [12]
presents a classic overview of such models. This paper discusses
typically used mathematical models and provides a general clas-
sification of them. The research focused on the dynamics of
helical gears very often refers to the nature of their operation
related to the generation of parametric vibrations associated
with the time-varying number of pairs of teeth in contact, i.e.,
in the line-of-action. An interesting example of parametric vi-
brations and instabilities of an elliptical gear pair research is
presented in [ 13]. The publication evaluates the influence of ba-
sic parameters on solution stability. The research used a model
to consider factors such as eccentricity or varying mesh stift-
ness. These effects caused vibrations in the system, which led
to the determination of different combination resonances. The
calculation results show the coupling effect between the selected
frequencies. The authors show that the coupling effect results
from the simultaneous occurrence of load, time-varying mesh
stiffness, and eccentricity. Studies comparing elliptical and cir-
cular gears have unveiled lower vibration amplitudes in elliptical
gears, exploring the intricate interactions between eccentric-
ity, stiffness, and load that lead to vibrations and instability in
these gear configurations [13]. It is imperative to determine the
ranges of irregular gear behaviour, as this may cause chaotic
phenomena. This is demonstrated by a numerical investigation
on gear dynamics [6]. It presents simulation studies based on
a nonlinear mathematical model of a gear transmission that
considers variable mesh stiffness and backlash, which made it
possible to identify areas where the analysed system behaved
chaotically. This is illustrated as a frequency spectrum, a bi-
furcation diagram, a Lyapunov exponent, and a Poincaré map
(section).

The interesting field of investigation under the gears is its
modeling and experimental testing [3-5, 7,9, 14—16]. Notewor-
thy is a publication [17], where the subject of analysis was a
helical gear system. A system of shafts, bearings, and disks rep-
resenting gears was used for modeling. Gears are part of the
parametrically excited system because of time-varying mesh
stiffness. This study proposed a matrix with harmonic frequen-
cies representing parametrically excited vibration transfer func-
tions. The nonlinear equation of motion for gears was linearized
to an equation with the excitation of harmonic frequencies. The
proposed transfer matrix can easily show the contribution of the
harmonic components. The research follows on from that pre-
sented in the papers [18, 19]. Article [18] presents the analysis
of a simplified model. The results obtained were used to ana-
lyze gearbox vibrations under axial load. The model includes a
shaft, gear system, and housing. In addition, mesh stiffness and
a solution to the equation of motion were used to determine the
axial force. The relationship between strain and load is used for
this purpose. The noise generated by helical gears is also a prob-
lem that requires analysis. One research direction is the use of
simplified systems subjected to axial load. Models consisting of
shafts, bearings, and helical gears are used for this purpose [19].
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Although countless dynamic models have been developed,
solutions based on numerical methods are predominantly used.
Studies presenting analytical solutions are much rarer. Among
such studies are those presented in publication [20]. The arti-
cle presents the system physical (mechanical) model and the
derivation of the equations of motion. On this basis, the authors
analytically determined linear solutions, constituting a mathe-
matical description of vibrations. Furthermore, the publication
compares the results of a numerical solution determined from
nonlinear equations. It proposes various effects, such as time-
varying mesh stiffness, gear profile error, equivalent error, and
the influence of static load.

Research has increasingly shifted focus towards a more ac-
curate understanding of gear dynamics by incorporating time-
varying mesh stiffness. Departing from traditional quasi-static
approaches, these investigations highlight the significance of
nonlinear relationships between mesh stiffness and dynamic
forces, particularly in spur gear systems analyzed in [8]. An in-
teresting example is also presented in article [21], which con-
cerns dynamic modeling of a harmonic drive in a gear trans-
mission system, considering nonlinear changes in stiffness and
damping. This contributes to expanding knowledge about tor-
sional vibrations occurring in this type of power transmission
system.

Research based on dynamic models is becoming increasingly
important in the development of vibroacoustic diagnostic meth-
ods for gears, which are commonly used components in power
transmission systems [22-25]. Early identification of degrada-
tion processes is essential for planning inspections and repairs,
and thus for improving the reliability of all kinematic chain
elements. Simulation and experimental studies presented in pa-
per [26] have shown that the use of an identified dynamic model
of a gear in a power transmission system allows reliable di-
agnostic relationships to be obtained for a reliable condition
assessment. It is worth noting that, based on simulations and
experimental studies, the authors have developed a set of neural
network classifiers for diagnosing the type and severity of gear
damage with a validation error of less than 5%. It should also be
emphasized that condition monitoring is particularly important
for preventing unplanned outages in high-value rotating machin-
ery used in power engineering and mining [25], as well as in
aerospace. In this regard, advanced and sophisticated diagnostic
techniques have been developed by researchers and experts. For
example, enhancing gearbox vibration signals by combining a
whitening procedure and a synchronous processing method [27]
or variational mode decomposition and a convolutional neural
network for gearbox fault identification [28].

Expanding the scope of analysis, research has explored the
influence of additional degrees of freedom in gear systems, re-
vealing diverse behaviors in nonlinear vibration, as presented
in [29]. This expanded analysis has proven instrumental in un-
covering nuanced aspects of gear dynamics. For instance, to
reveal failure mechanisms and investigate local damage in gear
systems, the authors of article [22] proposed a 24-DOF dynamic
coupling model that considers shafts, bearings and gears. This
model can simulate local defects in various locations and pro-
vide data and a modeling method for diagnostics.
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An article undoubtedly worthy of attention is the work of [30].
The issue of vibrations in a spur gear was analyzed. The article
presents considerations on a single-degree-of-freedom (SDOF)
linear system in which manufacturing errors and gear stiffness
described by a parabolic relationship are considered, which is
an effective approach to this issue. The authors used spectral
methods and Green’s function to determine the system steady-
state vibrations. Based on this, the calculated eigenvalues could
assess the system stability. It should be emphasized that the
proposed technique can also be used to solve the problem of a
complex description of the varying mesh stiffness. Furthermore,
the results obtained were verified using the Floquet method, and
stability maps were created. Finally, the results obtained were
compared with a numerical solution, which showed a very high
level of compliance for all cases considered. Sophisticated mod-
els examining time-dependent mesh stiffnesses in planetary gear
trains have provided valuable insights into dynamic tooth loads,
as shown in [13,31-34]. The publications described show an an-
alytical approach where calculations are performed manually, or
computational scripts are used as a direct equivalent of manual
calculations (only valid for the case under consideration). This
indicates a lack of dedicated tools to support this type of com-
putation in the general case.

Although there is no shortage of research on dynamic mod-
els of helical gears that focuses on finding analytical solutions,
there is still an insufficient number of such studies, and they do
not cover all issues. In this paper, the authors have addressed
the issue and aim to demonstrate the effectiveness and high-
light the advantages of analytical over numerical methods when
analysing the dynamics of gears. The aim is to confirm the ef-
fectiveness of the analytical approach and the cost-effectiveness
of its use in terms of time complexity. Particular focus is given
to computation time.

The practical aspects of the proposed methodology for an
approximate analytical solution of the gear meshing problem
based on MSM can be highlighted as follows:

e The meshing force (inter-tooth force) has a significant impact
on gear vibrations, and the mathematical model allows for a
better understanding of the vibration response structure.

e This can be used in practice to better determine dynamic
surpluses for more accurate gear calculations (reducing iter-
ations in the gear pair design process).

e In addition, an interesting area of application is gear diag-
nostics, where knowledge of the vibration structure is a key
factor for effective fault and defect detection.

The established dynamic model, as well as an analytical ap-
proach, may provide a theoretical basis for the fault diagnostics
of gear transmission systems, according to recent findings [22].

2. DYNAMIC MODEL OF HELICAL GEAR

The analysis of the gear mesh dynamics requires numerical
computations and simulation investigation. Table 1 lists the pa-
rameters of the helical gear used in this study.

The gear dynamic model (Fig. 1) represents an isolated sys-
tem oriented on the internal factors influencing its vibration
behavior. This model includes only two interacting gears, each
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Table 1
Basic parameters of helical gear

Symbol Value  Unit
Number of teeth of the pinion 21 26 -
Number of teeth of the gear 22 53 -
Module (gear system parameter) mp 2 mm
Center distance of the pinion dj 52 mm
Center distance of the gear dy 106 mm
Gear ratio u 2.04 -
Pressure angle Ayt 20 °
Pitch diameter of the pinion dpy 48.864 mm
Pitch diameter of the gear dpy 99.607 mm
Face width ratio €a 1.412 -
Length of the contact line Sa 8.338 mm
Rotational speed of the pinion ny 1460 rpm
Input torque Ty 98.12 Nm

characterised by base radii rp; and mass moments of inertia J;
(i = 1 for the pinion, i = 2 for the gear). The pinion is subjected to
a constant input torque 77, while the gear is subjected to an out-
put torque 7. Two parallelly connected elements with elastic-
damping characteristics represent the interaction between the
gears, depicting time-varying mesh stiffness k,, () and variable
damping c¢,, (). The proposed dynamic model of the helical
gear includes two-degrees-of-freedom (¢ () and ¢,(t)), corre-
sponding to the pinion and gear rotational motion.

Jo
Tb2

Fig. 1. Dynamic model of the single-stage helical gear as a 2-DOF
isolated model

The gear system can be simplified to a single equivalent body
with a mass meq (Fig. 2). In this case, the equivalent system un-
dergoes a translational oscillatory motion along the x-axis, and
an equivalent force F' replaces (consolidates) the torques. This
operation is possible because the kinematic properties of gear
meshing under investigation are only within the scope of interest.
The introduction of the relative generalized coordinate allows
the model to be reduced to a single-degree-of-freedom (SDOF).

Kinetic energy of the system is as follows:

;2 2
T = %4_%

> > (D

Mred

F

Fig. 2. Dynamic model of a single-stage helical gear as a 1-DOF
reduced model

Potential energy of the system is as follows:

_ k(=no +r2¢)*

Vv 2
5 @)
Dissipative function of the system is as follows:
. . \2
Do c(rigi—rad) ' 3)
2
Lagrangian of the system:
J 2 J ;2 _ 2
I 1¢1+ 207 k(-r1¢1+r242) @
2 2 2
Partial derivatives:
oT .
— =191, ®)
9
d oT .
——=J1¢1, 6
@194, 141 (6)
oT
-0, 7)
9 (
ov
T —kri (=ri¢1+r2¢2). ®)
The equation for the second coordinate is as follows:
oT .
— =Jao, &)
d¢s
d oT .
——— =0, 10
194, 202 (10)
oT
— =0, 11)
d¢> (
ov
96, =kry (—ri¢1+r2¢2). (12)

The Euler-Lagrange formula can be written in the following
form:

ov. d or oT

= _=-0.

oy T diog, op (1
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Described calculations result in equations of motion of the
system. The motion of the analyzed model (Fig. 1) is described
by two differential equations:

14
15)

Jigr+rpicmi+rpikpx =Ty,

oy —rpacmi —rpokmx = =Ty,
where relative displacement along the pressure line is equal to:
(16)

X=Trp1P1—rp22

and relative velocity along the pressure line is given by a for-
mula:

X=rp1d1—rp2és. (17)
Subtracting equations (14) and (15)
J11 = ado +1p1Cmk + Tp1kmX +p2Cmt
+rppkpx =T +T5, (18)
where
J1 — mass moment of inertia of the pinion

J> — mass moment of inertia of the gear

T1 - input torque

T> — output torque

¢1 — first degree of freedom associated with the rotational mo-

tion of the gear wheels

¢> — second degree of freedom associated with the rotational |

motion of the gear wheels
— angular acceleration associated with the rotational motion
of the gear wheels

é1

#» — angular velocity associated with the rotational motion of

the gear wheels

X — velocity
rp1 — pinion radius
rpr — gear radius
¢m — variable damping
k;, — time-varying mesh stiffness
t —time
x —imaginary coordinate x

The main result of the presented calculations is the equations
of the system dynamics expressed by a system of second-order
differential equations. Appropriate transformations allow the
system to be replaced by a single equation, the solution of which
represents the motion of the helical gear system.

3. MESH STIFFNESS

The investigated problem was solved by creating a computing
environment in Python. For this purpose, the DynPy program-

e.g., in works [39—41]. Jupyter Notebook is a popular runtime
environment for various scripts or macros written in scripting
programming languages like Python or R. The basis is a dynamic
system, and key elements are presented in the following listing.
For the system to work properly, it is enough to define variables
inthe __init__ method and specify physical components in
the component s method.

3 class EquivalentGearModel (ComposedSystem) :

16

ming library and the Jupyter tool were used. The DynPy Python

library [35] is an object-oriented tool that provides a modular
approach to physical phenomena, mainly broadly understood
dynamics. DynPy is developed and maintained by the authors
of articles [36-38]. It finds many different research applications,

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. 155895, 2026
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def __init__ (self,

m=None,
k=None,
F=None,
z=None,
c=None,
T=None,
ivar=None,
k_var=None,
eps=None,
c_var=None,
f=None,
**kwargs) :

if k_var is not None: self.k_var = k_var
if eps is not None: self.eps = eps

if m is not None: self.m = m

if k is not None: self.k =k

if F is not None: self.F = F

if z is not None: self.z = z

if ¢ is not None: self.c= c

if T is not None: self.T= T

if c_var is not None: self.c_var = c_var
if ivar is not None: self.ivar = ivar

if £ is not None: self.f=f

self.gs [self.z]
self._init_from_components (xxkwargs)

def components (self):
components = {}
self.c_var = self.cx(1l+0*self.epsxself.k_var)
stiffness = self.kx(l+self.eps*self.k_var)

self.gear_inertia MaterialPoint (self.m,
self.z, gs=self.gs)
self.gear_stiffness
gs=self.qgs)

self.force

Spring(stiffness, self.

Zy

Force(self.F, self.z, gs=self.qgs)

self.gear_damping = Damper (self.c_var, self.z,

gs=self.qgs)
components|['gear_inertia'] = self.
gear_inertia
components|['gear_stiffness'] = self.

gear_stiffness
components['force'] self.force
components['gear_damping']=self.gear_damping

return components

o°
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The implemented dynamic system allows for a very effective
analysis of the system dynamics. This type of implementation is
a scalable and efficient solution. It allows for quick determina-
tion of the equations of motion or basic dynamic characteristics
as follows:

EquivalentGearModel ()

3 eom_gear=gear_dsys.eoms

5 display(eom_gear.as_eq_list () [0])

> gear_dsys
3 stiff_models =

5 display(stiff_models|['waves'])

6

7 display (stiff_models|['approx'])

3
S

The result is an equation displayed in a clear mathematical
notation representing this object. This functionality has been
achieved by using elements from the SymPy library [42] as a
symbolic calculation engine (back-end).

—F+cgi+meqi+kg (Kmeshe+1)z2=0, (19)

where

Kmesh — formula representing stiffness variation (Fourier ex-
pansion of rectangular signal)

cg — mesh damping coeflicient

Meq — equivalent mass

ko —mesh stiffness coefficient

& —small parameter

z — gear vibration displacement

Z — gear vibration velocity

7 — gear vibration acceleration

F — excitation force

Another method (only implemented within the class
EquivalentGearModel — local interface) allows for the
determination of various stiffness models. Any number of mod-
els can be defined. The listing shows a model selection with the
key waves.

EquivalentGearModel ()
gear_dsys._stiffness_models ()

# reference model (
HA)

display(stiff_models['rect'])
(RA)

# rectangular model

# Fourier

approximation (FA)

o

All models considered have the following form:

21t
Kmesh = —0.5+2.5 Sigl‘l (sin (%))
. [2n1) . . [2nt
+ 1.0sin | —— | sign |sin | — | |,
T T
2nt
Kmesh = 2.5sign (sin (%)),

(20)

21
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307t 38nt 22nt
Kinesh = 0.21 sin [ 22 | +0.17 sin | 2222} +0.29sin | 2222
T T T

m)+l.lsin(@)
T T
)+0.l9sin(34m)+3.251n(%)

(22)

107t

+ 0.64 sin ( ) +0.465in ( 14

18xt

+ 0.35sin (

+0.24sin (26’”).

The mathematical dependencies (20)—(22) form the basis of
the simulations presented. They were selected as example de-
pendencies describing the variability of TVMS. Equations are
presented in the form of the plot visible in Fig. 3.

4 [ T T : T T : T T T T : T o
‘ —— Parabolic —— Harmonics Rectangular —<— Fourier Approx

f K
[\ 1
I T

Kmesh

1.2 1.4

Period

Fig. 3. Mesh stiffness models

Figure 3 compares the various mesh stiffness models used in
the simulation studies.

e Parabolic reference approximation (PRA) — a mesh stiffness
model where the course is a typical approximation pattern
using a parabolic function.

e Harmonics approximation (HA) — a mesh stiffness model
based on a periodic function as a quasi-parabolic approxima-
tion: considered an adequate matching of the mesh stiffness
course pattern.

e Rectangular approximation (RA) — a mesh stiffness model
based on a rectangular approximation: considered a less
suitable and lower accuracy matching of the mesh stiffness
course pattern compared to harmonic approximation.

e Fourier approximation (FA) — a mesh stiffness model as
an approximation of the mesh stiffness course pattern also
proposed in this study: sufficiently good due to frequent
response for simulation studies (see study [37]).

Trigonometric functions are necessary for the proposed model
application in MSM. The Fourier series expansion can be de-
termined to obtain an expression containing only sin and cos
functions for each periodic function. The formulas for the series

expansion are as follows:
. (nnk
)+bn s1n( )), (23)

nnk
a,, cos d
T
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where
T
[ kpdt
ao= TT (24)
T
2/ k,,cos(”T"’)dt
an = — - : (25)
T
2 [ kpsin (%) ds
by=—L - (26)

The results obtained do not contain odd components. The de-
pendencies considered represent the variability of stiffness over
time, which allows for a simplification of the analysis. The pe-
riod is a variable parameter, therefore the analysis is carried out
in the period domain. Numerical transformation algorithms for
the frequency domain available in the DynPy library were used.
It can be concluded that any periodic model can be simplified
in this way to an analytical form. The proposed approach allows
for assessing the convergence of different models — easy to add
when creating a dynamic system.

Based on the study presented in paper [37], all computations
were performed for the helical gear parameters listed in Table 1.
Equation (19) was used as a base for numerical analysis of
the adopted stiffness models (Fig. 3). A series of analyses was
carried out. The investigation results are presented in Figs. 4
and 5 (as subplots).

1073
1.2 T T I I I T

t[s] 1073

Fig. 4. Vibration displacement in gear mesh system for TVMS models:
HA - harmonics approximation, RA — rectangular approximation, FA
— Fourier approximation

Figures 4 and 5 compare the simulation results obtained for
different approximations of mesh stiffness: harmonic (HA), rect-
angular (RA), and Fourier (FA) approximation. The simulations
have been performed for the same period to eliminate uncer-
tainties regarding the frequency of the signals and to enable a
direct comparison of course shapes and amplitudes. It can be

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. 155895, 2026

1070

t[s] 1073

Fig. 5. Vibration displacement in gear mesh system for TVMS models:
HA, RA, and FA (subplots from Fig. 4)

observed that the course amplitudes appropriate for single-tooth
and double-teeth meshing are similar, but the differences in the
course shapes are clear. It is worth noting that the FA approxi-
mation additionally contains signal modulation, which increases
the amount of information transferred.

The parabolic model, widely recognized in the literature as
a classical representation of mesh stiffness, is considered a re-
liable mathematical depiction of actual stiffness behavior along
the path of contact. Its accuracy in scholarly discussions is well-
established. The HA model serves as a close approximation
to the parabolic model and demonstrates high accuracy. On the
other hand, the displacement characteristics generated by the HA
model are approximate those observed in the parabolic model
within the time-domain. In contrast, the RA and FA models ex-
hibit certain limitations due to additional simplifications. These
models exclude the parabolic segments observed in the time-
domain representation, as clearly illustrated in Fig. 5, but still
sufficiently represent the fundamental gear meshing phenomena.

The RA mesh stiffness signal inherently provides lower ac-
curacy when directly compared with the HA approximation.
However, employing a Fourier series expansion in the FA model
notably smooths the stiffness variations. Despite this effect, lo-
cal discrepancies remain, as displacement magnitudes may be
artificially exaggerated or diminished at specific time-domain
intervals. Furthermore, an intrinsic challenge emerges when us-
ing the Fourier series approximation: it becomes impossible
to eliminate artificial mesh stiffness overshoots entirely. These
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overshoots are attributed to the Gibbs phenomenon, a fundamen-
tal feature of Fourier series expansions of periodic functions.
The equivalent force of the inter-tooth interaction can be cal-
culated in the following way (27):
Fo  cgi  kgz

= +m ’
eq eq eq

27)

where
geq —equivalent mesh force;
F. — mesh force.
The equivalent mesh force (27) can be rearranged to the fol-
lowing form:

Qeq = Wiz +2h2, (28)
where
w(z) — natural frequency;
h — damping coefficient.

Figures 6 and 7 show the evolution of dynamic mesh forces
and their frequency spectra for the TVMS models, respectively,

including damping along the path of contact.
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Fig. 6. Dynamic mesh forces along the path-of-contact for TVMS
models: HA, RA, and FA

The dynamic effects observed for time-varying equivalent
mesh force (Fig. 6) originate primarily from damping phe-
nomena inherent within the gear mesh system. Characteristic
changes in the time distribution of the mesh force manifest as

periodic variations directly correlated with mesh stiffness (suit- |

able TVMS model) — as depicted in Fig. 5.

15 mu

The mesh force distribution exhibits distinct rapid increases >

at moments when a single pair of teeth initiates meshing en-
gagement. The gear mesh force attains its peak values at these |
specific temporal points. Conversely, periods during which two -

pairs of teeth simultaneously remain meshing within the path of

contact are associated with relatively lower force values. This °
lower mesh force interval extends from entering to exiting the |
path of contact with a double pair of teeth (during double-tooth s

meshing until disengagement of one pair). A rapid force’s rise
recurs as the mesh interaction transitions back to a single-tooth
meshing.
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Fig. 7. Frequency spectra of dynamic mesh forces along the path
of contact for TVMS models: HA, RA, and FA

4. ANALYTICAL SOLUTION

The reduced model (29) can be simplified for further analy-
sis [37]. To improve the efficiency of calculations and to avoid
multiple executions of complex ones, a computational environ-
ment created by the authors is used. This environment is based
on the DynPy library and uses Jupyter Notebook, as described
above in this paper. The use of the appropriate sequence of
methods allows the equation (29) to be determined in a way that
is convenient for further analysis. The base code is as follows:

dsys Equivalent SDOFGearModel ()
t,z,k,eps=dsys.ivar,dsys.z,dsys.k,dsys.eps

c=dsys.cC

F=dsys.F

k_var=dsys.k_var

T=dsys.T

m=dsys.m
» delta = Symbol ('delta',positive=True)
3 omg = Symbol ('omega',positive=True)

u_s = Symbol ('u_s',positive=True)

= Symbol ('mu',positive=True)

7 counter=13

data={

rcounterx*x2xomgx*2,
:muxeps,

:2%pi/omg,

:1,
:counter**2+xomg**2*u_s,
_var:1,

omg:1,

msm_ode=gear_dsys.approx_rect (4, numerical=True) .
ode_with_delta() .subs (data)
msm_ode

}

o

The code presented allows for a convenient representation
of the differential equation in a form ready for perturbation

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. €155895, 2026
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expansion. The result of the execution is as follows:

—F +cgZ+meqZ+kg (e (2.27sin(wt) +0.757 sin(3wr))

+1)z+0kgez =0, (29)
where

ug — static deflection;

0 —detuning parameter;

w —meshing frequency.

The obtained result represents a recursive system of pertur-
bation equations determined by the multiple time scale method
(MTSM). This problem is solved recursively [43]. It was as-
sumed that the initial system of equations would be the repre-
sentation of the MTSM system in Jupyter Notebook (graphical
representation). The DynPy library allows us to effectively ob-
tain the final solution. The intermediate expressions necessary
to obtain the final approximate solution are also possible to ana-
lyze. The code responsible for creating the MTSM system is as
follows:

> msm_ode=gear_dsys.approx_rect (4, numerical=True) .

3 msm_ode_subs =

10
11

ode_with_delta () .subs (data)

msm_ode.odes[0] .subs ({omg:1,delta:
delta}) .subs({z: (z+u_s) }) .subs({}) .doit () .expand
()

gear_ode_msm = MultiTimeScaleSolution (msm_ode_subs,
ode.dvars[0],
ivar=ode.ivar,

omega=S.0ne, order=1l,eps=eps)

gear_ode_msm
o
3

The presented code creates an object of the class
MultiTimeScaleSolution. The result of the code exe-
cution is as follows:

1697+ uez+1696use + 16967+ 128.0u e sin(31)
+128.0ezsin(3¢) +384.0ue sin(r) +384.0ezsin(z)
+7=0, (30)

where
ug — static deflection;
60 —detuning parameter;
w — meshing frequency.

By calling the corresponding methods on the instance de-
scribing the MTSM equation (30), all subsequent solving steps
can be obtained. The following executions are possible:

> gear_ode.predicted_solution_without_scales (3)
3 gear_ode.predicted_solution (3)

7 nth_ord_approx_list =

11

nonlin_ode_base._scales_formula

nonlin_ode_base.
eoms_approximation_list ()

nth_ord_approx_list[0]

nth_ord_approx_list[1]

3
S
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The last three executions are responsible for determining the
perturbation expansion for the differential equation under con-
sideration (30). They are formed as successive elements of the
equation expansion in a power series of the small parameter €.
The zeroth-order and first-order linear approximation (perturba-
tions) have a form of equations (31) and (32):

d2
16920 (t0.11) + —z0(t0,11) =0,
dto

&1V

2

d d
2———z0(to,11) + 169z (to,t1) + u—2z0 (to,t
dtldt()ZO(O 1) 21 (to, 1) 'udIOZO(O 1)

+1696ug+1696z7¢ (to,l‘l)

+ 128.0u, sin (32y) + 128.0z¢ (2o, 1) sin (3¢¢)

+384.0u, sin (ty) +384.0z¢ (¢, 1) sin (tg)
d2

+—z1 (to,11) =0.
drg

(32)

The environment created during the execution of the work
allows for the rapid construction of approximations, as shown
by the equations (31) and (32). The obtained results were com-
pared with the reference analytical calculations, confirming the
effectiveness of the proposed method [18, 20, 30,37,44]. The
differences in the results obtained are due to the different trans-
formation techniques. Finally, the solution (displacements and
speed) was determined in the following form:

z=C1 (t1)sin(1329) + C5 (#1) cos (1319) — Suse
+7.68eC; (t) sin (12t9) +0.736&C; (t1) sin (16t¢)
+ 7.12eC; (t1) sin (1419) +0.927&C; (1) sin (10¢y)
— 2.29uesin (tg) —7.68£C (t1) cos (12t)
—0.736¢C| (t1) cos (16ty) — 0.8uze sin (31g)
—7.12eC (1) cos (1419) —0.927¢C (t1) cos (10tp), (33)

136 136 te
Ci(n)= (C1 cos( ZIS)—Czsin( tg))e‘%, (34)

2

135t 136 "
Cg(tl)z(Clsin( 28)+Cgcos( 2"9))e—”z, (35)
where

Cy, C, —integration constants.

2 =13.0C;(t1) cos (13t9) — 13.0C, (#1) sin (13¢p)
+ 11.8&C (t1) sin (16tg) + 11.8eC5 (t1) cos (16t¢)
+9.28eC (t1) sin (1029) +9.282C; (1) cos (10¢p)
+92.2¢Cq (t1) sin (12tp) +92.2eC, (t1) cos (1219)
+99.6eC (t1) sin (141p) +99.66C; (t1) cos (14¢1p)

—2.29uzecos (tg) —2.4ugecos (31y) . (36)

The obtained results are consistent with the current state of
the art [37]. They differ mainly in the form of the integration
constants. This is a very complex expression, and its manual

analysis is difficult. The code used facilitates the solution of the
computational problem. The obtained results are consistent with
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similar publications that treat problems of analytical investiga-
tion of parametric vibration considering the time-variable mesh
stiffness. The proposed methodology, based on object-oriented
programming, makes the problem computationally efficient and
improves the quick obtaining results. The time complexity of
the calculations decreases, reducing the computational cost.

5. MODEL SENSITIVITY ANALYSIS TO CHANGES

IN MESH PARAMETERS
5.1. Calculation environment for analysis

A sensitivity analysis was carried out to analyze the gear dy-
namics in more detail and to obtain reference data. A numerical
system of motion equations was developed using the dynamic
models implemented in the work. The LSODA algorithm pro-
vided by the SciPy library [45] was chosen for the simulation.
The used environment is based on the Python programming
language, which increases computing performance. This allows
each solution to be efficiently implemented within the basic
programming structures. For this purpose, a procedure to au-
tomate the execution of the sensitivity analysis for the selected
parameter was written. This procedure code is as follows:

» k_values=[3%10%x%8,6%10%x%8,9%10%x%8,1+x10x%9]

3 c_values=[3x10%%3,6%10x*3,3%x10%%4, 6x10%%4]

4

m_values=[.3,.6,1,2]

def perform_sensitivity_analysis (param, param_span,
name, t_span, reference_data) :

data_dict_param {*xreference_data, param:param}

na_df3 = dyn_sys.subs (data_dict_param) (name) .
numerical_analysis (parameter=param, coordinates
=2,

t_span=t_span,

param_span=param_span

)

results = na_df3.perform_simulations (backend="
numpy ')

return results
o
3

The prepared environment allows for numerical simulations
for any shape of the TVMS approximation function. It was de-
cided to carry out simulations with a parabolic TVMS signal
to compare the effectiveness of the proposed solution with the
results of the research presented in the paper [37], where sim-
ulations based on the Fourier approximation of the rectangular
TVMS signal were carried out.

Using the capabilities of the created environment, a prelim-
inary comparison of the displacements z, velocities z, and ac-
celerations Z during the simulation (gear operation) was made.
The results obtained in the time-domain (Figs. 8—11) and the
frequency domain (Figs. 12—14) allowed us to select the most
interesting simulation results. The reference values of the sys-
tem’s parameters are contained in Table 2.
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Table 2
Reference values of the parameters for simulations

Symbol Value Unit
Stiffness kg 8.0e+8 N/m
Force F 4.0e+3 N
Damping Cg 9.0e+3 Ns/m
Period T 0.0016 s
Mass Meq 0.57 kg
Small parameter & 0.13 -

5.2. Effect of mesh stiffness,

The numerical investigation of these approximated analytical
solutions began with a stiffness analysis. Figure 8 shows the
time-varying displacement for four mesh stiffness (k) values.

1070
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Fig. 8. Time-history of vibration displacement in gear mesh system
for selected mesh stiffness coeflicients

Vibrations displacement based on the time-domain signals in
Figs. 8 and 9 (as subplots) show that the lower the mesh stiff-

1077
3 T T T T
— kg = 0388 ——k; = 0.62%
kg = 0.9ME ——f, = 1,0MK
2 —
£
N
1 —
O | | | | |
3 3.5 4 4.5 5 5.5 6
ts] 1073

Fig. 9. Time-history of vibration displacement in gear mesh system for
selected mesh stiffness coefficients: signal qualitative zoom from Fig. 8
(narrow the time-domain)
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ness, the higher the vibration amplitude. The amplitude vari-
ability corresponds directly to the changes in the mesh stiffness,
whereby the vibration period remains the same.

On the other hand the results in Fig. 10 show:

e The signals of velocity in the time-domain reveal a more
dynamic transient behavior than the displacement, with am-
plitudes increasing at sudden changes in mesh stiffness.

o At higher mesh stiffness, the speed oscillations decay faster,
which means better vibration energy dissipation.

e Analysis of the obtained results (presented in the figures)
reveals that decrease of the parameter k, from 0.90 to
0.30 N/m results in change of the acceleration level from
3.9E+3 to 5.0E+3 m/s. It means that parameter increases
1.3E+2% (1.3 times).

0.3 I I I
— kg = 038N ——; = 0.6
02+ kg = 0.9MN ——k, = 1.0ME |

1
3 3.5 4 4.5 ) 5.5 6

t[s] 1073

Fig. 10. Time-history of vibration velocity in gear mesh system for
selected mesh stiffness coefficients: signal qualitative zoom (narrow
the time-domain)

In turn, an analysis of the results in Fig. 11 reveals:

e The acceleration of the vibrations in the time-domain main-
tains constant amplitude values regardless of the mesh stiff-
ness. Still, in transient states, the amplitude increases rapidly,
which is related to the constant value of the force loading
the gears.

8000 ‘ ‘ \
— kg =03MN ——f, —0.6MN
6000 - kg = 0.9MN i — 1 0MN ||

o A particularly clear increase in the acceleration amplitude
occurs when switching from single-tooth to double-tooth
meshing and vice versa.

The results’ analysis allows us to conclude about the higher
precision of the analyzed model. The obtained results indicate
dynamic behavior consistent with the known results from the lit-
erature, which allows us to claim the adequacy of the simplified
model described by the selected parameters.

Spectra analysis in Fig. 12 indicates:

e The displacement frequency spectrum shows peaks at the
gear mesh frequency and its multiples, and an increase in
mesh stiffness reduces these values.

o Higher mesh stiffness results in better mechanical stability
of the system, limiting the displacement amplitudes.
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Fig. 12. Frequency spectra of vibration displacement in gear mesh
system for selected mesh stiffness coefficients

However, spectral analysis in Fig. 13 allows us to conclude
that:

o The frequency spectrum of the velocity shows peaks for

higher harmonics, and an increase in mesh stiffness causes
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Fig. 11. Time-history of vibration acceleration in gear mesh system for
selected mesh stiffness coefficients: signal qualitative zoom (narrow
the time-domain)
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Fig. 13. Frequency spectra of vibration velocity in gear mesh system
for selected mesh stiffness coefficients
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the energy to be dissipated more quickly over a wider fre-
quency range.

o Higher mesh stiffness improves the dynamic stability of the
system, reducing peak velocities and ensuring smoother vi-
bration transitions.

Figure 14 shows the system vibration acceleration in the fre-

quency domain. Simulations performed for the parameter kg
allow to observe that if:

— kg =0.30 N/m then the highest value (peak) is 667.345 m/s?
for f =5694.31 Hz.

— kg =0.60 N/m then the highest value (peak) is 518.154 m/s?
for f =5694.31 Hz.

— kg =0.90 N/m then the highest value (peak) is 423.828 m/s?
for f =9490.51 Hz.

— kg = 1.0 N/m then the highest value (peak) is 392.579 m/s?
for f =9490.51 Hz.
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Fig. 14. Frequency spectra of vibration acceleration in gear mesh
system for selected mesh stiffness coeflicients

Spectra analysis in Fig. 14 reveals:

e The acceleration frequency spectrum shows dominant peaks
in the meshing frequency, and the higher stiffness causes an
increased energy concentration at higher frequencies.

e Higher mesh stiffness reduces peak amplitudes and spreads
the energy distribution, which reduces the risk of material
fatigue and improves system stability.

General observations show that mesh stiffness has a signifi-
cant impact on the vibration behavior of the transmission in the
drive train. An increase in the mesh stiffness reduces the am-
plitudes of displacement, velocity, and acceleration, improving
vibration stability and limiting the effects of resonance. Transi-
tions between single-tooth and double-tooth meshing generate
noticeable peaks in vibration signals, and this effect is more
pronounced at lower stiffness.

5.3. Effect of equivalent mass, mq

The next study stage was to identify the impact of the equivalent
mass (1meq) of gears on meshing dynamics. The results in Fig. 15
allow us to conclude that:

12

e An increase in the system mass increases the amplitude of
the displacement and changes the frequency of the oscilla-
tions, with smaller masses showing greater susceptibility to
vibration.

e Higher mass causes a reduction in peak acceleration values
and a shift in vibration energy to lower frequencies.

o Investigation of the resultant data (shown in the figures)
allows to note that decrease in the quantity meq from 2.0
to 0.30 kg causes change in the acceleration value from
1.5E+3 to 4.0E+3 m/s?. Intepretation of this change states
that increases 2.8E+2% (2.8 times).
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Fig. 15. Time-history of vibration displacement in gear mesh system
for selected equivalent mass: signal qualitative zoom
(narrow the time-domain)

An analysis of the time signals (Fig. 15) reveals if the equiv-
alent mass (meq) increases from 0.3 to 2.0, the amplitude also
increases.

Figure 16 shows the system acceleration response in the fre-
quency domain. Simulations performed for the parameter meq
allow to observe that if:

— meq = 0.3 kg then the highest value (peak) is 443.09 m/s? for
f=9490.51 Hz.

—meq = 0.6 kg then the highest value (peak) is 460.366 m/s? for
f=5694.31 Hz.

— meq = 1 kg then the highest value (peak) is 490.193 m/s> for
f=5694.31 Hz.

— Mmeq = 2 kg then the highest value (peak) is 330.6 m/s? for
f=3796.2 Hz.

Spectral analysis in Fig. 16 shows that for smaller masses
(meq < 0.6 kg) the spectrum is more concentrated near the gear
mesh frequency. Higher masses (meq = 1 kg, and more) result
in a wider range of observable peaks.

Analysis of the helical gear system for different weights al-
lows specific trends to be observed. The influence of mass on
vibration dynamics is important for gear system design. Increas-
ing the mass improves vibration stability by reducing displace-
ments and accelerations, acting as a natural damper. Analysis
for specific simulation parameters has shown that the model is
inadequate for masses above 3 kg [37].
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Fig. 16. Frequency spectra of vibration acceleration in gear mesh
system for selected equivalent mass

5.4. Effect of mesh damping, c,

The graphs in Fig. 17 show the system acceleration response
over time for different damping coefficients. The analysis of
results shows:

¢ An increase in the damping ratio reduces the displacement
amplitudes, which accelerates the stabilization of the system
and reduces oscillations.

e Higher damping values effectively dampen vibrations and
dissipate energy faster, stabilizing the system.

o Investigation of the resultant data (shown in the figures)
allows us to note that decrease in the quantity ¢, from 60
to 3.0 Ns/m causes change in the acceleration value from
1.2E+3 to 6.6E+3 m/s?. Intepretation of this change states
that it increases 5.4E+2% (5.4 times).

1.5 T \ I I
— ¢y =3.0% —— ¢, =602

cg = 30.0% ——¢, = 60.0%

z[m]

t[s] 1073

Fig. 17. Time-history of vibration displacement in gear mesh system for
selected mesh damping coefficients: signal qualitative zoom (narrow
the time-domain)

In a double-tooth meshing, the displacement values are lower,
and the number of oscillations increases, whereas in a single-
tooth meshing, the damping is less effective. High damping
values limit peak amplitudes and dissipate energy over a wider
frequency range, reducing the resonance risk.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. 155895, 2026

In turn, Fig. 18 shows the acceleration of the system vibrations
in the frequnecy domain for different mesh damping coefficients.
Simulations performed for the parameter c, allow to observe
that if:

— ¢g = 3.0 Ns/m then the highest value (peak) is 979.415 m/s?
for f =9490.51 Hz.

— cg = 6.0 Ns/m then the highest value (peak) is 622.249 m/s?
for f =9490.51 Hz.

— ¢g = 30 Ns/m then the highest value (peak) is 192.689 m/s?
for f =5694.31 Hz.

— cg = 60 Ns/m then the highest value (peak) is 103.006 m/s?
for f =5694.31 Hz.

The shape of the FFT plot remains almost unchaged similar-
ily to stiffness. A behavior of maximal amplitude is observed,
where the acceleration decreases for increasing damping. The
frequency at which the highest peak appears remains constant
except for the extremely high damping value ¢, > 30.0 N s/m.
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Fig. 18. Frequency spectra of vibration acceleration in gear mesh
system for selected mesh damping coefficient

Spectral analysis in Fig. 18 allows us to conclude that:

e The highest acceleration peaks occur at low damping co-
efficients, while an increase in damping reduces the peak
values.

e Higher damping disperses energy over a wider frequency
range, limiting the risk of resonance and confirming the
damping effect (damping efficiency).

Generally, the system stability increases with the increase
of the damping coefficient, minimizing the displacement and
acceleration reactions to dynamic loads. Higher damping coef-
ficients cause a rapid decrease in acceleration amplitudes. Ef-
fective damping accelerates the reduction of vibration energy,
improving the system work efficiency (system performance) and
reducing mechanical fatigue. Optimizing the damping ratio is
key to improving machinery reliability and lifespan.

6. ASSESSMENT OF THE OBTAINED SOLUTION

Assesment of the obtained approximated solution was based on
the comparison between numerical approach and analytical re-
sults. It allows us to show the difference between these methods

13
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and possible applications of obtained analytical solution. In or-
der to compare results, the governing equation was transformed
to the dimensionless form. It has a following form:

d
169z(7) +#£EZ(T) +1696u,e+1696z(7)

+128.0uyesin(37) + 128.0ez(7) sin(37)
+76.Tugesin(57) +76.7z(7) sin(57)
+384.0uesin(t) +384.0ez(7) sin(7)
+54.Tusesin(77) +54.7ez(7) sin(77)

d2

+ ﬁz(‘r) =0. 37
Obtained equation was solved in the way presented in the

previous section and calculated for selected timestamps. A time-

domain analysis was performed first, and the results are shown

in Figs. 19 and 20.
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Fig. 19. Comparison of numerical and analytical solution
for exemplary data
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Fig. 20. Comparison of numerical and analytical solution
for exemplary data (subplots)
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The comparison between the numerical and analytical so-
Iutions demonstrates acceptable differences in the system dis-
placements. These discrepancies can be attributed to the as-
sumed order of approximated solution. The acceptable error
margin below 5% (from maximal displacements comparison)
is visible, however qualitative convergence is better. To con-
firm this statement, frequency domain analysis was done. The
frequency spectrum is presented in Figs. 21 and 22.
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Fig. 21. Comparison of spectral analysis of numerical and analytical
solution for exemplary data

0.3

= Numerical

0.2 .

) |

z[m]

— MSM
0.2 N
B
N
0.1 N
(= \ . \
0 0.5 1 1.5 2 2.5

order

Fig. 22. Comparison of spectral analysis of numerical and analytical
solution for exemplary data (subplots)

The results obtained confirm the convergence of the analyti-
cal approach. It is visible that quantitative errors are related to
missing harmonical components that are caused by the assumed
accuracy of prediction (attribute of perturbational approach).
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For small values of the parameter e, the results from both meth-
ods are nearly identical, with only minor discrepancies. Results
obtained revealed a computation error. The following formula
was used:

ana num
_ A 1= A ful

A= (38)
Anum

Calcuated errors are aproximatelly 6% for this assesment
method, which is more reliable than maximal displacements
comparison.

However, as ¢ increases, the differences between the two
methods become more noticeable. These discrepancies manifest
as a phase shift between the solutions, with the magnitude of
the phase shift and the overall solution difference increasing as
& grows. This behavior highlights the limitations of the multi-
scale method for larger perturbations, where higher-order effects
cannot be neglected.

Overall, the analysis confirms the accuracy of the multi-scale
method for small perturbations while emphasizing the need for
caution when extending its use to larger values of €.

7. CONCLUSIONS

The application of the multiple time scales method (MTSM)
to model time-varying mesh stiffness (TVMS) fills pivotal gaps
in the parametric vibration analysis. The main objective was
to develop and verify analytical solutions and understand the
frequency structure of the meshing phenomenon.

Drawing upon simulations of the helical gear system with
TVMS and a comparison of analytical and numerical results,
the following conclusions emerge:

1. The proposed two-degree-of-freedom model can be effec-
tively reduced to a one-degree-of-freedom TVMS model
and effectively simulates the system’s behavior.

The proposed approach to applying spectral decomposition
results ensures high convergence in the analysis of stiffness
characteristics and dynamic response.

Minor phase shifts (due to Fourier approximation) limit pre-
cision for specific applications, such as control purposes.
Despite the complexity of the resulting expressions, these so-
lutions provide valuable insight into system periodicity and
amplitude modulation, supporting the overall assessment of
meshing dynamics.

reliability and repeatability of the results due to its explicit
mathematical form. This has a direct impact on reducing the
computation time.

The analytical solution converges with the numerical solu-

tion for the second approximation and the value of the small -

parameter € < 0.1. Using the first approximation or the value
of the small parameter £ > 0.1 results in a marked increase
in divergence.

nificantly supports the search for an analytical solution using

multiple time scales by specialized methods implemented.
It fills a gap in currently existing solutions.
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It should be noted that the analytical solution guarantees the ,

TS

19

20

The computational framework developed for this study sig- *

Overall, MTSM offers a robust analytical foundation for pre-
dicting and managing parametric vibrations in gear systems.
Enhancing mesh stiffness and optimizing damping improves sta-
bility, reduces oscillations, and supports gear durability. These
analytical insights can be instrumental in refining helical gear de-
sign, enabling early fault detection, vibration minimization, and
more sustainable, operator-friendly machinery performance.
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APPENDIX
The code describing dynamic systems is as follows

class EquivalentGearModel (ComposedSystem) :
"""Ready to use sample Single Degree of Freedom
System with mass on spring
Arguments:

m = Mass
-Mass of system on spring
k = Spring coefficient
-Spring carrying the system
ivar = symbol object
—-Independant time variable
gs = dynamicsymbol object
—Generalized coordinates
Example

A mass oscillating up and down while being held
up by a spring with a spring constant k

>>> t = symbols('t'")

>>> m, k = symbols('m, k')

>>> gs = dynamicsymbols('z') # Generalized
Coordinates

>>> mass SDoFHarmonicOscillator (m,k, gs=[z],)
# Initialization of LagrangesDynamicSystem

instance

-We define the symbols and dynamicsymbols
-Kinetic energy T and potential energy v are
evaluated to calculate the lagrangian L
Reference frame was created with point P
defining the position and the velocity
determined on the z axis

—external forces assigned

-Next we determine the instance of the system
using class LagrangeDynamicSystem

-We call out the instance of the class

-If necessary assign values for the default
arguments

nun

scheme_name "engine.png"
real_name = "engine_real.PNG"
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m = Symbol ("m_ {\rm eq}", positive=True)
k = Symbol ("k_g", positive=True)
F = Symbol("F" positive=True)
c = Symbol ("c_ positive=True)
T = Symbol("T", positive=True)
omega = Symbol ("omega", positive=True)
ivar = Symbol("t")
k_var = Symbol ("kappa_mesh", positive=True)
eps = Symbol ("varepsilon", positive=True)
c_var = Symbol ("c_var", positive=True)
f = Symbol ("f", positive=True)
z = dynamicsymbols ("z")
def __init_ (
self,
m=None,
k=None,
F=None,
z=None,
c=None,
T=None,

ivar=None,
k_var=None,
eps=None,
c_var=None,
f=None,
*xkwargs,

if k_var is not None:
self.k_var = k_var

eps 1s not None:
self.eps = eps

m is not None:
self.m = m

k is not None:
self.k = k

F is not None:
self.F = F

z is not None:
self.z = z

c is not None:
self.c = ¢

T is not None:
self. T =T

c_var 1s not None:
self.c_var = c_var
ivar is not None:
self.ivar = ivar
f is not None:
self.f = £

if
if
if
if
if
if
if
if
if
if
self.gs = [self.z]

self._init_from_components (xxkwargs)

@cached_property
def components (self):

components = {}

self.c_var = self.c » (1 + 0 « self.eps «*
self.k_var)

stiffness = self.k % (1 + self.eps * self.
k_var)

self.gear_inertia = MaterialPoint (self.m,

self.z, gs=self.qgs)

self.gear_stiffness = Spring(stiffness, self
.z, gs=self.qgs)

self.force = Force(self.F, self.z, gs=self.
gs)
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self.gear_damping = Damper (self.c_var, self.
z, gs=self.gs)

components ["gear_inertia"] = self.
gear_inertia

components ["gear_stiffness"] = self.

gear_stiffness
components["force"] =
components ["gear_damping"
gear_damping

self.force
] = self.
return components

def symbols_description(self):
self.sym _desc_dict = {

self.m: r"mass of the system on spring"
self.F: r"excitation force",

self.c: r"damping constant",

self.k: r"stiffness",

self.T: r"torque [not surel",

return self.sym_desc_dict

def _report_components (self):
comp_list = [*REPORT_COMPONENTS_LIST]

return comp_list

def units(self):

f = Symbol("f")

units_dict = {
self.k: ureg.newton / ureg.meter,
self.m: ureg.kilogram,
self.F: ureg.newton,
self.ivar: ureg.second,
self.T: ureg.newton * ureg.meter,

self.z.diff (self.ivar, 2): ureg.meter /
ureg.secondx*2,
self.c: ureg.newton * ureg.second / ureg
.meter,
self.f: ureg.hertz,

}

return units_dict
def get_numerical_data(self):

k, m, ¢, F,
positive=True)

eps = symbols("k m ¢ F epsilon",

default_data_dict = {

self.k: [leb6],
self.m: [1],

self.c: [2e-4 % leo6],
self.F: [100],
self.eps [0.17,

}

return default_data_dict
def trig_stiff(self, angle=2 x pi):
trig = sin(self.omega * self.ivar)
new_eq = self.subs(self.k_var, trig)

return new_eq
def wave_stiff (self):
wavel = (100 % (sin(self.ivar / self.T)) +

1000) * Heaviside (
sin(self.ivar / self.T)
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wave2 = (100 x (-sin(self.ivar / self.T))) =«
Heaviside (-sin(self.ivar / self.T))

waves = wavel + wave2

new_eq = self.subs(self.k_var, waves)

return new_eq

def rect_stiff(self, no=6, numerical=False):
t = self.ivar
omg = self.omega

trig = sum(
[Heaviside(omg = t - 1) + 0 % Heaviside(
omg * t — 2) for ind in range (no)]
)

new_eq = self.subs(self.k_var, trig)
return new_eq
def approx_rect (self, no=6, numerical=False):

if numerical is True:
amps_list = [
2.27348466531425,
OI
0.757408805199249,
OI
0.453942816897038,
OI
0.323708002807428,
0,
0.25121830779797,
OI
0.20497791996379¢6,
OI
0.172873394602606,
OI
0.149252079729775,
OI
0.131121653619234,
OI
0.116749954968057,
OI
]
else:
amps_list = symbols(f"a_0:{no}")

rectangular_approx = sum(
[
N (amp, 3) * sin(((ind) + 1) * self.
omega * self.ivar)
for ind, amp in enumerate (amps_list
[0:no])

)
new_eq = self.subs({self.k_var: (
rectangular_approx) })

return new_eq

def ode_with_delta(self):
delta = Symbol ("delta", positive=True)
eps = Symbol ("varepsilon", positive=True)

with_delta = self._eoms[0] + self.k % eps x
delta * self.z
delta_sys = type(self._ode_system) (
with_delta, Matrix([self.z]), ivar=self.
ivar, ode_order=2

)
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return delta_sys

def _stiffness_models (self):

# wave
t = self.ivar
T = self.T

wavel = (1 % (sin(2 = pi = t / T)) + 2.0) =

1/ 2+ 1/ 2 % sign(sin(2  pi = t / T)

(1 * (-sin(2 * pi » t / T)) — 3.0) =

=
[
<
)
N
I

1/ 2+ 1/ 2 % sign(-sin(2 = pi ~ t / T

waves = wavel + wave2

# rectangular
rectangular = 5 x ((1 / 2 + 1 / 2 % sign(sin
(2 * pi » t / T))) - S.Half)

# rectangular_approx
amps_list = [
.27348466531425,
.757408805199249,
.453942816897038,
.323708002807428,
.25121830779797,
.204977919963796,
.172873394602606,
.149252079729775,
.131121653619234,
.116749954968057,

OO O OO OO OoOoN

]
rectangular_approx = sum(
[
amp * 2 / sqrt(2) x sin((2 % (no) +
1) * 2 » pi » t / T)
for no, amp in enumerate (amps_list
[0:1)

return {"wave": waves, "rect":
"approx": rectangular_approx}

rectangular,

def _stiffness_waveforms (self) :

from sympy import lambdify

t = self.ivar
T self.T

return {
label: lambdify((t, T), waveform)
for label, waveform in self.

_stiffness_models () .items ()

}
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