
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 74(1), 2026, Article number: e156797
DOI: 10.24425/bpasts.2025.156797

MECHANICAL AND AERONAUTICAL ENGINEERING, THERMODYNAMICS

Improved snake optimization algorithm for parameter
identification based on the genetic algorithm
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Abstract. To address the issue that traditional snake optimization (SO) algorithms tend to become trapped in local optima when identifying
aerodynamic parameters of high-spin projectiles – where complex flight dynamics and measurement noise further complicate the process –
this paper proposes an enhanced snake optimization algorithm integrated with genetic algorithm (GA) mechanisms. Specifically, the improved
algorithm incorporates GA-based selection and crossover operations into the SO framework, aiming to strengthen global search capability
by simulating not only snakes’ natural foraging and combat behaviors but also the evolutionary characteristics of genetic algorithms. For
handling noisy trajectory data, Kalman filtering is applied to denoise measured information, laying a reliable foundation for subsequent parameter
identification. The method utilizes segmented trajectory data of high-spin projectiles across different speed stages for analysis. Comparative
experiments with the traditional SO algorithm and other optimized variants demonstrate that the proposed approach reduces identification errors
by 49%, significantly outperforming conventional methods in accuracy. Further validation with full trajectory measured data shows that when the
identified aerodynamic parameters are substituted into ballistic equations, the deviation between calculated and actual impact point coordinates
is minimal, confirming their effectiveness. Notably, the improved algorithm does not rely on precise initial parameter settings, enhancing its
adaptability in practical scenarios. In summary, it provides a robust solution for accurately identifying projectile aerodynamic parameters and
holds promises for engineering applications.

Keywords: projectile aerodynamic parameter identification; improved snake optimization algorithm; Kalman filtering; genetic algorithm
integration.

1. INTRODUCTION
In modern warfare, accurate identification of the aerodynamic
parameters of projectiles is a crucial task, and the aerodynamic
force of projectiles is one of the primary conditions that affect
their flight trajectory and hitting accuracy [1–3]. The aerody-
namic parameters of the projectile, including drag coefficient,
lift coefficient, etc., determine the flight performance of the pro-
jectile, which not only affects the flight trajectory and stability,
but also affects the optimization of the projectile design, the
safety of the flight, and the maximization of the payload [4, 5].

Traditional methods for aerodynamic parameter identification
rely on wind tunnel experiments, which are costly and have cer-
tain limitations, and theoretical computational methods, such as
computational fluid dynamics (CFD) simulations, which require
high computational resources and time costs [6, 7]. In [6], it is
pointed out that wind tunnel experiments are limited by model
size and experimental conditions, which makes it difficult to
simulate the real flight environment fully. Therefore, Hou et
al. applied the differential evolution (DE) algorithm to aerody-
namic parameter identification, replacing the Newton iterative
gradient optimization method in the traditional maximum likeli-
hood method, and conducted full trajectory identification of the
aerodynamic parameters of high-spin projectiles. While CFD
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simulation is mentioned in [7], the accuracy of its simulation
of complex flow fields depends on the degree of mesh delin-
eation fineness, and the amount of computational work increases
sharply with the accuracy requirement.

In recent years, aerodynamic parameter identification has re-
sulted in several methods, and the development is extremely
rapid. More classical methods include the least squares method,
the great likelihood method, the C-K method, and certain in-
telligent algorithms that have recently emerged [8–11]. Wang
et al. [12] used Kalman filtering to estimate the aerodynamic
parameters of a quadcopter UAV online, calculated the corre-
sponding scale factor, compensated the rotational speed, and
improved the UAV altitude and heading control performance.
Li et al. [13] used the neural network-Newton method based
on the great likelihood criterion to process the flight state data
of an uncontrolled rotating projectile and extract its zero-lift
drag coefficient. Hui et al. [14] proposed a method for identify-
ing aerodynamic parameters that combines the gated recurrent
unit (GRU) neural network model with the Gauss-Newton (GN)
optimization algorithm. Gan et al. [15] combined a genetic al-
gorithm with an optimized extreme learning machine to identify
the aerodynamic parameters of a certain type of uncontrolled
bomb. Puri et al. [16] proposed the DM-AEO hybrid meta-
heuristic algorithm by combining dwarf mongoose optimization
(DMO) and artificial ecosystem optimization (AEO) for op-
timal EEG channel selection in Schizophrenia detection, using
four decomposition methods (EMD, VMD, DWT, LCOFBs) and
achieving 99.26% accuracy with only four channels on a public
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dataset. Gao et al. [17] proposed the IDBO-KELM algorithm,
which optimizes the kernel parameters and regularization coef-
ficients of the kernel extreme learning machine (KELM) using
the improved dung beetle optimization (IDBO) algorithm (with
four improvements, including Chebyshev chaotic mapping and
golden sine strategy), and applied it to projectile aerodynamic
parameter identification, achieving better accuracy than ELM
and IDBO-ELM, especially in the transonic region. Zhong et
al. [18] presented the self-adaptive competitive swarm opti-
mizer (SACSO), which introduces a parameter sorting scheme
and linear population reduction strategy to improve the com-
petitive swarm optimizer (CSO), verified its performance on
CEC2017, CEC2022, seven engineering problems, and human-
powered aircraft design tasks, and confirmed its competitive-
ness.

In this context, Hashim et al. [19] proposed the snake op-
timization algorithm (SO), which is a heuristic algorithm in-
spired by hunting, fighting, mating, and reproduction behaviors
of snakes in the natural environment. Theoretically, in contin-
uous function optimization, the SO algorithm has some ad-
vantages by simulating the behavioral patterns of snakes and
searching in the solution space. However, there are many limita-
tions when applied to such specific fields as the identification of
aerodynamic parameters of projectiles and arrows. Al-Shourbaji
et al. [20] indicated that SO had a fast decay of population diver-
sity in complex constrained optimization and needed to repeat
searches many times to avoid local optima, resulting in a waste
of computational resources, which is particularly prominent in
the aerodynamic parameter identification of projectiles, where
the solution space involves multiple local optima. Puri et al. [21]
confirmed in their study of SO-based EEG channel selection is
that SO alone is difficult to balance global exploration and lo-
cal exploitation in high-dimensional spaces, and its robustness
decreases by 20% when facing noisy data. According to the
study of [19] on heuristic algorithms in complex constrained
optimization problems, the solution space of aerodynamic pa-
rameter identification of projectiles and arrows is complex, and
there are multiple local optimal solutions, so the SO algorithm
is prone to falling into the local optimum, which leads to sub-
optimal solutions in the end and reduces the robustness of the
algorithm. Due to the ease of slipping into local optimality, the
SO algorithm needs to repeat the search many times to obtain a
better solution, resulting in unnecessary consumption of com-
putational resources. Moreover, the uncertainty and complexity
of the model increase in the actual flight environment, which
limits the application scope of the SO algorithm and may be
infeasible in practical applications, thus seriously affecting the
accuracy of the prediction of the projectile and arrow perfor-
mance.

To tackle the aforementioned issues, this paper develops
an enhanced snake optimization algorithm incorporating ge-
netic algorithm (GA) mechanisms. This algorithm integrates
the global exploration capability of GA with the local search
precision of SO, aiming to boost optimization performance in
identifying aerodynamic parameters for projectiles and arrows.
Specifically, GA selection, crossover, and mutation operations
are introduced to enhance population diversity – this directly

addresses the tendency of the SO algorithm to fall into local
optima in the complex solution space of aerodynamic parame-
ter identification, eliminating the need for repeated searches and
thus reducing unnecessary computational resource consump-
tion. The study first elaborates on the working principles of the
traditional snake optimization algorithm and its improved ver-
sion, which incorporates GA-based operations (e.g., selection
and crossover) and Kalman filtering for noise reduction. The
Kalman filtering module is designed to mitigate the impact of
uncertainty in actual flight environments, solving the problem of
the limited applicability of the original SO algorithm in practical
scenarios and ensuring the accuracy of projectile performance
prediction. It then introduces the three-degree-of-freedom bal-
listic model for projectiles and arrows, validating the improved
algorithm’s parameter estimation accuracy using simulated tra-
jectory data. Finally, field test data are employed to further verify
the algorithm, confirming its applicability and effectiveness in
practical scenarios. This research offers a novel optimization
approach for identifying aerodynamic parameters of projectiles
and arrows, while also providing insights for related studies in
adjacent fields.

2. ALGORITHMS

2.1. Snake optimization algorithm (SO)

The snake optimization algorithm is designed based on the mat-
ing habits of snakes, with particular emphasis on how they
choose mates when food is abundant and temperatures are favor-
able. The algorithm key procedures can be outlined as follows:
1. Generate an initial population with random distribution 𝑁 ,

then split it evenly into two subgroups: male and female
individuals.

2. Compute the initial fitness value for each individual in both
subgroups.

3. Establish parameters for temperature𝑇𝑒𝑚𝑝and food𝐹

Temp = exp
(
−𝑡𝑐
𝑇𝑚

)
, (1)

where 𝑡𝑐 denotes the current iteration count and 𝑇𝑚 stands
for the maximum number of iterations.

𝐹 = 𝑃1 ∗ exp
(
𝑡𝑐 −𝑇𝑚
𝑇𝑚

)
, (2)

where 𝑃1 is a constant with a value of 0.5.
4. Exploration stage (food absent). When the condition 𝐹 <

Threshold is satisfied, a global search is initiated, where the
snake conducts food-seeking by selecting arbitrary positions
and adjusting its location in relation to them.

𝑋𝑖,𝑚 (𝑡 +1) = 𝑋rand,𝑚 (𝑡) ±𝑃2 ∗ 𝐴𝑚 ∗
(
(𝑋max − 𝑋min)

∗ rand+ 𝑋min
)
, (3)

where 𝑋𝑖,𝑚 represents the position of the 𝑖-th male individ-
ual, 𝑋rand,𝑚 stands for a randomly selected male position,
𝑟𝑎𝑛𝑑is a random value in the range [0, 1], 𝑋minand 𝑋max
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denote the lower and upper limits of the search range, re-
spectively, and 𝑃2 is a constant set to 0.5. 𝐴𝑚 indicates
the food-searching capability of male individuals, with its
mathematical expression given as follows

𝐴𝑚 = exp
(−fitnessrand,𝑚

fitness𝑖,𝑚

)
, (4)

where fitnessrand,𝑚 denotes the fitness of a randomly selected
male individual, and fitness𝑖,𝑚 represents the fitness of the
current 𝑖-th male individual.

𝑋𝑖, 𝑓 (𝑡 +1) = 𝑋rand, 𝑓 (𝑡) ±𝑃2 ∗ 𝐴 𝑓 ∗
(
(𝑋max − 𝑋min)

∗ rand+ 𝑋min
)
, (5)

where 𝑋𝑖, 𝑓 refers to the 𝑖-th female position and 𝑋rand, 𝑓
refers to the random female position. 𝐴 𝑓 denotes the female’s
ability to find food and is expressed as

𝐴 𝑓 = exp
(−fitnessrand, 𝑓

fitness𝑖, 𝑓

)
, (6)

where fitnessrand, 𝑓 indicates the fitness of a randomly chosen
female individual, and fitness𝑖, 𝑓 stands for the fitness of the
current 𝑖-th female individual.

5. Development stage. At this point 𝐹 > Threshold, the tem-
perature condition is considered.
(a) Foraging mode: If Temp > Threshold2, that is, when the

temperature gets excessively high, it starts to make a
move to the location of the food, to the globally optimal
location.

𝑋𝑖, 𝑗 (𝑡 +1) = 𝑋food (𝑡) ±𝑃3 ∗Temp∗ rand
∗
(
𝑋food − 𝑋𝑖, 𝑗 (𝑡)

)
, (7)

where 𝑋𝑖, 𝑗 represents the position of an individual (ei-
ther male or female), 𝑋food denotes the position of the op-
timal individuals, and 𝑃3 is a constant with a value of 2.

(b) Combat mode: When the condition Temp < Threshold2
is met (indicating suitable temperature), the snake enters
combat mode if rand > 0.6.

𝑋𝑖,𝑚(𝑡 +1) = 𝑋𝑖,𝑚(𝑡) ±𝑃4 ∗𝐹𝑀 ∗ rand
∗
(
𝐹 ∗ 𝑋best, 𝑓 − 𝑋𝑖,𝑚(𝑡)

)
, (8)

where 𝑋best, 𝑓 denotes the position of the optimal indi-
vidual in the female group, 𝐹𝑀 represents the combat
capability of the male agent, and 𝑃4 is a constant with a
value of 0.01.

𝑋𝑖, 𝑓 (𝑡 +1) = 𝑋𝑖, 𝑓 (𝑡) ±𝑃4 ∗𝐹𝐹 ∗ rand
∗
(
𝐹 ∗ 𝑋best,𝑚− 𝑋𝑖, 𝑓 (𝑡)

)
, (9)

where 𝑋best,𝑚 refers to the position of the best individual
in the male group, 𝐹𝐹 is the fighting ability of the female
agent.

𝐹𝑀 = exp
(− 𝑓best, 𝑓

𝑓𝑖

)
, (10)

𝐹𝐹 = exp
(− 𝑓best,𝑚

𝑓𝑖

)
, (11)

where 𝑓best, 𝑓 indicates the fitness of the optimal agent in
the female group, 𝑓best,𝑚 is the fitness of the best agent
of the male group, 𝑓𝑖 is the agent fitness.

(c) Mating mode: If Temp < Threshold2 and rand < 0.6, the
snake will be in the mating mode.

𝑋𝑖,𝑚(𝑡 +1) = 𝑋𝑖,𝑚(𝑡) ±𝑃4 ∗𝑀𝑀 ∗ rand
∗
(
𝐹 ∗ 𝑋𝑖, 𝑓 − 𝑋𝑖,𝑚 (𝑡)

)
, (12)

where 𝑀𝑀 refers to the mating ability of the male.

𝑋𝑖, 𝑓 (𝑡 +1) = 𝑋𝑖,𝑚(𝑡) ±𝑃4 ∗𝑀𝐹 ∗ rand
∗
(
𝐹 ∗ 𝑋𝑖,𝑚− 𝑋𝑖,𝑚 (𝑡)

)
, (13)

where 𝑀𝐹 refers to the mating ability of the female.

𝑀𝑀 = exp
(−fitness𝑖, 𝑓

fitness𝑖,𝑚

)
, (14)

𝑀𝐹 = exp
(−fitness𝑖,𝑚

fitness𝑖, 𝑓

)
. (15)

In cases where mating succeeds, the algorithm produces
a new population member to take the place of the cur-
rently least fit individual.

𝑋worst,𝑚 = 𝑋min + rand∗ (𝑋max − 𝑋min) , (16)

𝑋worst, 𝑓 = 𝑋min + rand∗ (𝑋max − 𝑋min) , (17)

where 𝑋worst,𝑚 stands for the poorest-performing indi-
vidual in the male group, and 𝑋worst, 𝑓 represents the
poorest-performing individual in the female group.

6. Termination step. Assess and refresh the optimal positions
and individuals within the population. The algorithm ter-
minates once a predefined iteration count or other stopping
criteria are met.

2.2. Introduction to genetic algorithms

Genetic algorithm is a bionic algorithm inspired by Darwin’s
theory of natural selection [22]. The fundamental concept of
this algorithm lies in initializing the population via coding, usu-
ally in binary or real numbers, to map the problem solution to
chromosomes. Each member of this population is then evaluated
using a fitness function, which is based on the problem objective
and is used to measure individual merit. Based on the results of
these evaluations and a specific genetic manipulation strategy,
a new generation of individuals is generated and undergoes the
fitness evaluation process again, and the cycle continues until a
predefined termination condition is met [23,24]. A detailed un-
derstanding of the various terms and concepts related to genetic
algorithms can be gained by consulting Table 1.
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Table 1
Fundamental explanations and their associated connotations of genetic

algorithm terms

Terminology Means
Individual Denoting a possible solution
Genes Constituent elements or characteristics forming

the solution
Chromosomes Coding format selected for the solution
Population A set consisting of numerous solutions
Fitness Measures of individual performance
Selection Selection of superior individual procedures
Replication Transmission of hereditary data
Crossover Combining genes of two solutions for new

offspring
Mutation Genetic change for new traits in individuals
Coding Translating solutions to chromosome codes
Decoding Translating chromosomes to original solutions

2.3. Introduction to the Kalman filter algorithm

In data analysis, the presence of noise often leads to information
distortion, affecting the accuracy of the final results. To address
this issue, the Kalman filter provides an effective solution and
is widely applied in signal processing, navigation, and control
systems [25, 26].

The core process of the Kalman filter consists of two stages:
prediction and update. Below is the basic mathematical frame-
work of the Kalman filter:

1. Prediction step

𝑥𝑘 = 𝐴𝑘𝑥𝑘−1, (18)
𝑃𝑘 = 𝐴𝑘𝑃𝑘−1𝐴

𝑇
𝑘 +𝑄𝑘 , (19)

where 𝑥𝑘 denotes the state estimate at time step 𝑘 , 𝐴𝑘 represents
the state transition matrix, 𝑃𝑘 stands for the covariance matrix
of the estimation error, and 𝑄𝑘 is the covariance matrix of the
process noise.

2. Update steps

𝐾𝑘 = 𝑃𝑘𝐻
𝑇
𝑘

(
𝐻𝑘𝑃𝑘𝐻

𝑇
𝑘 +𝑅𝑘

)−1
, (20)

𝑥𝑘 = 𝑥𝑘 +𝐾𝑘 (𝑧𝑘 −𝐻𝑘𝑥𝑘) , (21)

𝑃𝑘 = (I−𝐾𝑘𝐻𝑘) 𝑃𝑘 , (22)

where 𝐾𝑘 denotes the Kalman gain, 𝑧𝑘 represents the observa-
tion, 𝐻𝑘 stands for the observation matrix, and 𝑅𝑘 is the covari-
ance matrix of the observation noise. The updated 𝑥𝑘 and 𝑃𝑘

represent the covariance matrices of the updated state estimates
and estimation errors, respectively [27, 28].

2.4. Genetic-snake optimization algorithm
(ESO-GO algorithm)

The essence of the ESO-GO algorithm is the integration of the
local search efficiency of the snake optimization algorithm and
the global search superiority of the genetic algorithm. Based

on their behavioral patterns of foraging, fighting, and mating in
nature, snakes search for a better solution in the vicinity, and
combine with the selection, crossover, and mutation operations
of the genetic algorithm to perform a global search in the solution
space to find the approximate region of the better solution to
further excavate the potentially more optimal solution. In this
way, repeated iterations are performed to continuously optimize
the estimates of the bullet and arrow aerodynamic parameters
so that the algorithm can find the bullet and arrow aerodynamic
parameters that are as close as possible to the optimal solution
in the global range. The general steps of the snake optimization
algorithm improved by the genetic algorithm are as follows:

1. Initialize a randomly generated population and split it
evenly into two subgroups: male and female individuals. In
the optimization algorithm, the population initialization is often
generated randomly, and whether its distribution in the search
space is broad and uniform significantly impacts the conver-
gence speed of the whole search process and the algorithmic
efficiency. This paper uses a chaotic optimization strategy to
initialize the population. Logistic mapping ensures the wide dis-
tribution of the population in the solution space and improves
the search efficiency of the algorithm due to its high uniformity
in distribution and its ability to generate sequences that maintain
chaotic characteristics for a long time.

The expression for this mapping is shown below{
𝑥𝑛+1 = 4𝑥𝑛 (1− 𝑥𝑛),
0 < 𝑥1 < 1.

(23)

The reasons for choosing this mapping are as follows: The Lo-
gistic map has a simple form, involving only quadratic term
operations, with a short single-iteration time, which can avoid
increasing the computational burden in the initialization phase.
Moreover, it has strong stability – when 𝜇 = 4, it can stably re-
main in a chaotic state without complex parameter adjustment,
whereas mappings like the Henon map need to control multiple
parameters and are prone to degenerate into periodic sequences
due to improper settings.

2. Compute the initial fitness values for each subgroup, adopt
the snake optimization algorithm to pinpoint the optimal indi-
vidual of each interval, and the initial ballistic parameters 𝑐𝑥0,
𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 , 𝑥, 𝑦, 𝑧. Next, input these initial ballistic parameters
into the three-degree-of-freedom ballistic equations to derive the
calculated ballistic value for each step within the corresponding
interval, and compute the residuals (eps) using the calculated
value and measured data. The formula for residuals is as follows:

eps =
𝑁∑︁
𝑖=1

𝑁1∑︁
𝑚=1

[
𝑦mea,𝑖 − 𝑦cal,𝑚 (𝑥𝑖)

]2
, (24)

where 𝑁 refers to the number of measurements in a small inter-
val, 𝑁1 refers to the state quantity of the ballistic equation, which
is equal to 6, 𝑦mea,𝑖 refers to the measured value, and 𝑦cal,𝑚 (𝑥𝑖)
refers to the calculated value of the ballistic equation. Find the
individuals 𝑋best_𝑚 and 𝑋best_ 𝑓 with the smallest fitness val-
ues in the two groups, respectively, and take their smallest values
as the position of the 𝑋food.
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3. Perform mutation operations. To boost the algorithmic
global search performance and avoid premature convergence
to a local optimum, this study incorporates a mutation strategy
that aids the algorithm in escaping local optima.
(1) Implementation of periodic mutation and dynamic mutation

rate: Employing a periodic mutation strategy and dynam-
ically modifying the mutation rate based on the fitness of
the current optimal solution contributes to preserving pop-
ulation diversity while preventing excessive disruption to
the algorithm’s convergence process. The period of periodic
mutation is set as a fixed iteration interval, i.e., mutation is
triggered every seven iterations. The reason for choosing a
fixed period is as follows: In the early exploration stage of
the algorithm, a stable mutation frequency (once every seven
iterations) can maintain population diversity and avoid pre-
mature convergence. Moreover, combined with the dynamic
mutation rate (when the global optimal value is less than
100, the mutation rate decreases from 0.1 to 0.05), it can
not only maintain the stability of periodic mutation but also
enhance the local search ability by adaptively adjusting the
mutation intensity.

(2) Local optimality identification mechanism: To further keep
the snake optimization algorithm from becoming trapped in
local optimality, a minor random mutation operator is es-
tablished. When the algorithmic optimal position remains
unchanged through 10 consecutive searches and the eps ex-
ceed 0.0001, a minor random mutation operator is appended
to the historical optimal position of the group, enhancing the
algorithmic capability to break free from local optimality.
Once the local optimal identification mechanism is acti-
vated, the optimal position will undergo mutation.

𝑋food = 𝑋food(1+0.05𝜔), (25)

where 𝜔 represents Gaussian white noise.
4. Execute the selection and crossover operation. During the

mating stage of the snake optimization algorithm, the selection
and crossover operation from the genetic algorithm is employed
to mimic the natural mating behavior of snakes. This mechanism
aims to produce individuals with new traits through exchange
of information, thereby boosting the population diversity and
overall adaptability.

5. Termination. Compute the fitness of each individual in
the population and update the 𝑋food that is optimal for each
iteration and the 𝑋best_𝑚 and 𝑋best_ 𝑓 in the male and female
individuals. If the stopping condition is satisfied, the algorithm
stops; otherwise, the iteration continues.

The algorithm flowchart is presented in Fig. 1.

2.5. Particle swarm-snake optimization algorithm (SO-PSO
algorithm)

The standard PSO algorithm is widely used in function opti-
mization, parameter identification, control system design, and
other fields [29]. Its advantages include being easy to imple-
ment, simple operation, etc., but there are also shortcomings,
such as being easy to quickly fall into local optimization, etc.
Given these problems, this paper combines the PSO algorithm

Fig. 1. Flowchart of the improved snake optimization algorithm

with the SO algorithm to obtain the SO-PSO algorithm. The
flow of the SO-PSO algorithm is as follows:

1. The PSO algorithm parameters are set based on the
SO algorithm in Section 2.1. The range of inertia weights is{
𝑤min = 0.4, 𝑤max = 0.9

}
, 𝑐1𝑝 refers to the individual cognitive

coefficient, and 𝑐2𝑝refers to the social cognitive coefficient.
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2. Initialization particles. Generate chaotic initialization par-
ticles according to the method in Section 2.4.

3. Adaptive inertia weights

𝑤 = 𝑤max −
(
𝑤max −𝑤min

) 𝑡
𝑇
. (26)

4. In Section 2.1, the PSO algorithm is employed to take
the place of the exploration phase of the SO algorithm. The
expressions for velocity and position updates are shown in (27),
(28), (29), and (30).

𝑣𝑖,𝑚 (𝑡 +1) = 𝑤 ∗ 𝑣𝑖,𝑚 (𝑡) + 𝑐1𝑝 ∗ rand∗
(
𝑋best𝑖,𝑚− 𝑋𝑖,𝑚 (𝑡)

)
+ 𝑐2𝑝 ∗ rand∗

(
𝑋best,𝑚− 𝑋𝑖,𝑚 (𝑡)

)
, (27)

𝑋𝑖,𝑚(𝑡 +1) = 𝑋𝑖,𝑚(𝑡) + 𝑣𝑖,𝑚 (𝑡 +1), (28)

𝑣𝑖, 𝑓 (𝑡 +1) = 𝑤 ∗ 𝑣𝑖, 𝑓 (𝑡) + 𝑐1𝑝 ∗ rand∗
(
𝑋best𝑖, 𝑓 − 𝑋𝑖, 𝑓 (𝑡)

)
+ 𝑐2𝑝 ∗ rand∗

(
𝑋best, 𝑓 − 𝑋𝑖, 𝑓 (𝑡)

)
, (29)

𝑋𝑖, 𝑓 (𝑡 +1) = 𝑋𝑖, 𝑓 (𝑡) + 𝑣𝑖, 𝑓 (𝑡 +1), (30)

where 𝑣𝑖,𝑚 and 𝑣𝑖, 𝑓 denote the velocity of the 𝑖-th particle in
the male and female populations, respectively, 𝑋best𝑖,𝑚 and
𝑋best𝑖, 𝑓 represent the optimal position of the 𝑖-th particle in the
male and female populations, respectively.

5. Adoption of periodic perturbations. Introducing stochastic
perturbations during the iteration process enhances the algorith-
mic capability to break free from local optimality.

3. MODEL

The structure of the projectile is shown in Fig. 2, and its key com-
ponents include a well-designed radome and projectile body.
The radome, located at the front end of the projectile, is made
of white high-strength composite material, which not only pro-
vides the necessary protection for the GPS sensor inside but
also optimizes the signal reception performance. The front tip
of the radome is specially designed to enhance its aerodynamic
properties and signal reception efficiency. The body part is made
of lightweight alloy material to ensure structural stability and
overall lightness, which is crucial for the projectile flight per-
formance. GPS sensors inside the radome are responsible for
capturing real-time position and velocity data, which are then
transmitted to the ground radar system via wireless signals from
a transmitter in the body. Upon receiving these signals, the
ground radar can track the flight trajectory of the projectile in
real time and collect critical flight data. By analyzing these, the
aerodynamic parameters of the projectile during flight can be
identified, thus providing vital information for the assessment

Fig. 2. Projectile model

of the flight performance and aerodynamic characterization of
the projectile.

In projectile dynamics analysis, the three-degree-of-freedom
model emphasizes the translational motion of the projectile,
characterized by the variations in velocity and position along
the coordinate axes. This model streamlines the dynamical equa-
tions by disregarding the rotational movements of the projectile
about its center of mass, including roll, pitch, and yaw. While the
three-degree-of-freedom model has constraints in depicting the
full trajectory of a projectile, it offers notable benefits in com-
putational efficiency and in examining the basic features of the
trajectory. The three-degree-of-freedom model for the motion
of the projectile center of mass is employed.



𝑑𝑣𝑥

𝑑𝑡
= − 𝜌𝑣

2

2𝑚
𝑆𝑐𝑥0 cos𝜃𝑎 cos𝜓2 ,

𝑑𝑣𝑦

𝑑𝑡
= − 𝜌𝑣

2

2𝑚
𝑆𝑐𝑥0 sin𝜃𝑎 cos𝜓2 −𝑔,

𝑑𝑣𝑧

𝑑𝑡
= − 𝜌𝑣

2

2𝑚
𝑆𝑐𝑥0 sin𝜓2 ,

𝑑𝑥

𝑑𝑡
= 𝑣𝑥 ,

𝑑𝑦

𝑑𝑡
= 𝑣𝑦 ,

𝑑𝑧

𝑑𝑡
= 𝑣𝑧 ,

(31)



𝑣 =

√︃
𝑣2
𝑥 + 𝑣2

𝑦 + 𝑣2
𝑧 ,

𝑆 = 𝜋 ∗𝐷 ∗𝐷/4,

𝜃𝑎 = arctan
(
𝑣𝑦

𝑣𝑥

)
,

𝜓2 = arcsin
( 𝑣𝑧
𝑣

)
,

(32)

where 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 , 𝑥, 𝑦, 𝑧 denote the velocity components and
position components on the ground three-axis coordinate sys-
tem, respectively, 𝑣 stands for the projectile resultant velocity,
𝜃𝑎 represents the ballistic inclination, 𝜓2 indicates the ballistic
declination, 𝜌 refers to density,𝑚 denotes the projectile mass,
𝑆 signifies the projectile cross-sectional area, 𝐷 represents the
projectile diameter, 𝑐𝑥0 stands for the resistance coefficient, and
𝑔 indicates gravitational acceleration.

4. SIMULATION ANALYSIS

With a high-speed spinning projectile as the context, the three-
degree-of-freedom ballistic equations are employed to produce
simulated flight trajectory data. And then the simulated ballistic
data are used for parameter identification, and the values of the
ballistic and aerodynamic parameters obtained from the simula-
tion are compared to verify the effectiveness of the algorithms in
solving the problem of identifying the aerodynamic parameters
of the projectile. The flight test data for simulation are 𝑣𝑥,mea,
𝑣𝑦,mea, 𝑣𝑧,mea, 𝑥mea, 𝑦mea, 𝑧mea, and the parameters to be recog-
nized are 𝑐𝑥0, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 , 𝑥, 𝑦, 𝑧. For offline identification, a set
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of ballistic data is known, and the Kalman filter algorithm is first
used to filter this set of ballistic data to reduce the interference
of noise, and then the interval constant method is used to divide
the trajectory into𝑁intervals, and the time interval of the bal-
listic data in each interval is 0.05 s. Assuming that the value of
the aerodynamic parameter in each interval is a fixed constant,
the ESO-GO algorithm is used to divide the ballistic parame-
ters and drag force into 𝑁 intervals, and then the value of the
aerodynamic parameter is 0.05 s in each interval. The starting
ballistic parameters and drag coefficients are recognized.

To generate the simulation ballistic data, the main initial data
required are muzzle velocity 930 m/s and angle of fire 38. There-
fore, the simulation initial conditions are shown below:

𝑣𝑥 = 732.81 m/s, 𝑣𝑦 = 572.61 m/s, 𝑣𝑧 = 10 m/s,
𝑥 = 0 m, 𝑦 = 0 m, 𝑧 = 0 m, 𝑚 = 33.4 kg, 𝐷 = 0.13 m.

4.1. Comparison of parameter identification results before
and after Kalman filtering

Kalman filtering has shown remarkable results in dealing with
datasets containing noise. By applying Kalman filtering to the
ballistic measurement data, the noise interference can be effec-
tively reduced, thus improving the data quality. Building on this,
parameter identification is conducted using the enhanced snake
optimization algorithm, with the results presented in Fig. 3.
Compared with the identification results of directly applying
the ESO-GO algorithm without filtering, the filtered data show
a smoother trend in parameter identification, and the identifi-
cation results are closer to the simulated ballistic data. Among
them, the ‘standard value’ curve in Fig. 3 is the value obtained
based on the simulated ballistic data, and the ‘standard value’
in the subsequent graphs has the same meaning, so we will not
repeat it.

Fig. 3. Results of drag coefficient identification using the Kalman filter

4.2. Parameter identification utilizing the enhanced snake
optimization algorithm

Kalman filter is firstly used to filter this set of simulated ballis-
tic data, and then SO method, ESO-GO method and SO-PSO
method are used to identify the parameters, respectively, and
the identification results are shown in Fig. 4. In the process of

drag coefficient identification, when the search space is limited
to the range of 0.1 to 0.5, the SO algorithm and the SO-PSO
algorithm tend to converge to the local optimal solution, result-
ing in a significant deviation between the identification results
and the simulated ballistic data. When the identified parameters
lie at the front end of this small interval, the algorithms adjust
the drag coefficients to a level much higher than their true val-
ues to minimize the objective function eps. Conversely, if the
identified results are located at the back end of the interval, the
algorithm adjusts the resistance coefficient to a negative value
to avoid an increase in the objective function eps. These reveal
the limitations of the SO algorithm and the SO-PSO algorithm
in dealing with locally optimal solutions, especially in the ap-
plication scenario of ballistic data parameter identification.

Fig. 4. Results of drag coefficient identification

As can be seen from Table 2, according to the results of the
sum of squares of errors (SSR) of the identified parameters and
the simulated ballistic data, the drag coefficients and ballistic
parameters identified by the ESO method, the ESO-GO method
and the SO-PSO method are closer to the values of the ballistic
parameters and drag coefficients obtained from the simulation in
the identification of the parameters from the simulation ballistic
data. The expression of the SSR is

SSR =

𝑁𝑎∑︁
𝑖=1

𝑁𝑏∑︁
𝑚=1

[
𝑦𝑖,𝑚− 𝑦mea,𝑖,𝑚

]2
, (33)

Table 2
Sum of squared residuals (SSR) of different algorithms

Error SO SO-PSO ESO-GO

𝑐𝑥0 3.6450 0.4461 2.56×10−5

𝑥 2.6009 0.1228 1.917×10−6

𝑦 1.1774 0.0641 4.875×10−6

𝑧 0.04843 0.0389 4.649×10−6

𝑣𝑥 199.9368 9.1974 1.6×10−3

𝑣𝑦 91.2114 2.7694 9.904×10−4

𝑣𝑧 0.0372 0.0035 1.142×10−6
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where 𝑁𝑎 is the length of the simulated ballistic data, 𝑁𝑏 is the
number of parameters to be recognized, 𝑦𝑖,𝑚 is the recognition
result of different algorithms on this set of simulated ballistic
data, and 𝑦mea,𝑖,𝑚 is the simulated ballistic data.

The complexity calculation results of the SO algorithm, SO-
PSO algorithm, and ESO-GO algorithm are shown in Table 3.
The measurement conditions for “running time” in the table
are as follows: the time required for parameter identification
on the same interval data under the same number of iterations,
population size, and problem dimension. All time data were
measured by running on the MATLAB 2022 platform.

Table 3
Comparison of complexity and running time among different

algorithms

Algorithms Iteration complexity Running time

SO 𝑂 (𝑇𝑚 ×𝑁 ×𝐷𝑚) 3.41 s

SO-PSO 𝑂 (𝑇𝑚 ×𝑁 ×𝐷𝑚) 3.82 s

ESO-GO 𝑂 (𝑇𝑚 ×𝑁 ×𝐷𝑚) 4.21 s

In the table, 𝑇𝑚 represents the number of iterations with a
value of 500, 𝑁 represents the population size with a value of
100, and 𝐷𝑚 represents the dimension with a value of 7.

Figures 5 and 6 show the recognition results of the position
parameter 𝑥, 𝑦, 𝑧 and the velocity parameters 𝑣𝑥 , 𝑣𝑦 , and 𝑣𝑧 ,
respectively. The results show that the identification results of
the ESO-GO algorithm are closer to the simulated ballistic data

(a) Identification results of range 𝑥

(b) Identification results of altitude 𝑦

(c) Identification results of lateral deviation 𝑧

Fig. 5. Identification results of position parameters

(a) Identification results of horizontal velocity 𝑣𝑥

(b) Identification results of vertical velocity 𝑣𝑦

(c) Identification results of axial velocity 𝑣𝑧
Fig. 6. Identification results of velocity parameters
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and overlap completely, while the identification results of the SO
algorithm show a large deviation from the simulated ballistic
data, and the identification results of the SO-PSO algorithm
also show a small deviation from the simulated ballistic data.
It can be seen that the SO algorithm has limitations in finding
the global optimal solution and is prone to falling into the local
optimum; while the PSO algorithm is added to the SO algorithm
for parameter identification, the algorithm may still encounter
the dilemma of the local optimal solution, even though this
combination significantly improves the global search capability.
This indicates that the ESO-GO algorithm is more effective in
avoiding falling into local optimums and improving the accuracy
and reliability of the identification when dealing with complex
optimization problems.

5. EXPERIMENTAL VALIDATION
Following the parameter identification of simulated ballistic
data, the ESO-GO algorithm has higher accuracy in the field
of projectile and arrow parameter identification. To further ex-
plore the parameter identification process of real experimental
data, the ESO-GO algorithm is applied to the actual flight data
of a certain type of grenade, which is the radar-measured full
trajectory data, to verify the performance and applicability of
the algorithm in real conditions. After filtering the experimen-
tal data of a certain grenade for parameter identification, the
identification results are shown in Figs. 7 and 8, the position pa-
rameter 𝑥, 𝑦, 𝑧 and the velocity parameters 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 identified

(a) Identification results of range 𝑥

(b) Identification results of altitude 𝑦

(c) Identification results of lateral deviation 𝑧

Fig. 7. Identification results of position parameters

by the ESO-GO algorithm show a high degree of consistency
with the actual flight data of the projectile, and the phenomenon
confirms that the ESO-GO algorithm can accurately and effi-
ciently extract the accurate position and velocity information
from the experimental data, and reconstruct the flight path of
the projectile. In addition, this high degree of matching also re-
flects algorithmic strong adaptability and robustness in the face
of complex flight environments and uncertainties. Among them,
the “true value” curves in Figs. 7 and 8 are the actual projectile
flight data of a certain type of grenade.

(a) Identification results of horizontal velocity 𝑣𝑥

(b) Identification results of vertical velocity 𝑣𝑦
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(c) Identification results of axial velocity 𝑣𝑧
Fig. 8. Identification results of velocity parameters

In Fig. 9, the results of the drag coefficients identified using
the ESO-GO algorithm are shown. These results provide an in-
sight into the aerodynamic drag force on the projectile during
flight. To assess the algorithmic performance, we conducted a
further analysis of the residual eps throughout the parameter
identification process, with the findings illustrated in Fig. 10.
The maximum value of the residual eps is 0.07, while the resid-
ual eps stay below 0.01 in most cases, a result that strongly
demonstrates the power of the ESO-GO algorithm for global
search.

Fig. 9. Identification results of drag coefficient

In order to further verify the effectiveness of the ESO-GO al-
gorithm in practical applications, the resistance coefficients ob-
tained from the identification in Fig. 9 were substituted into (31)
and (32), and the following initial conditions were used to cal-
culate the values of each observed physical quantity:

𝑣𝑥 = 199.0607 m/s, 𝑣𝑦 = 207.0640 m/s,
𝑣𝑧 = 4.5319 m/s, 𝑥 = 616.7365 m, 𝑦 = 715.1286 m,

𝑧 = 13.6305 m, 𝑚 = 16.5 kg, 𝐷 = 0.12 m.

The ballistic trajectory obtained from the simulation is shown
in Fig. 11, in which the coordinates of the predicted impact
point are (7419.8 m, 207.3956 m). In contrast, the coordinates

Fig. 10. Residual eps

of the actual impact point are (7435 m, 218 m). Here, the first
value represents the projection distance of the predicted impact
point on the firing direction of the muzzle (i.e., the straight-
line distance from the launch point along the firing direction),
and the second value denotes the horizontal distance of the
predicted impact point deviating from the firing direction (lateral
deviation perpendicular to the firing direction). By comparing
the simulation results with the actual observed data, it is found
that there is a small deviation between the two, and this small
deviation may be due to a variety of factors, such as the variation
of the ambient wind speed, the nonuniformity of the air density,
or other dynamical factors that are not considered in the model.
This indicates that the aerodynamic parameters obtained by the
ESO-GO algorithm identification have high applicability in real
ballistic simulations. This result not only confirms the accuracy
of the improved algorithm in parameter identification but also
demonstrates its value in practical engineering applications.

Fig. 11. Comparison between simulation data and actual data

6. CONCLUSIONS

In this study, an improved snake optimization algorithm (ESO-
GO) incorporating a genetic algorithm is proposed, aiming to
enhance the accuracy and global optimization capability of bal-
listic parameter identification. The research results show:
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1. Algorithm performance advantage: The ESO-GO algorithm
has significant advantages in improving the accuracy of bal-
listic parameter identification and avoiding falling into local
optimization compared with the traditional SO method and
the SO-PSO method.

2. Effectiveness of practical application: The ESO-GO algo-
rithm is combined with Kalman filtering technology to con-
duct parameter identification for the actual ballistic data of
a certain type of grenade. After comparative analysis, the
predicted point of impact based on the algorithm has less
deviation from the actual point of impact, which fully con-
firms that the ESO-GO algorithm is practicable and effective
in the actual ballistic parameter identification task.

3. Actual data processing capability: The ESO-GO algorithm
shows high accuracy and reliability in the process of process-
ing actual flight data and can effectively deal with the data
challenges brought by the complex and changeable actual
flight environment.

4. Value of research results: Research findings provide a new
optimization strategy for ballistic analysis and guidance sys-
tem design. In the theoretical dimension, it enriches the algo-
rithmic research system in the related fields; in the practical
dimension, it builds a solid foundation for the deepening
development and wide application of the subsequent related
technologies.

Despite these achievements, the ESO-GO algorithm still has
limitations that require further improvement. On the one hand,
the algorithm assumes that aerodynamic parameters remain con-
stant within small time intervals, which may introduce errors in
transonic flight (Mach number 1.2–1.8) or high-angle-of-attack
scenarios (angle of attack > 10◦) due to unsteady aerodynamic
effects. On the other hand, the algorithmic performance is sen-
sitive to hyperparameters such as population size and maximum
iterations, and it lacks an adaptive adjustment mechanism for
unknown projectile types. Future research will focus on three
directions: 1) Optimize the ballistic model by integrating a six-
degree-of-freedom model to consider the coupling effects of
projectile rotation on aerodynamic parameters, improving the
algorithmic adaptability to complex flight states; 2) Introduce
a reinforcement learning module to realize adaptive adjustment
of hyperparameters, reducing the algorithmic dependence on
empirical settings; 3) Expand the algorithm to multi-parameter
identification (e.g., lift coefficient, pitching moment coefficient)
and verify its performance in hypersonic projectile scenarios,
further promoting the engineering application of the algorithm
in the field of precision guidance.
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