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Abstract. This study introduces a novel empirical approach to analyzing seasonal variations in the availability and reliability of a transport
vehicle fleet. While previous research has examined fleet reliability, few studies have integrated long-term operational data with complementary
technical indicators and statistical modeling of seasonality.

Using three key metrics — fleet availability rate (FAR), mean time between failures (MTBF), and mean time to repair (MTTR) — data from 10
distribution vehicles operating over three years (2022-2024) were analyzed to identify recurring seasonal patterns. A linear regression model
with seasonal dummy variables was applied to quantify the impact of weather conditions and operational intensity on vehicle availability.

The results reveal a clear seasonal cycle: the lowest availability and highest failure rates occur between February and May, while summer and
early autumn show near-optimal performance. The model demonstrated statistically significant differences between quarters and indicated a
gradual long-term improvement in FAR.

This study introduces a novel analytical and predictive framework that combines three reliability indicators with long-term operational data
and regression-based seasonal modeling. The approach facilitates not only the identification of seasonal effects but also the prediction of fleet
availability trends to support data-driven maintenance planning.

These findings support more accurate forecasting of fleet availability and provide actionable guidance for optimizing maintenance schedules,
resource allocation, and downtime risk management in transport operations. Overall, the results demonstrate how integrating operational data

with seasonal regression models can improve predictive decision-making and optimize transport fleet reliability.
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1. INTRODUCTION

In the dynamic environment of contemporary logistics and dis-
tribution, managing fleet availability has become one of the
key factors in ensuring operational continuity and maintain-
ing a company’s competitive edge. Although fleet reliability
has been studied extensively, limited research has addressed
how seasonal factors influence key performance indicators us-
ing long-term operational data. Most previous studies focused
on short-term observations or single metrics, leaving a gap in
understanding the full scope of seasonal effects. The globaliza-
tion of markets, rising customer expectations regarding delivery
timeliness, and growing cost pressures mean that any disrup-
tion in vehicle availability can result not only in financial losses
but also in the erosion of trust among business partners. At the
same time, fleet operation inevitably involves technical down-
times, stemming from both scheduled maintenance activities
and unforeseen breakdowns.
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In this context, tools enabling continuous monitoring of ve-
hicle technical condition and reliability analysis over time play
a crucial role. The use of reliability and availability indicators
such as FAR, MTBF, and MTTR has been extensively discussed
in reliability modeling studies [1-3]. In transport fleet manage-
ment practice, particular importance is attributed to three key
indicators:

o Fleet availability rate (FAR), which reflects the percentage
of time that vehicles are operational and available relative to
the scheduled operating time.

e Mean time between failures (MTBF), which measures the
average operational time between successive failures.

e Mean time to repair (MTTR), which indicates the average
duration required to restore a vehicle to service following a
failure.

The application of these metrics allows not only for the as-
sessment of the current technical condition of the fleet but also
supports the identification of trends, forecasting of downtime
risks, and implementation of preventive measures. In the age
of digitalization and the advancement of real-time monitoring
technologies, these indicators are becoming increasingly vital
as a foundation for predictive maintenance strategies [4].

However, the effectiveness of optimization efforts depends
on a thorough understanding of the operational conditions un-
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der which the most significant challenges arise. In practice,
fleets operating in the Central European region are subject to
notable seasonal variability — both in terms of operational inten-
sity and weather conditions. Factors such as low temperatures,
road icing, and road salting measures contribute to increased
mechanical wear and failure rates [5]. Therefore, research span-
ning three years and capturing full annual cycles is especially
valuable from the perspective of operational fleet management.

This article aims to provide an in-depth analysis of the sea-
sonal availability of a transport fleet using the indicators FAR,
MTBF, and MTTR. Based on three years of operational data
from 10 vehicles (2022-2024), the study investigates trends
in failure rates, repair durations, and vehicle availability, with
breakdowns by month and quarter. The analysis is comple-
mented by a regression model incorporating seasonal vari-
ables, enabling a statistical assessment of the impact of seasonal
changes on fleet availability.

The purpose of the study was not to statistically generalize the
results to the entire population of transport enterprises, but rather
to identify the mechanisms of seasonal variability in reliability
and to verify the applicability of the proposed analytical model
based on FAR, MTBF, and MTTR indicators, supported by
seasonal regression analysis.

The findings are of an applied nature and may support plan-
ners and fleet managers in making more informed operational
decisions, such as optimizing maintenance schedules, plan-
ning for service buffers, and selectively deploying vehicles with
higher reliability during critical periods.

This study contributes to the existing body of knowledge by
combining three key reliability indicators — FAR, MTBF, and
MTTR - with a three-year dataset of real-world fleet opera-
tions. Unlike previous research, which often relied on short-
term observations or focused on a single metric, our approach
enables a comprehensive assessment of seasonal effects on both
vehicle failures and availability. In addition, the study utilizes
a regression model with seasonal dummy variables, allowing
for the quantification and forecasting of seasonal impacts on
fleet performance. These elements collectively provide a practi-
cal framework for predictive maintenance planning and opera-
tional decision-making, which has not been addressed in earlier
studies.

Recent developments in artificial intelligence and data-driven
reliability assessment have significantly influenced maintenance
management across various industries. Predictive maintenance
models based on machine learning and telematics data now en-
able early identification of failure risks, adaptive scheduling of
technical resources, and data-supported decision-making. Inte-
grating these Al-based approaches with long-term operational
datasets provides new opportunities for quantifying the seasonal
effects that impact fleet reliability. The present study builds
on these advancements by applying regression-based seasonal
modeling to real-world fleet data, aligning with contemporary
international research trends in predictive maintenance.

The remainder of this paper is structured as follows. Section 2
presents a review of the relevant literature on fleet reliability and
seasonal effects. Section 3 describes the materials, data sources,
and research methods applied in the study. Section 4 reports and

analyzes the results, while Section 5 discusses the main find-
ings in the context of practical implications. Finally, Section 6
summarizes the key conclusions, provides recommendations for
fleet management, and outlines directions for future research.

2. LITERATURE REVIEW

In recent years, there has been growing interest in research on the
reliability and availability of transport fleets, particularly in the
context of seasonal variability and its impact on the operational
efficiency of logistics systems.

2.1. Reliability and availability indicators

Key indicators commonly used in such analyses — namely fleet
availability rate (FAR), mean time between failures (MTBF),
and mean time to repair (MTTR) — facilitate a comprehensive
assessment of the technical condition of the fleet and support
the optimization of maintenance and servicing strategies.

2.2. Reliability: seasonal and environmental influence

The literature frequently highlights the considerable influence
of seasonal conditions on the availability and failure rates of
transport systems. Particularly adverse operational parameters
are typically observed during winter and early spring transition
period, when vehicle wear intensifies due to extreme tempera-
tures, moisture, and road salting. These conditions simultane-
ously place greater pressure on maintenance facilities, leading
to longer repair durations and an increased number of down-
times [6].

In contrast, summer and autumn periods are characterized by
more stable operating conditions, resulting in improved MTBF
and FAR values. It has also been shown that seasonality can be
effectively modeled using linear regression incorporating cycli-
cal variables, allowing for accurate prediction of fluctuations in
fleet availability.

Similar seasonal reliability issues and maintenance challenges
have also been observed in the aviation sector — particularly
in ground support equipment and regional aircraft operations.
These systems are exposed to environmental stressors such as
temperature fluctuations, moisture, and varying surface condi-
tions, which contribute to increased failure rates during specific
times of the year. Notably, incidents involving landing gear tend
to rise during transitional weather periods, emphasizing the im-
portance of predictive diagnostics and preventive maintenance
strategies [7,8]. Incorporating these insights broadens the scope
of the analysis and demonstrates its interdisciplinary relevance.

2.3. Predictive and machine-learning approaches

Organizational factors also play a significant role in fleet relia-
bility management. Research demonstrates that strategies such
as spare parts buffering, flexible maintenance scheduling, and
failure forecasting based on telematics data can significantly
reduce downtime and improve fleet availability [9]. Predictive
diagnostics and historical data analysis not only reduce reaction
times but also lower the frequency of corrective interventions.
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Predictive models based on artificial intelligence are also
gaining traction, particularly in identifying seasonal failure pat-
terns. Studies using neural networks and machine learning
algorithms demonstrate high effectiveness in predicting ser-
vice downtimes and optimizing maintenance cycles. Especially
promising in this regard are models that integrate meteorolog-
ical, operational, and technical data to identify nonlinear rela-
tionships between seasonality and failure rates [10, 11].

In summary, the available body of research clearly indi-
cates the necessity of seasonal planning in fleet maintenance
strategies. Considering environmental variability, operational
rhythms, and predictive data can significantly enhance the per-
formance of transport systems and mitigate losses associated
with technical downtime.

3. MATERIALS AND METHODS

3.1. Company profile

The subject of this study is a retail company operating in the
beauty segment, specializing in the distribution of cosmetics
as well as personal care and hygiene products. The company
conducts its operations on a nationwide scale across Poland,
supplying a network of 160 brick-and-mortar stores located in
major and medium-sized cities across all voivodeships. The
retail network is supported by a central distribution warehouse
and regional cross-docking hubs, enabling the execution of daily,
scheduled, and campaign-based deliveries.

The company’s transport fleet comprises 10 delivery vehi-
cles with payload capacities ranging from 2.5 to 5 tonnes, all of
which are used daily. At the beginning of the study period, these
vehicles had been in operation for between 2 and 4 years, with
an average mileage of approximately 80000-120000 km. All
vehicles were serviced in accordance with the manufacturer’s
maintenance schedule. Throughout the three-year observation
period, no new vehicles were added to or withdrawn from the
fleet, which ensured the consistency and comparability of the
dataset. Each vehicle operates between 2 and 4 routes per day,
servicing eight to twelve retail locations. The nature of the dis-
tribution model requires a high degree of operational flexibility
and consistently high technical availability of transport assets —
particularly during peak trading seasons.

Two distinct periods of intensified logistical activity are ob-
served in the annual delivery cycle. The first occurs from March
to May and is associated with the launch of new product lines
and brand campaigns. The second takes place from October
to December, driven by increased demand related to holiday
promotions and year-end budget spending. In contrast, summer
months (July—August) are characterized by markedly reduced
operational intensity, due to decreased customer activity, sea-
sonal closures of retail outlets in shopping centers, and a limited
number of product launches.

Given the company’s broad geographic coverage, varying
weather conditions, and high delivery frequency, maintaining
a high level of fleet reliability represents a key operational chal-
lenge.

This study aimed to identify seasonal patterns in vehicle fail-
ure rates and technical availability, which could serve as the
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basis for formulating operational recommendations applicable
to similar organizations.

The study was conducted as a case study, which is a com-
monly applied research approach in reliability analysis of tech-
nical systems when detailed operational data and process-level
examination over time are required [12]. The research sample
included a fleet of 10 distribution vehicles observed over 36 con-
secutive months, providing a total of 360 monthly operational
records.

In this study, the analysis was performed at the fleet level,
which corresponds to the research objective focused on identify-
ing seasonal reliability patterns. The input data analysis showed
that the number of failures was relatively evenly distributed
among all vehicles (6—12 failures per vehicle over 36 months),
indicating the absence of dominant cases or outliers. Therefore,
the use of aggregated indicators (FAR, MTBF, MTTR) at the
fleet level was justified, enabling the identification of periodic
cycles of reliability and availability. A detailed breakdown of
reliability at the individual vehicle level will be addressed in
further research.

Although the analysis covers a single organization, the struc-
ture of the analyzed fleet reflects the characteristics of the Polish
transport market, where most transport and logistics enterprises
are small and medium-sized companies operating fleets of up to
20 vehicles [13, 14]. The authors emphasize that the aim of the
study was not to statistically generalize the results to the entire
population of transport companies but to identify the mech-
anisms of seasonal variability in reliability and to verify the
applicability of the proposed analytical model based on FAR,
MTBF, and MTTR indicators and seasonal regression analysis.

3.2. Scope of data and indicator definitions

The research process consisted of several clearly defined stages,
combining data collection, statistical analysis, and forecasting.
The sequence of steps is shown in Fig. 1.

Figure 1 presents the workflow of the research process, show-
ing the main stages of analysis from data collection to interpre-
tation and recommendations. Each step indicates the methods
applied and how the results from one stage were used in the
next.

All repair activities within the analyzed fleet were con-
ducted internally by the company’s in-house maintenance team,
equipped with a dedicated workshop and the necessary technical
resources. The MTTR values presented in this study, therefore,
reflect the actual efficiency of the internal service process, with-
out outsourcing to external providers. The repair time records
include both minor technical interventions (e.g., replacement of
consumable parts) and more complex mechanical repairs.

The analysis was conducted based on operational and mainte-
nance data from a fleet of 10 distribution vehicles operated by a
logistics company over the period from January 2022 to Decem-
ber 2024. The data were compiled every month for each vehicle,
resulting in a total of 360 observations (10 vehicles across 36
months). For each case, the following parameters were recorded:

e Scheduled operational time for the vehicle in the given
month (Hiota1, €xpressed in hours)
e Number of failures occurring within the month (N)
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Fig. 1. Research process presented as a diagram

e Total repair time during the month (Hiepair, €xpressed in
hours)
Based on these values, three reliability indicators were calcu-
lated using the following formulas:
Fleet availability rate (FAR) expressed as a percentage:

H, total — H, repair

FAR = -100%, (1)

total

where
Hota1 — the number of hours scheduled for vehicle operation in
the given period,
Hiepair — the total number of hours of downtime due to technical
repairs in the same period.
Mean time between failures (MTBF) — average time between
failures, expressed in hours:

H,
St if N> 0,

MTBF={ N 2)
no data, if N=0,

where N — the number of recorded failures for the vehicle in the
analyzed period.

Mean time to repair (MTTR) — average repair duration, also
expressed in hours:

H .
/P i N>,

MTTR = N 3)
no data, if N=0.

In cases where no failures were recorded for a given month
(N = 0), the values of MTBF and MTTR were marked as no
data and excluded from the calculation of quarterly averages. All

values were calculated to one decimal place. The correctness of
the formulas was verified across the entire dataset.

To analyze the impact of seasonality on the variability of fleet
availability, a linear regression model was applied using binary
explanatory variables (so-called dummy variables) representing
individual quarters of the calendar year. This approach aimed
to quantitatively capture the differences between seasons while
maintaining interpretative clarity of the results and ensuring
the model suitability given the limited number of time-series
observations. The model was structured as follows:

FAR; = Bo+ 5102+ 8203+ P304 +Put +&; . 4

01, O3, Q4 are the binary variables representing the individual
calendar quarters (with Q; serving as the reference category),
t denotes the time trend variable, and &, is the error term. This
model enabled the estimation of both seasonal differences and
the overall trend in fleet availability over the analyzed period.
The choice of a linear regression model over more complex
time series models (e.g., ARIMA, Holt-Winters) was driven by
practical considerations: the limited number of quarterly obser-
vations and the need to maintain a clear interpretation of results
in a managerial context. Furthermore, seasonality was analyzed
at the level of quarterly aggregates, which allowed for the iden-
tification of significant operational changes without the risk of
overfitting the model to short-term fluctuations.

4. RESULTS

The analysis of operational data from the period 2022-2024 led
to the identification of seasonal fluctuations in the reliability and
availability of a fleet of 10 vehicles used for daily distribution
across a network of 160 retail outlets. Variations in the values
of the FAR, MTBF, and MTTR indicators — as well as overall
operational availability — were examined on both a monthly and
quarterly basis, with particular attention given to key operational
seasons (March—-May and October—December). The following
section presents a detailed analysis of the results for each of the
defined indicators.

4.1. Analysis of the FAR indicator and the number
of failures

Seasonal peak in failures during February—May

In the first stage, an analysis was conducted of the results for the
fleet availability rate (FAR), calculated using (1) as presented in
the preceding section of the article.

The analysis of monthly fleet availability rate (FAR) val-
ues, presented in Fig. 2, reveals a clear operational seasonality
that directly affects the company’s ability to conduct transport
tasks continuously and efficiently. The chart illustrates seasonal
fluctuations in fleet availability, showing the lowest FAR be-
tween February and May and near-optimal performance in late
summer and early autumn. The blue line represents the over-
all upward trend over the three years. The lowest FAR values,
ranging between 92-94%, consistently occur from February to
May, i.e., during the transition from winter to spring. This pe-
riod also coincides with a significant increase in the number
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of failures — averaging 2.0-2.6 failures per vehicle per month,
and prolonged repair times, reaching 6—8 hours on average. This
indicates a strong accumulation of fleet stress factors, including
both adverse weather conditions (low temperatures, road salt-
ing, variable traction) and increased operational intensity due to
the start of the first seasonal retail peak.

100

= FAR (observed)

= Trend

96

FAR (%)

94

2022 2023 2024
Year

Fig. 2. Monthly fleet availability rate (FAR) values for the period
2022-2024

In contrast, summer and early autumn months, especially Au-
gust, September, and October, are characterized by near-full fleet
availability (FAR at the level of 99-100%), a marginal number
of failures (0-0.2 failures per vehicle), and shortened service
intervention times (MTTR of 2—4 hours). This seasonal distri-
bution indicates the existence of recurring technical load cycles
on the fleet and suggests the potential for applying balancing
and predictive measures aimed at minimizing downtime risks in
the most critical months.

The blue line in the chart represents the linear trend. It is
noteworthy that the trend is upward, which means that, in the
long term, the average fleet availability is systematically increas-
ing, even though individual months may show greater or lesser
deviations from the general pattern.

To deepen the analysis and enable predictive capabilities,
quarterly variations in fleet availability were modeled using lin-
ear regression with seasonal “dummy” variables. The model as-
sumes that the variation in FAR depends not only on the linear
trend but also on cyclical effects specific to individual quarters
of the year. This approach facilitates capturing the regularity of
seasonal fluctuations previously identified at the monthly data
level.

Regression confirms upward trend in FAR

The linear regression model in (4), describing the fleet availabil-
ity rate (FAR), was found to be statistically significant, providing
an excellent fit to the data (F(4,7) = 69.090, p-value < 0.001),
with a very high coefficient of determination (R? = 0.975; ad-
justed R=0.961).

The estimated model parameters are presented in Table 1.

The intercept (Bp = 94.621) represents the baseline level of
fleet availability in the first quarter, which serves as the reference
category in the model.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 74, no. 1, p. 155894, 2026

Estimated parameters of the lim;lz-i??elgr:ssion model for fleet availability
rate (FAR)

Variable Coefficient (8) ‘ Std. Error ‘ t-value ‘ p-value ‘
(Intercept) By 94.621 0.320 295.945 | <0.001
Quarter 2 3 -0.277 0.361 -0.767 | 0.468
Quarter 3 3, 3.373 0.367 9.181 | <0.001
Quarter 4 33 4.167 0.378 11.039 | <0.001

t (trend) B4 0.104 0.039 2.664 0.032

The time trend variable (84 = 0.104; p-value = 0.032) has
a positive and statistically significant coefficient, indicating a
gradual improvement in fleet availability over time.

The dummy variable for the second quarter (8; = —0.277;
p-value = 0.468) is not statistically significant, suggesting that
fleet availability in this period does not differ significantly from
the first quarter.

The seasonal dummy variables for the third (8, = 3.373; p-
value < 0.001) and fourth (83 =4.167; p-value < 0.001) quarters
are positive and statistically significant.

These results indicate that the highest levels of fleet avail-
ability are recorded in the third and fourth quarters of the year,
confirming the seasonal impact on the FAR indicator.

Figure 3 presents the course of fleet average quarterly avail-
ability from 2022 to 2024, as well as forecasted FAR values for
the following two years, covering eight future quarters. On the
left-hand side of the chart, empirical data are shown, revealing
arecurring pattern: a decline in availability in the first quarter, a
rebound in the second, peak values in the third, and then stabi-
lization or a slight decrease in the fourth quarter. On the right-
hand side, the forecast component of the model is displayed,
where the linear path of the average FAR value is surrounded by
confidence intervals (95%) — shaded areas presented in Fig. 3.
The predicted availability distribution indicates a continuation
of the current seasonal dynamics, along with a gradual increase
in overall availability levels on an annual scale.

The regression model incorporating quarterly dummy vari-
ables achieved a high level of fit (R? above 0.9), confirming its

95% Cl

= Forecast =% Observed

98

Black = agual dfta
Blue dashed = forecast
94 Shaded = 95% CI

Avarage fleet availability (FAR%)

S

P VOV
LS S S S

v €
Quarter

Fig. 3. Historical and forecasted quarterly FAR values with 95%
confidence intervals (shaded area)
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usefulness in forecasting future fluctuations in fleet availability.
The confidence intervals indicate greater forecast uncertainty
during transitional periods between quarters, which may result
from variations in operational intensity across the individual
months within a given quarter. Nevertheless, the results obtained
represent a valuable tool for fleet management — supporting the
planning of technical resources, maintenance schedules, and
vehicle allocation in line with expected changes in operational
availability.

Integrating the forecasting model into the company’s opera-
tional practice enables not only the prediction of potential de-
clines in the FAR indicator but also the timely implementation of
preventive measures, in accordance with the recommendations
presented in earlier sections of the study. The model can also
support service budgeting, route scheduling, and downtime risk
management-contributing, on a year-round basis, to increased
logistical efficiency across the entire distribution system.

4.2. Analysis of MTTR and MTBF indicator results

Maintenance duration variability indicates changing
workload patterns

As part of the study, an analysis was also conducted of the
MTTR and MTBF indicator values. In the first stage, the total
number of fleet failures was examined and described for each of
the months under consideration.

Further analysis was conducted based on a monthly break-
down of the total number of vehicle failures across the fleet, as
shown in Fig. 4. The data presented in the chart confirm the
cyclical and strongly seasonal nature of technical failure rates.
In each of the analyzed years, the peak in failure occurrences
was observed during late winter and early spring periods — par-
ticularly in February and March — when as many as 20 to 30
service reports were recorded per month. Although the number
of incidents gradually declines in April and May, it remains ele-
vated (15-25 failures per month), confirming that the entire first
quarter represents a period of heightened operational risk.

= Total failures

)
S

Number of failures

2022 2023 2024
Year

Fig. 4. Total number of fleet failures by month over the three-year study
period

In the second half of the year, a consistent decrease in failure
rates is observed. During summer months (June—July), the num-
ber of failures generally ranges from 10 to 15, while in August

and September, it reaches minimum values, often approaching
zero (0-2 failures per month). This phenomenon suggests the
presence of a natural “service window” in the operational calen-
dar, during which the risk of technical downtime is marginal. In
autumn, there is a moderate increase in service activity, with 5 to
10 failures recorded in October and November, while December
typically ends the year at a level of 10 to 15 cases, coinciding
with the company’s second major retail campaign.

The seasonal failure pattern can be explained by the opera-
tional conditions and the specific nature of the company’s an-
nual activity cycle. Winter months, particularly the transition
from winter to spring, are associated with increased strain on
mechanical and braking systems due to low temperatures, road
salting, moisture, and sharp daily temperature fluctuations. Ad-
ditionally, the beginning of the calendar year brings a surge in
transport activity following the holiday period, which intensi-
fies component wear and increases the likelihood of failures. In
contrast, summer conditions are significantly more favorable,
and operational intensity decreases, thereby reducing pressure
on the technical system and lowering failure rates.

The conclusions from this part of the analysis further rein-
force the validity of previously outlined recommendations re-
garding seasonal management of service resources, planning of
preventive actions, and selective vehicle allocation based on his-
torical reliability performance. The identified pattern of cyclical
failures also provides a valuable foundation for short-term fore-
casting and for aligning operational and maintenance schedules
with the actual rhythm of fleet utilization.

To analyze the recurrence of annual failure cycles more pre-
cisely, the data were aggregated into the form of the average
number of failures per calendar month. This allowed for the
identification of the most critical periods from the perspective
of operational reliability and their interpretation in the context
of the company’s seasonal logistics activity.

Figure 5 presents the monthly profile of the average number of
fleet failures per vehicle, showing a distinct failure peak occur-
ring in February and March. During these months, the average
number of failures ranges from 1.8 to 2.6 per vehicle, reaching
the highest level in the entire annual cycle. In April and May,
a transitional decline is observed, down to 1.5-2.0 failures per
vehicle; however, the risk of technical faults remains elevated. In
June and July, values drop to approximately 1.0-1.2, and in Au-

— Average failures

= o =

Avarage number of failures

o

1 2 3 4 5 6 7 8 9 10 1 12
Month

Fig. 5. Average number of failures per vehicle by calendar month
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gust and September, they reach a minimum, below 0.2 failures
per vehicle, making this period practically fault-free and optimal
for conducting maintenance activities or route restructuring. In
autumn, a slight rebound occurs, with average failure rates in
October and November ranging from 0.1 to 0.4. Winter months
of December and January bring a renewed increase to 0.6—1.4,
serving as a transitional phase before the February peak.

The seasonal variability in average failure rates aligns with
the operational profile of the company, which functions under
conditions of highly fluctuating demand. This includes a con-
sistent increase in distribution intensity following the New Year
(January—March), and variable weather conditions in the first
quarter that increase the technical load on drivetrain and braking
systems. The peak in February and March can also be attributed
to the cumulative effects of winter operation and the increased
number of delivery routes following the holiday break. The av-
eraged data confirm earlier monthly and quarterly observations,
and their distinct cyclicality indicates the necessity of adjusting
technical and operational activities to specific calendar months
rather than relying solely on standard service intervals.

Most repair cases (approximately 70-80%) were completed
within a single working day, typically between 5 and 8 hours,
while around 15-20% of interventions exceeded this thresh-
old due to higher complexity. This distribution of repair times
indicates that the MTTR metric accurately reflects the real op-
erational capabilities of the workshop and provides a reliable
basis for assessing the impact of seasonal variability on fleet
availability.

To assess the distribution of repair durations, the mean time to
repair (MTTR) indicator was analyzed, with the corresponding
histogram shown in Fig. 6. The data indicate that repair times
ranged from approximately 0.5 hours (short, minor technical
interventions) to a maximum of 10.9 hours (the most complex
cases). The highest number of observations occurs within the
5- to 8-hour interval, corresponding to the typical duration of
technical inspections and standard operational repairs. It is worth
noting that most cases are completed in under 8 hours, indicating
that most repairs can be conducted within a single working day.

. MTTR distribution

Freguency

0 3 5 9
MTTR (hours)

Fig. 6. Histogram of repair duration

An estimated 15-20% of technical interventions exceed 8
hours, highlighting the need to account for such cases in service
schedules, particularly during peak failure periods. From an
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operational planning perspective, effective management of the
maintenance team’s workload requires the assumption of a time
buffer of at least 8 hours per service request. For approximately
one-fifth of cases, it is also advisable to consider alternative
measures, such as involving a second technician, reserving a
service bay for two days, or having the flexibility to reassign
transport tasks to other vehicles.

The MTTR distribution confirms that proper workshop orga-
nization and realistic planning of technical resources are essen-
tial for maintaining high fleet availability. From the standpoint
of operational continuity, it is also important to identify early
those faults that may lead to time-consuming repairs, further
reinforcing the rationale for investing in predictive monitoring
systems, as discussed earlier.

Figure 7 presents the monthly distribution of the mean time to
repair (MTTR) indicator, calculated based on data from all years
covered in the study. The box plot analysis reveals significant
variation in repair times depending on the month, indicating
the presence of seasonal fluctuations in the efficiency of main-
tenance interventions. MTTR values in most months revolve
around a median of 6-8 hours, although the spread of data and
the presence of outliers vary substantially.
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Fig. 7. Monthly distribution of mean time to repair (MTTR)

The longest average repair times were observed in May, Au-
gust, and October, when the upper quartiles exceeded 8 hours.
In August, in particular, an exceptionally wide range of data dis-
persion is visible, suggesting the occurrence of both noticeably
short and unusually long repair events. August and November
also show the lowest lower quartile values, reaching as low as
4 hours, which indicates both very efficient technical service
in those months and a certain degree of instability in service
processes.

Conversely, the shortest MTTR medians were recorded in
June and November (approximately 6 hours), which may reflect
greater availability of technical resources and reduced opera-
tional pressure during these periods. A relatively stable and
narrow MTTR spread was observed in the first quarter of the
year (January—March), suggesting that despite a high number
of failures in this period, repair durations remain relatively pre-
dictable. This may result from earlier organizational preparation
for winter-related faults or a high level of repeatability in repair
types during these months.
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The monthly variability in MTTR distribution confirms
the need for dynamic management of maintenance capacity
throughout the year. In particular, it highlights the necessity
of increased flexibility in allocating technical resources during
months with greater repair time dispersion and the need for fur-
ther analysis of the causes of extremely long interventions, which
can significantly affect the operational availability of the fleet.

Figure 8 presents the monthly distribution of the mean time
between failures (MTBF) indicator, which reflects the average
time a vehicle operates without failure between successive faults.
The boxplot reveals considerable variation in technical reliabil-
ity depending on the month, indicating the presence of clear
seasonal cycles in the intervals between failures.
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Fig. 8. Monthly distribution of mean time between failures (MTBF)

The lowest MTBF medians, ranging between 130 and 140
hours, are observed in March, November, and July, confirm-
ing earlier observations regarding increased failure rates during
these periods. These months also show relatively narrow in-
terquartile ranges, suggesting that shorter intervals between fail-
ures are both recurring and typical at these times. Conversely,
the highest MTBF medians, exceeding 170 hours, were recorded
in April, May, and June, indicating significantly longer fault-free
operating periods in these months. Exceptionally high MTBF
values were also noted in January and August, although August
also displayed high data variability, pointing to instability in
operational conditions.

In the remaining months, such as September, October, and
December, MTBF values remain moderate and relatively sta-
ble (median approximately 145—155 hours), with no significant
outliers. The data distribution suggests that the greatest reliabil-
ity predictability can be achieved in spring and early summer
months, while the highest risk of failure accumulation occurs
during transitional periods between retail seasons, specifically
at the turn of winter to spring and autumn to winter.

The monthly variability of MTBF underscores the impor-
tance of dynamic fleet task planning. Vehicles with the shortest
failure-free intervals should be subject to more intensive techni-
cal oversight or assigned to less demanding routes during criti-
cal months. Maintaining high MTBF values, particularly during
periods of increased logistical demand, remains a key factor in
ensuring operational continuity and cost-efficiency across the
entire transport system.

5. DISCUSSION OF RESEARCH FINDINGS

The results demonstrate a strong seasonal pattern, with Febru-
ary—May representing the most challenging period for fleet avail-
ability and August—September serving as a natural low-risk win-
dow. These findings confirm that environmental factors and op-
erational peaks have a direct and recurring impact on reliability
indicators.

The disparities between seasons necessitate a flexible ap-
proach to technical maintenance management. The data indi-
cate that during peak periods, buffer strategies should be im-
plemented, including increased staffing in service departments,
guaranteed availability of spare parts, and the execution of com-
prehensive technical inspections prior to the February—March
failure peak. The adoption of predictive systems and real-time
monitoring of the fleet condition (e.g., through telematics data)
could further improve the accuracy of risk identification and
optimize response times.

Monthly variability in MTTR and MTBF values, not only in
terms of medians but also in range and dispersion, suggests that
workshop planning should account for more than just average
repair durations. Specifically, attention should be given to the
proportion of outlier cases. Approximately 15-20% of repairs
exceed 8 hours, which requires the scheduled allocation of ad-
ditional mechanics, technical resources, and potentially backup
vehicles.

It is also worth noting that although the second operational
peak occurs in autumn (October—December), its impact on fail-
ure rates and fleet availability is significantly weaker compared
to spring season. This may reflect greater organizational pre-
paredness during that period or more favorable environmental
conditions. These differences should be considered when devel-
oping long-term vehicle maintenance strategies.

These findings are consistent with previous studies that re-
ported higher vehicle failure rates in winter months due to low
temperatures and increased operational stress. RuZinskas et al.
demonstrated that challenging winter conditions, such as slush
and low-temperature road surfaces, negatively affect vehicle per-
formance and safety, leading to increased wear and risk of fail-
ures. Similarly, Jack et al. highlighted the impact of seasonal
factors on operational characteristics of vehicle fleets, showing
that variations in temperature and demand patterns significantly
influence system performance [5, 6]. However, the magnitude
of seasonal variation observed in this study was greater than
that reported in these works, likely due to the higher operational
intensity in the analyzed fleet. This highlights the need to con-
sider both environmental and workload factors when planning
maintenance and distribution strategies.

The primary objective of this study was to evaluate seasonal
patterns of fleet reliability and availability at an aggregated level
rather than to assess the performance of individual vehicles.
Nevertheless, the distribution of failures among the 10 vehicles
was relatively balanced (6-12 failures per vehicle over three
years, corresponding to 2—4 failures annually), which supports
the validity of the aggregated indicators. No vehicle was failure-
free, and no single unit dominated the statistics. This confirms
that the seasonal patterns identified in the MTBF and MTTR
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indicators reflect the overall fleet condition rather than being
driven by individual outliers. The applied methodological ap-
proach (FAR, MTBF, MTTR) can also be directly transferred to
the level of individual vehicles, creating opportunities for more
detailed diagnostic analyses in future research.

From a practical perspective, the results underline the impor-
tance of adapting both maintenance strategies and distribution
planning to seasonal patterns. Maintenance resources should
be flexibly allocated, and vehicle rotation should be planned to
minimize downtime during high-risk periods. These strategic
considerations are further developed into specific, actionable
recommendations in the Conclusions section.

6. CONCLUSIONS AND RECOMMENDATIONS

The study demonstrated that the operation of the analyzed re-
tail transport fleet was strongly influenced by seasonal cycles,
affecting both failure rates and vehicle availability. The period
from February to May is the most challenging, as it combines
high transport demand, low ambient temperatures, and increased
pressure on maintenance facilities. In contrast, July and August
are characterized by minimal failures and high FAR values, mak-
ing them the optimal months for conducting planned technical
interventions.

The results provide actionable insights for applying seasonal
reliability modeling in transport fleet management. The pro-
posed regression-based approach enables the forecasting of
quarterly variations in fleet availability, helping organizations
allocate maintenance resources more efficiently, plan service ac-
tivities in low-risk periods, and mitigate downtime during high-
failure months. The model can also be integrated into predictive
maintenance systems, supporting data-driven decision-making
and long-term reliability improvement in logistics operations.

Based on these findings, the following specific recommenda-
tions are proposed to improve fleet management:

e Increase service capacity during February—May by adding
maintenance staff, pre-purchasing critical spare parts, and
securing backup vehicles to manage peak failure periods.

e Schedule preventive inspections in January and September
to detect and address potential issues before seasonal peaks.

e Use telematics and predictive diagnostics for real-time mon-
itoring of vehicle condition and early failure detection [15].

o Allocate the most reliable vehicles (highest FAR and MTBF)
to critical routes during high-risk months, while assigning
less dependable units to less demanding tasks or preventive
maintenance.

e Plan major technical interventions during summer low-
failure period to minimize disruption of distribution opera-
tions.

Although this study focused on aggregated indicators for the
entire fleet to capture seasonal effects, the methodology used
can also be adapted to the level of individual vehicles. This
would enable detailed diagnostic analysis and support targeted
maintenance and servicing strategies.

The study was impacted by some limitations. The analysis
was based on a relatively small fleet of 10 vehicles, which limits
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the generalizability of results to larger fleets. The dataset lacked
detailed information on the causes of failures, which restricts the
interpretation of seasonal patterns. Behavioral factors such as
driving style were not considered, though they may significantly
affect vehicle reliability.

In addition, the research was conducted within a single enter-
prise and therefore reflects the operational and organizational
conditions specific to that company. Nevertheless, the extended
observation period of 36 months and the resulting 360 opera-
tional records strengthen the robustness and representativeness
of the findings. Another limitation concerns the adopted level
of data aggregation, with the analysis performed at the fleet
(system) level rather than for individual vehicles. While this
approach aligns with the study’s objective of identifying sea-
sonal reliability trends, it does not capture potential variability
between units.

Future studies should therefore expand the scope of analysis to
include multiple transport companies and fleets of varying size,
structure, and operational intensity. It is also planned to incorpo-
rate vehicle-level statistical analyses, including the construction
of reliability curves, Weibull modeling, and significance test-
ing of differences between individual units. Such an extension
would provide a more granular understanding of reliability be-
havior and enhance the external validity of the model.

Additionally, given the growing trend of fleet electrification, it
is worth noting that the behavior of key indicators such as FAR,
MTBF, and MTTR may differ for electric vehicles due to dis-
tinct failure profiles, maintenance cycles, and component wear
characteristics. Future studies should explore these differences
to ensure accurate modeling across diverse vehicle technologies.

Future research should also extend the analysis to larger fleets,
incorporate correlations with route types and weather condi-
tions, and develop predictive models using machine learning
techniques, such as XGBoost or LSTM neural networks, trained
on historical telematics, weather, and operational data. Such
models could enable accurate forecasting of FAR and MTBF
values under varying seasonal and usage conditions. This would
allow not only for the description of seasonal fluctuations but
also for their precise prediction and proactive mitigation.
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