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Abstract: To more accurately obtain the feature information embedded in the acoustic 
pattern of transformers, a transformer fault diagnosis method is proposed based on 
multilevel acoustic information of 14 state types. In this method, a parallel dual-channel 
fault diagnosis model, CNN-BiLSTM-Transformer, is established. First, the modified Mel 

inversion coefficients and Mel spectrograms are extracted from the original acoustic pattern 
data. The modified Mel inversion coefficients and Mel spectrograms are then input into the 
parallel dual-channel model. In the first channel, a convolutional neural network model is 
used to extract the feature information of maps. In the second channel, a bidirectional long- 
and short-term memory network and a Transformer encoder are used to partially extract the 
temporal features in the MFCCs. Finally, the temporal features extracted from the two 
channels are fused through multimodal fusion for training. The experimental results show 
that the proposed diagnostic method can achieve an average accuracy of 99.5% in multiple 

fault diagnosis. Compared with current mainstream acoustic single-channel diagnostic 
models, the diagnostic rate of this model is improved by an average of 4.8%, exhibiting 
higher accuracy and robustness. 

Keywords: acoustic features, CNN-BiLSTM-Transformer, fault diagnosis, Mel 
spectrogram, MFCCs, multimodal fusion 

 

 

1. Introduction 

 

As an important connecting device in power systems, transformers play a crucial role in 

voltage transformation, current adjustment, power distribution and transmission of the power 

grid [1, 2]. With the continuous expansion of a grid scale and sharp increase in capacity, the 

requirements for the reliability and stability of transformers are becoming increasingly stringent. 

Real-time monitoring and charge detection of transformer operation conditions are of significant 

importance for timely identification of potential faults and ensuring safe, efficient and stable 

operation of the power grid [3, 4]. 

Advances in artificial intelligence technology have made transformer acoustic pattern 

recognition a hotspot in transformer fault diagnosis [5]. The transformer acoustic signal contains 

equipment information during operation and can be used as an important indicator of fault 
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conditions [6, 7]. However, the complexity of the transformer operating environment and the 

diversity of acoustic signals pose significant challenges for extracting effective fault features 

from acoustic signals and applying them effectively to transformer fault diagnosis and 

classification. To date, the application of multimodal technology to transformer fault diagnosis 

remains limited. However, transformer acoustic pattern recognition technology has established 

a certain basis in the power industry. Wang et al. [8] used a weighted processing method and 

principal component analysis to extract the Mel inverse spectral coefficients of acoustic signals. 

These coefficients are then used to recognize different degrees of transformer core looseness 

using a vector quantization algorithm. Zhou et al. [9] used compressive sensing technology and 

a discriminative dictionary learning method to identify defects (including loose windings and 

iron cores in dry-type transformers), achieving an accuracy rate of greater than 90%. Zhang et 

al. [10] established an acoustic pattern recognition model based on a Mel time spectrum-

convolutional neural network. This model can effectively recognize loose faults in iron cores 

and windings by leveraging the strengths of convolutional neural networks (CNNs) in t image 

recognition. Cui and Ma [11] put forward an acoustic pattern recognition model for loose faults 

in transformer cores, and used an enhanced MFCC and 3D-CNN approach to enhance 

classification accuracy. Liu et al. [12] proposed using a blind source separation algorithm, 

amplitude phase fluctuation method, and 50 HZ octave band cepstrum coefficient to extract 

acoustic signal features, remove interference signals from the original acoustic signal, and then 

introduce a gate-controlled recurrent neural network (GRU) to identify the DC bias state of the 

transformer. Although the above studies have achieved excellent performance in transformer 

fault diagnosis, most of them only focus on fault identification of transformer categories and do 

not fully consider the diversity of transformer faults in practice. In addition, compared with the 

single use of traditional networks such as the CNN [13] and recurrent neural networks [14], the 

advantages of different networks in their respective fields can be utilized for control.  

To address the above issues, a methodology combining bidirectional long short-term memory 

(BiLSTM)-Transformer and CNN techniques is proposed for identifying faults in transformer 

acoustic pattern recognition. The proposed approach employs two types of audio features and 

Mel spectrograms to extract acoustic patterns. Combined with the ability of the CNN in feature 

extraction and efficient classification, the integration of the BiLSTM-Transformer in capturing 

complex temporal dependencies can comprehensively capture and understand sound patterns. In 

addition, it can effectively avoid the limitations of isolated models in practical applications. This 

innovative technological integration can improve the strengths of each model while addressing 

their weaknesses, thereby forming a more robust and comprehensive voiceprint recognition 

method.  

 

 

2. Data preprocessing 

 

Mel frequency cepstral coefficients (MFCCs) and Mel-Spectrograms are important in sound 

feature extraction, each with different characteristics of sound patterns [15, 16]. The MFCC 
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converts time-domain signals into frequency-domain signals. Based on the auditory mechanism 

of the human ear, MFCCs reflect the static characteristics of sound signals such as timbre and 

intonation. The calculation of the first-order MFCC is helpful for analyzing the spectrum of 

sound signals in the frequency domain. The calculation of the first-order and second-order 

differences in the MFCC allows for the extraction of dynamic characteristics such as speech 

speed and intonation changes. Mel spectrograms integrate information from time domain and 

frequency domain, and can clearly visualize the changes in sound frequency over time. It has 

been demonstrated that this spectrogram cannot only reflect the static characteristics of sound 

signals (such as pitch and timbre), but also capture the dynamic characteristics (including speech 

rate and intonation change). In contrast, Mel spectrograms can provide comprehensive 

information about the frequency distribution of sound signals and their temporal evolution. Each 

method has a distinct focus on sound feature extraction, and both are essential in sound 

processing and analysis. 

 

2.1. MFCC feature extractions 

The extraction process of MFCCs includes preprocessing, the fast Fourier transform (FFT), 

Mel filter bank, logarithmic operations, and discrete cosine transform [17, 18]. 

The preprocessing stage typically consists of three main steps: pre-emphasis, frame-splitting, 

and windowing. The Fourier transform of the time-domain signal of each frame generates a linear 

spectrum, X(k), expressed as follows: 

 𝑋(𝑘) = ∑ 𝑦(𝑛)𝑒−
𝑗2𝜋𝑛𝑘

𝑁𝑁−1
𝑛=0 , 0 ≤ 𝑛, 𝑘 ≤ 𝑁 − 1, (1) 

where y(n) is the preprocessed time-domain signal; n is a sampling point in the time-domain; k 

is a discrete frequency point in the frequency-domain; and N is the length of the first frame of 

the signal. 

The linear spectrum X(k) is processed through the Mel filter bank to generate the Mel 

frequency, expressed as follows: 

 𝑠(𝑚) = ln(∑ |𝑋(𝑘)|2𝑁−1
𝑘=0 𝐻𝑚(𝑘)), (2) 

where s(m) is the output of the m-th Mel filter, and Hm(k) is the m-th filter parameter. 

Subsequently, the discrete cosine transform (DCT) is performed to obtain MFCCs by taking 

the logarithm of the Mel frequency, expressed as follows: 

 𝑐(𝑟) = ∑ 𝑠(𝑚) cos(
𝜋𝑟(𝑏−0.5)

𝑀
),     1 ≤ 𝑟 ≤𝑃−1

𝑏=0 𝐿, (3) 

where b is the frequency channel index; M is the number of filters in the Mel filter bank; P is the 

order of the MFCC; c(r ) is the value of the r dimensional inverse spectral coefficient, and P is 

the length of s(m). 

The standard MFCC parameters only reflect the static characteristics of sound parameters. 

Conversely, the first- and second-order difference of MFCCs can highly reflect the dynamic 
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characteristics of sound [19, 20]. The combination of dynamic and static features can effectively 

improve the recognition of the system. The first-order difference feature is calculated as follows: 

 𝑑𝑡 =

{
 
 

 
 𝐶𝑡+1 − 𝐶𝑡,            𝑡 < 𝐾   
∑ 𝑘(𝐶𝑡+𝑘−𝐶𝑡−𝑘)
𝐾
𝑘=1

√2∑ 𝑘2𝐾
𝑘=1

, else    

𝐶𝑡 − 𝐶𝑡−1,       𝑡 ≥ 𝑄 − 𝐾

, (4) 

where dt denotes the t-th first-order difference; Ct denotes the t-th cepstrum coefficient; Q denotes 

the order of the cepstrum coefficient, and K denotes the time difference of the first-order 

derivatives, taken as 1 or 2. 

The order of the discrete cosine transform is 13, and after first-order and second-order 

differencing, the differencing results are combined into MFCC parameters. This process will 

result in the collection of a 39-dimensional feature vector, assigning 39 features to each frame 

of sound data. 

 

2.2. Mel spectrogram preprocessing 

Mel spectrograms are a spectral representation method based on human auditory properties 

[21, 22]. They convert audio signals into spectrograms that are more in line with human auditory 

habits by simulating human auditory sensitivity to sounds of different frequencies. Typically, 

Mel spectrograms use a nonlinear Mel scale to represent frequencies, allowing for more accurate 

display of low-frequency components. However, high-frequency components are relatively 

compressed to align with the human ear's capacity to perceive sound frequencies. The generation 

of a Mel spectrogram requires transforming the audio signal from time-domain Fourier 

transformation to frequency-domain. Subsequently, a filtering operation is performed on the 

time-frequency domain signal through a triangular filter bank, with each filter corresponding to 

a specific Mel frequency interval. The Mel filter bank is shown in Fig. 1, and the transfer function 

of the filter bank is expressed as follows: 

 𝐻𝑚(𝑓) =

{
 
 

 
 
0,     𝑓 < 𝑥(𝑚 − 1)                                     
𝑓−𝑥(𝑚−1)

𝑥(𝑚)−𝑥(𝑚−1)
,   𝑥(𝑚 − 1) ≤ 𝑓 ≤ 𝑥(𝑚)  

𝑥(𝑚+1)−𝑓

𝑥(𝑚+1)−𝑥(𝑚)
,   𝑥(𝑚1) ≤ 𝑓 ≤ 𝑥(𝑚 + 1) 

0,     𝑓 < 𝑥(𝑚 + 1)                                     

, (5) 

where m is the filter bank number, taken as 40; x(m) is the center frequency of the triangular 

filter bank; Hm(f ) is the transfer function of the m-th filter in the Mel filter bank with respect to 

frequency f, expressed as follows: 

 𝑥(𝑚) = (
𝑄

𝑓𝑠
)Mel−1(Mel(𝑓min) +𝑚

Mel(𝑓max)−Mel(𝑓min)

𝑀+1
), (6) 
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where fmax and fmin are the maximum and minimum values of the filter range frequency, 

respectively; fs is the sampling frequency of the acoustic pattern, and Q is the frame length of the 

discrete Fourier transform. 

 

 

Fig. 1. Mel filter bank 

 

 

Fig. 2. Mel spectrum 

 

The power spectra of filtered signals are calculated and logarithmic compression is applied 

to model the non-linear response of the human ear to sound intensity. Finally, these power 

spectral values are converted to the Mel scale to obtain the Mel spectrogram of the power 
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transformer. As shown in Fig. 2, the features of the Mel spectrogram are compared when 

different faults occur, which can provide a good training process for CNN feature extraction. 

 

 

3. Dual-channel voiceprint recognition model construction 

 

3.1. CNN 

The CNN has become the preferred method in image recognition due to its high performance 

in image feature extraction [23]. The unique configuration of convolutional and pooling layers 

can effectively capture local spatial hierarchical information within an image, laying a 

foundation for image analysis tasks. This hierarchical feature extraction mechanism enables the 

CNN to excel in processing high-dimensional data, especially in image recognition, where it can 

automatically learn key features such as edges, texture, and shape to achieve efficient 

classification and recognition [24]. 

Given the inherent advantages of convolutional neural networks in feature extraction and 

their synergistic effect with Mel spectrograms, using convolutional neural networks for Mel 

spectrogram processing has significant advantages. 

The Mel spectrogram provides a two-dimensional time-frequency representation of audio 

signals, where the time axis corresponds to temporal sequences and the frequency axis encodes 

frequency information after the Mel-scale transformation. The convolutional and pooling 

operations in CNNs significantly enhance the model's capacity to automatically extract critical 

time-frequency features. Specifically, the convolutional layers capture local time-frequency 

patterns such as pitch and rhythm, while the pooling layers reduce redundancy by retaining 

essential information through dimensionality reduction. 

This methodology cannot only diminish the complexity associated with manual feature 

design but also elevate the model's proficiency in characterizing audio signals. In addition, the 

hierarchical architecture of CNNs facilitates the progressive construction of complex feature 

representations, moving from low-level to high-level abstractions, thereby further refining the 

accuracy of audio recognition and classification tasks. 

 

3.2. BiLSTM 

An LSTM network is a variant of a recurrent neural network (RNN) that can effectively 

handle long-time sequences [25]. An LSTM consists of a forgetting layer, an input layer, and an 

output layer. Considering the inconsistent size and specifications of the collected images, it is 

necessary to preprocess the images before putting them into the model training.  

In the context of non-linear data such as MFCCs, it has been found that traditional LSTM 

networks are insufficient in extracting data features. In contrast, the use of BiLSTM networks 

has been proven to be more effective in analyzing speech data in a wide range of information – 

Fig. 3. The processing of sequential data is achieved through concurrent operations of two LSTM 

networks. One traverses from front to back, and the other from back to front, to integrate 

information from both directions [26, 27]. 
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Fig. 3. BiLSTM module structure 

 

3.3. Transformer 

The Transformer model is built on the self-attention mechanism, which is a complex data 

processing framework that facilitates the capture of long-distance dependencies in sequence data. 

One major strength of the Transformer model is its ability to process all elements simultaneously, 

thereby significantly improving the efficiency of model training. However, in fault diagnosis, 

data sources mainly include sensor signals, which largely depend on local features or periodic 

alterations in the time series compared to the global background of the sequence. Consequently, 

obtaining optimal classification results in fault diagnosis by directly applying the Transformer 

may be a challenge. Considering the advantages of the BiLSTM in capturing temporal features 

of audio data, the combination of the Transformer encoder and BiLSTM can be an effective 

strategy for transformer fault diagnosis. Taking into account the temporal information of audio 

signals through its bidirectional structure, the BiLSTM can accurately capture temporal features 

in the audio. Conversely, the transformer has demonstrated a high capability in analyzing 

complex hierarchical structures and dependencies of temporal points in audio data, due to its 

advanced multi-attention mechanism and parallel processing capacity. 

The BiLSTM-Transformer encoder is proposed as the network architecture to extract features 

of MFCCs. The encoder maps the input sequences to a high-dimensional representation and 

replaces the decoder with a fully-connected layer. The sub-module structure of the Transformer 

encoder is shown in Fig. 4. The sub-module mainly consists of multi-head attention (multi-head 

attention) and a feed-forward network layer, and introduces residual connection and layer 

normalization to prevent gradient degradation and accelerate algorithm convergence. 
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Fig. 4. Transformer encoder structure 

 

When the time series are input to the multi-head self-attention layer, it is necessary to add 

position encoding (also known as position embedding) to describe the relative positional 

relationship between the time series. The position encoding is expressed as follows: 

 {𝑃𝐸(𝑘, 2𝑖) = sin( 𝑘/10 000
2𝑖

𝑑 )            

𝑃𝐸(𝑘, 2𝑖 + 1) = cos( 𝑘/10 0002𝑖/𝑑)
, (7) 

where k is the sequence length; i is the dimension of the feature, and d is the feature length. 

The transformer introduces multi-head attention  to further enhance the expressive capability 

of the model [28]. Through computing the attention scores of multiple ‘heads’ in parallel, each 

head captures the features of input data from different dimensions or perspectives, greatly 

enhancing the model's ability to capture diverse information and complex dependencies. The 

operations are as follows: 

 Attention(𝑄, 𝐾, 𝑉) = SoftMax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉, (8) 

 head𝑖 = Attention(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖), (9) 

 Multihead(𝑄, 𝐾, 𝑉) = Concat[head1, head2,⋅⋅⋅, head𝑖]𝑊
𝑜, (10) 

where Attention denotes the attention mechanism; Q, K, and V represent the query, key and value 

matrices, respectively; dk denotes the columns of key matrices; head is an independent attention 
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calculation unit in the multi-head attention mechanism; Multihead is a mechanism that computes 

the attention scores of multiple "heads" in parallel; Concat is short for concatenation; i is the 

number of heads, and W 
o is the weight matrix of training. 

The feed-forward neural network layer (feed-forward network) consists of two layers of fully 

connected networks, each mapping linearly to an input vector. The middle-hidden layer is 

activated using the ReLU function to enhance the expressive power of the model, which further 

extracts features based on the multi-head attention mechanism [29]. The feedforward neural 

network is expressed as follows: 

 FFN(𝛼) = Re𝐿𝑈(𝛼𝑊1 + 𝑏1)𝑊2 + 𝑏2, (11) 

where FFN denotes the feed-forward neural network;  denotes the normalized output vector; 

W1, W2 denote the weight matrices; b1 and b2 denote the bias terms. 

The transformer adopts a multi-head self-attention mechanism to globally model the features 

extracted from the BiLSTM network, followed by feature transformation via a feed-forward 

network (FFN) to further refine the representation. This fusion model aims to combine the 

strengths of both modules, enabling a more comprehensive understanding of temporal dynamics 

in audio while capturing various patterns and features in audio. 

 

3.4. Multimodal fusion 

Compared with the unimodal model, the multimodal model is more powerful in fault 

diagnosis and has achieved significant improvements in accuracy. A central challenge in 

multimodal fusion lies in effectively integrating multiple unimodal data sources into a single 

multimodal dataset, while preserving maximum information content [30-31]. Model-

independent fusion strategies are commonly categorized into three paradigms: early fusion, late 

fusion, and hybrid fusion, each with distinct advantages and limitations that must be carefully 

evaluated according to specific application requirements. Based on a comparative analysis of 

these fusion strategies, early fusion is determined as the most suitable approach for this acoustic 

feature-based framework. This selection was driven by several key factors: first, the extracted 

Mel-spectrograms and MFCC features are inherently complementary, as they represent different 

perspectives of the same acoustic source; then early fusion facilitates the learning of complex 

cross-modal correlations at the feature level, enabling the model to develop richer representations 

than single-modal approaches; finally, this approach helps minimize information loss before the 

classification stage while maintaining reasonable computational requirements. In our 

implementation, early fusion is applied at the feature level by integrating representations from 

CNN and BiLSTM-Transformer branches. Specifically, the CNN-derived feature maps from 

Mel-spectrogram processing are combined with the temporal features extracted by the BiLSTM-

Transformer branch from MFCCs through concatenation, followed by further integration via 

fully connected layers. This strategy effectively addresses the structural differences between 

spectral and temporal feature representations while preserving their complementary 

characteristics. The experimental results (Table 1) validate the effectiveness of this approach. 

Compared with late fusion (78.92% accuracy, 78.87% F1-score) and hybrid fusion (85.35% 
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accuracy, 84.30% F1-score) alternatives, the early fusion strategy achieves superiority, providing 

high performance (99.61% accuracy, 99.58% F1-score). The demonstrated performance 

advantages confirm that early fusion provides an optimal balance between information 

preservation and model complexity for transformer fault diagnosis applications, where high 

diagnostic accuracy is crucial. 

 
Table 1. Performance of different fusion strategies 

Fusion strategy Acc (%) F1-score (%) 

Early fusion 99.61 99.58 

Late fusion 78.92 78.87 

Hybrid fusion 85.35 84.30 

 

3.5. Application of the transformer acoustic diagnostic model 

To achieve the classification of transformer fault categories, a feature fusion parallel 

optimization model based on deep learning is designed. The model uses the CNN and BiLSTM-

Transformer in parallel to achieve feature fusion of Mel spectrograms and MFCCs extracted 

from raw acoustic data to optimize the original CNN and BiLSTM-Transformer, respectively. It 

can extract features more efficiently and improve the classification performance of the model. 

The overall structure of the model is shown in Fig. 5, which mainly includes the CNN 

module, the BiLSTM-Transformer module, and the feature merging module. 

 

Feature fusion

.

.

.

MFCCs

Convolutional Layer

Normalization layer

Max Pooling Layer

Full connectivity layer

BiLSTM layer1 BiLSTM layer2 Transformer×N

CNN

Feature output

SoftMax Output

 

Fig. 5. Structure of the CNN-BiLSTM-Transformer model 

 

After inputting the original voiceprint data into the model, the corresponding Mel 

spectrograms and MFCCs are obtained. Then, the obtained Mel spectrograms and MFCCs are 

input into the model. The CNN and BiLSTM-Transformers are used to extract and fuse features 

from the input. Finally, the SoftMax classifier is used to classify and output the final results. 
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4. Experiments and analysis of results 

 

4.1. Collection of voiceprint data samples 

To evaluate the accuracy of the method, a dataset consisting of 5 000 acoustic samples of 14 

state categories was compiled. The data were collected from a pool of over 50 power 

transformers in operational substations and from specialized test platforms. Figure 6 shows the 

diagram of the sound pattern data monitoring device and field collection. 

Importantly, each audio sample corresponds to a single state (normal or one specific fault) 

from a single transformer. The dataset is designed for state identification, meaning each sample 

is assigned a single label based on its dominant acoustic characteristic. This approach allows the 

model to learn distinct acoustic patterns for each condition, avoiding the complexity of multiple 

co-occurring faults. 

The sampling rate of the sound data is 48 kHz. We collected 3 600 pieces of sound data during 

normal operation of transformers with 4 different voltage levels and 1 400 pieces of abnormal 

sample data from 10 transformer defects. The sample data is randomly disturbed and divided 

into a training set and a test set in a ratio of 8:2. The distribution of the sample data and the 

corresponding labels are shown in Table 2. 

 

 

Fig. 6. Voiceprint monitoring device and field deployment 

 
Table 2. Sample distribution of the voiceprint 

States Quantities Labels States Quantities Labels 

110 kV 900 0 Corona discharge 150 7 

220 kV 900 1 Sustained discharge 50 8 

500 kV 900 2 Loose clamps 100 9 

±800 kV 900 3 Motor shaft noise 150 10 
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Short-
circuit 

shock 

60 4 Fan noise 150 11 

Surface 
discharge 

50 5 Heavy overload 300 12 

Intermittent 
discharge 

40 6 DC polarisation 150 13 

 

4.2. Experimental training process 

The obtained raw acoustic signals are preprocessed to extract the Mel-spectrogram and 

MFCC features (in Section 2). To establish the dataset, all samples are randomly split into 

training and testing sets while strictly preserving the original class distribution (such as stratified 

sampling) with a ratio of 8:2. This ensures a fair representation of majority and minority classes 

in both sets; 

The training dataset is fed into the established parallel two-channel model. To directly 

address the significant class imbalance (as shown in Table 1), a weighted cross-entropy loss 

function is adopted during training. The class weights are set to be inversely proportional to their 

frequencies in the training set, which increases the penalty for misclassifying samples from 

underrepresented fault categories. Iterative training is performed to adjust hyperparameters (e.g., 

learning rate, dropout rate). The training process continues until the performance of the model 

converges on a retained validation set and meets the expected diagnostic accuracy requirements; 

The trained model is evaluated on the independent test set. Comprehensive metrics, including 

accuracy, precision, recall, and F1-score, are calculated to assess the performance of the model 

for all states, especially on the minority classes. The final diagnosis results are obtained and 

analyzed. 

The multimodal fusion diagnostic model of the proposed parallel two-channel networks is 

shown in Fig. 7. The model is trained using the Adam optimizer, which has strong adaptive 

learning capability and low memory requirements. To avoid overfitting, a regularization method 

is introduced during the training. The dropout is set to 0.4; the cross-entropy is selected as the 

loss function; the initial learning rate is defined to be 0.001, and the number of training iterations 

is set to be 50. The specific parameters of the model are shown in Table 3. 
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Fig. 7. Flow chart of fault diagnosis 
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Table 3. Model parameters 

Modules Parameters 

Hidden Layer dimension 64 

Number of heads of multi-attention mechanisms 8 

Head dimension 128 

Feedforward neural network layer dimension 2 048 

Encoder layer 3 

Batch size 64 

 

4.3. Experimental environment and configuration 

The proposed model was implemented using Python 3.9 and PyTorch 2.0.1 frameworks. The 

experiments were conducted on a server equipped with an Intel Xeon Gold 6248R CPU, 

256 GB RAM, and four NVIDIA GeForce RTX 3090 GPUs. 

The acoustic data were acquired using a GRAS 46AE ¼ CCP Free-field Microphone Set 

(frequency response: 4 Hz–70 kHz; sensitivity: 50 mV/Pa) connected to a National Instruments 

NI-9234 sound and vibration input module. 

The acoustic signals were collected from various power transformers, including 

SZ11‑50 000/110 (110 kV, 50 MVA), SSZ11‑180000/220 (220 kV, 180 MVA), 

OFPSZ‑250000/500 (500 kV, 250 MVA), and ±800 kV UHVDC Converter Transformers (rated 

capacity: 400 MVA per valve side), during their normal energized operation in substations. 

 

4.4. Experimental results and analysis 

The mainstream acoustic algorithms first extract the MFCC and MEL spectrograms of the 

acoustic samples, and then use deep learning networks to identify the extracted features. To 

comprehensively evaluate this method, additional experiments were carried out; we performed 

5-fold cross-validation to verify the stability of this model. The results show that the performance 

of all folds is consistent, with an average accuracy of 99.3% (± 0.2%), demonstrating the 

robustness of this method. 

To evaluate the practical applicability of this method, its performance under different noises 

was tested by adding Gaussian white noise to the test signals. Even at a low signal‑to‑noise ratio 

(SNR) of 10 dB, this model maintains high accuracy (> 98%), demonstrating its excellent noise 

robustness in real-world deployment scenarios. 

The confusion matrix illustrating the performance of various fault detection algorithms on 

the test set is shown in Fig. 8. Several transformer acoustic pattern algorithms are selected for 

comparison. Figure 9 shows the relationship between the accuracy of different algorithm models 

on the test set and the number of training rounds. This model achieves optimal performance, 

exhibiting convergence speed and higher accuracy as the training rounds increase. 
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Fig. 8. Confusion matrix of the test set 
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Fig. 9. Accuracy and loss value change curve of different algorithms 

 

Table 4 shows different performance metrics of this algorithm model and other algorithms. 

The accuracy of this algorithm increases by using the MEL-CNN (4.77%), MFCC-GRU 

(5.56%), MFCC-LSTM (6.16%), MFCC-BiLSTM-Transformer (3.8%), and 

MEL‑CNN‑Transformer (3.9%), respectively. The other comparison metrics are also improved 

in different magnitudes. 

 
Table 4. Comparison with classical algorithms 

Networks Acc/% Recall/% F1/% 

Our model 99.61 99.56 99.58 

CNN 94.84 95.32 95.80 

GRU 94.05 94.70 94.80 

LSTM 93.45 94.70 94.90 

BiLSTM-Transformer 95.75 94.20 93.86 

CNN-Transformer 95.73 95.56 95.67 

 

 

5. Conclusion 

 

A new fault diagnosis method is proposed, which involves feature extraction from Mel 

spectrograms using the CNN and MFCCs, applying the BiLSTM-Transformer. These features 

are then fused to achieve the diagnosis of potential faults. The findings demonstrate that:  

1) The fusion of Mel spectrograms and MFCCs features can facilitate more comprehensive 

data characterization, leveraging information from different modes. By validating the 
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datasets, the model can achieve an accuracy of greater than 99.5% in identifying normal 

operation and defective samples of level transformers;  

2) The accuracy and F1 score of the classification model are 4% higher than the mainstream 

network models. Comparing the dual-channel fusion model with other single-feature 

extraction methods, we see that the model can combine the advantages of the CNN and 

BiLSTM-Transformer and shows high performance in fault diagnosis. 

The proposed method contributes to transformer fault diagnosis by incorporating multi-level 

acoustic information. However, the recognition of fault types remains limited due to the 

constraints of the dataset size. Therefore, future efforts should focus on expanding the fault 

sample library and integrating acoustic features from more hierarchical levels to enable deeper 

analysis and more comprehensive research. 

This study is subject to certain limitations. First, the model is trained and validated on a 

dataset with a fixed set of faults. Its ability to generalize novel or rare fault signatures not 

encountered during training remains to be further investigated; second, the non-trivial 

computational complexity of the deep learning model may hinder its deployment in real-time on 

resource-constrained edge devices within power grid systems.  

Future research will focus on: 

1) expanding the acoustic fault dataset to include a wider variety of fault conditions and 

operational environments; 

2) exploring model compression and knowledge distillation techniques to develop lighter-

weight versions of the diagnostic model for practical applications; and 

3) investigating the model's capability in diagnosing multiple co-occurring faults within a 

single transformer unit. 
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