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Abstract: To more accurately obtain the feature informatior embedded in the acoustic
pattern of transformers, a transformer fault diagnosis pwethad is proposed based on
multilevel acoustic information of 14 state types. In this ixiethad, a parallel dual-channel
fault diagnosis model, CNN-BiLSTM-Transformer, islestablisned. First, the modified Mel
inversion coefficients and Mel spectrograms are extiacteds’om the original acoustic pattern
data. The modified Mel inversion coefficients and Wel Spectrograms are then input into the
parallel dual-channel model. In the first chariie!y,a convolutional neural network model is
used to extract the feature information of maps In ihe second channel, a bidirectional long-
and short-term memory network and a Transfozmer encoder are used to partially extract the
temporal features in the MFCCs. Finally, the temporal features extracted from the two
channels are fused through multimodaisusion for training. The experimental results show
that the proposed diagnostic methotican 2chieve an average accuracy of 99.5% in multiple
fault diagnosis. Compared<\witi, current mainstream acoustic single-channel diagnostic
models, the diagnostic-ratz pisthis model is improved by an average of 4.8%, exhibiting
higher accuracy an? robustnoss.

Keywords: acousticy, features, CNN-BiLSTM-Transformer, fault diagnosis, Mel
spectrogram, MFCCs, niultimodal fusion

1. Introduction

As an important connecting device in power systems, transformers play a crucial role in
voltage transformation, current adjustment, power distribution and transmission of the power
grid [1, 2]. With the continuous expansion of a grid scale and sharp increase in capacity, the
requirements for the reliability and stability of transformers are becoming increasingly stringent.
Real-time monitoring and charge detection of transformer operation conditions are of significant
importance for timely identification of potential faults and ensuring safe, efficient and stable
operation of the power grid [3, 4].

Advances in artificial intelligence technology have made transformer acoustic pattern
recognition a hotspot in transformer fault diagnosis [5]. The transformer acoustic signal contains
equipment information during operation and can be used as an important indicator of fault
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conditions [6, 7]. However, the complexity of the transformer operating environment and the
diversity of acoustic signals pose significant challenges for extracting effective fault features
from acoustic signals and applying them effectively to transformer fault diagnosis and
classification. To date, the application of multimodal technology to transformer fault diagnosis
remains limited. However, transformer acoustic pattern recognition technology has established
a certain basis in the power industry. Wang et al. [8] used a weighted processing method and
principal component analysis to extract the Mel inverse spectral coefficients of acoustic signals.
These coefficients are then used to recognize different degrees of transformer core looseness
using a vector quantization algorithm. Zhou et al. [9] used compressive sensing technology and
a discriminative dictionary learning method to identify defects (including loose windings and
iron cores in dry-type transformers), achieving an accuracy rate of greater than 90%. Zhang et
al. [10] established an acoustic pattern recognition model based on a Mel time spectrum-
convolutional neural network. This model can effectively recognize_loose faults in iron cores
and windings by leveraging the strengths of convolutional neufai networks (CNNSs) in t image
recognition. Cui and Ma [11] put forward an acoustic patteril recegnition model for loose faults
in transformer cores, and used an enhanced MFCC~ant=Z0-CNN approach to enhance
classification accuracy. Liu et al. [12] proposed usingwaslind source separation algorithm,
amplitude phase fluctuation method, and 50,HZ octavs band cepstrum coefficient to extract
acoustic signal features, remove interference signaia;from the original acoustic signal, and then
introduce a gate-controlled recurrent neural network (GRU) to identify the DC bias state of the
transformer. Although the above studies have achieved excellent performance in transformer
fault diagnosis, most of them only fogus orifault identification of transformer categories and do
not fully consider the diversity of#fansisrmer faults in practice. In addition, compared with the
single use of traditional networkswsucit as the CNN [13] and recurrent neural networks [14], the
advantages of differentsfetwarkin their respective fields can be utilized for control.

To address the above isailesy/a methodology combining bidirectional long short-term memory
(BiLSTM)-Transformer and’CNN techniques is proposed for identifying faults in transformer
acoustic pattern recognition. The proposed approach employs two types of audio features and
Mel spectrograms to extract acoustic patterns. Combined with the ability of the CNN in feature
extraction and efficient classification, the integration of the BiLSTM-Transformer in capturing
complex temporal dependencies can comprehensively capture and understand sound patterns. In
addition, it can effectively avoid the limitations of isolated models in practical applications. This
innovative technological integration can improve the strengths of each model while addressing
their weaknesses, thereby forming a more robust and comprehensive voiceprint recognition
method.

2. Data preprocessing

Mel frequency cepstral coefficients (MFCCs) and Mel-Spectrograms are important in sound
feature extraction, each with different characteristics of sound patterns [15, 16]. The MFCC
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converts time-domain signals into frequency-domain signals. Based on the auditory mechanism
of the human ear, MFCCs reflect the static characteristics of sound signals such as timbre and
intonation. The calculation of the first-order MFCC is helpful for analyzing the spectrum of
sound signals in the frequency domain. The calculation of the first-order and second-order
differences in the MFCC allows for the extraction of dynamic characteristics such as speech
speed and intonation changes. Mel spectrograms integrate information from time domain and
frequency domain, and can clearly visualize the changes in sound frequency over time. It has
been demonstrated that this spectrogram cannot only reflect the static characteristics of sound
signals (such as pitch and timbre), but also capture the dynamic characteristics (including speech
rate and intonation change). In contrast, Mel spectrograms can provide comprehensive
information about the frequency distribution of sound signals and their temporal evolution. Each
method has a distinct focus on sound feature extraction, and both are essential in sound
processing and analysis.

2.1. MFCC feature extractions

The extraction process of MFCCs includes preprocessingptiie fast Fourier transform (FFT),
Mel filter bank, logarithmic operations, and discrete gasinatiansform [17, 18].

The preprocessing stage typically consists of threeumzin steps: pre-emphasis, frame-splitting,
and windowing. The Fourier transform of the titne-camain signal of each frame generates a linear
spectrum, X(k), expressed as follows:

X(k) = SH e 0 < nk <N -1, )
where y(n) is the preprocessed timeydomain signal; n is a sampling point in the time-domain; k
is a discrete frequency pgirit il thewfrequency-domain; and N is the length of the first frame of
the signal.
The linear spectrum X@is processed through the Mel filter bank to generate the Mel
frequency, expressed as follows:

s(m) = In(XZ5IX()I? Hp (K)), @

where s(m) is the output of the m-th Mel filter, and Hn(K) is the m-th filter parameter.
Subsequently, the discrete cosine transform (DCT) is performed to obtain MFCCs by taking
the logarithm of the Mel frequency, expressed as follows:

nir(b—0.5)
M

c(r) = XP-d s(m) cos( ), 1<r<lL, (3)

where b is the frequency channel index; M is the number of filters in the Mel filter bank; P is the
order of the MFCC; c(r) is the value of the r dimensional inverse spectral coefficient, and P is
the length of s(m).

The standard MFCC parameters only reflect the static characteristics of sound parameters.
Conversely, the first- and second-order difference of MFCCs can highly reflect the dynamic
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characteristics of sound [19, 20]. The combination of dynamic and static features can effectively
improve the recognition of the system. The first-order difference feature is calculated as follows:

Cf+1 - Ct' t < K
The1 K(Cerk—Ce—i)

_ , else
d. = 25K k2 ’ )

C—Ciy, t2Q—-K

where d; denotes the t-th first-order difference; Cidenotes the t-th cepstrum coefficient; Q denotes
the order of the cepstrum coefficient, and K denotes the time difference of the first-order
derivatives, taken as 1 or 2.

The order of the discrete cosine transform is 13, and after first-order and second-order
differencing, the differencing results are combined into MFCC parameters. This process will
result in the collection of a 39-dimensional feature vector, assigning=29 features to each frame
of sound data.

2.2. Mel spectrogram preprocessing

Mel spectrograms are a spectral representation miethot=sased on human auditory properties
[21, 22]. They convert audio signals into spectzaaramattat are more in line with human auditory
habits by simulating human auditory sensitivity,«0 Jounds of different frequencies. Typically,
Mel spectrograms use a honlinear Mel scale to represent frequencies, allowing for more accurate
display of low-frequency componants¢ However, high-frequency components are relatively
compressed to align with the human.ear's capacity to perceive sound frequencies. The generation
of a Mel spectrogram requires/xanstormiing the audio signal from time-domain Fourier
transformation to frequency-danmin. Subsequently, a filtering operation is performed on the
time-frequency domairdigral thidugh a triangular filter bank, with each filter corresponding to
a specific Mel frequency inwrval. The Mel filter bank is shown in Fig. 1, and the transfer function
of the filter bank is expressed as follows:

(0, f<x(m-—1)

f—x(m-1)

SN - <f<

B () = | Fom=rmon XM DS f S xm) (5)
m - x(m+1)-f

m, x(ml) Sf < x(m+ 1)
0, f<x(m+1)
where m is the filter bank number, taken as 40; x(m) is the center frequency of the triangular

filter bank; Hi(f ) is the transfer function of the m-th filter in the Mel filter bank with respect to
frequency f, expressed as follows:

Q - Mel(fmax)—M 1fmin
x(m) = (DMel™ (Mel (fyy) +m =Iman-2emindy, ©)
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where fnax and fmin are the maximum and minimum values of the filter range frequency,
respectively; fs is the sampling frequency of the acoustic pattern, and Q is the frame length of the
discrete Fourier transform.
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Fig. 2. Mel spectrum

The power spectra of filtered signals are calculated and logarithmic compression is applied
to model the non-linear response of the human ear to sound intensity. Finally, these power
spectral values are converted to the Mel scale to obtain the Mel spectrogram of the power
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transformer. As shown in Fig. 2, the features of the Mel spectrogram are compared when
different faults occur, which can provide a good training process for CNN feature extraction.

3. Dual-channel voiceprint recognition model construction

3.1. CNN

The CNN has become the preferred method in image recognition due to its high performance
in image feature extraction [23]. The unique configuration of convolutional and pooling layers
can effectively capture local spatial hierarchical information within an image, laying a
foundation for image analysis tasks. This hierarchical feature extraction mechanism enables the
CNN to excel in processing high-dimensional data, especially in image recognition, where it can
automatically learn key features such as edges, texture, and(shane to achieve efficient
classification and recognition [24].

Given the inherent advantages of convolutional neural Metwerks in feature extraction and
their synergistic effect with Mel spectrograms, using ¢Gnveigdonal neural networks for Mel
spectrogram processing has significant advantages.

The Mel spectrogram provides a two-dimensional t'me-frequency representation of audio
signals, where the time axis corresponds to tempeialysequences and the frequency axis encodes
frequency information after the Mel-scale transformation. The convolutional and pooling
operations in CNNs significantly enhance the model's capacity to automatically extract critical
time-frequency features. Specificaliyy, the convolutional layers capture local time-frequency
patterns such as pitch and rhythrt, whyie thie pooling layers reduce redundancy by retaining
essential information through diniansionality reduction.

This methodology <annit oaly diminish the complexity associated with manual feature
design but also elevate thexmodel's proficiency in characterizing audio signals. In addition, the
hierarchical architecture of ‘CNNs facilitates the progressive construction of complex feature
representations, moving from low-level to high-level abstractions, thereby further refining the
accuracy of audio recognition and classification tasks.

3.2. BIiLSTM

An LSTM network is a variant of a recurrent neural network (RNN) that can effectively
handle long-time sequences [25]. An LSTM consists of a forgetting layer, an input layer, and an
output layer. Considering the inconsistent size and specifications of the collected images, it is
necessary to preprocess the images before putting them into the model training.

In the context of non-linear data such as MFCCs, it has been found that traditional LSTM
networks are insufficient in extracting data features. In contrast, the use of BiLSTM networks
has been proven to be more effective in analyzing speech data in a wide range of information —
Fig. 3. The processing of sequential data is achieved through concurrent operations of two LSTM
networks. One traverses from front to back, and the other from back to front, to integrate
information from both directions [26, 27].
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3.3. Transformer

The Transformer model is built on the selt-ai:aation mechanism, which is a complex data
processing framework that facilitates the capture'of long-distance dependencies in sequence data.
One major strength of the Transformer mocel is its ability to process all elements simultaneously,
thereby significantly improving the“afficienicy of model training. However, in fault diagnosis,
data sources mainly include sensat sigiiats,ewhich largely depend on local features or periodic
alterations in the time series caifipareptto the global background of the sequence. Consequently,
obtaining optimal classification xesults in fault diagnosis by directly applying the Transformer
may be a challenge. Considering the advantages of the BILSTM in capturing temporal features
of audio data, the combination of the Transformer encoder and BiLSTM can be an effective
strategy for transformer fault diagnosis. Taking into account the temporal information of audio
signals through its bidirectional structure, the BiLSTM can accurately capture temporal features
in the audio. Conversely, the transformer has demonstrated a high capability in analyzing
complex hierarchical structures and dependencies of temporal points in audio data, due to its
advanced multi-attention mechanism and parallel processing capacity.

The BiLSTM-Transformer encoder is proposed as the network architecture to extract features
of MFCCs. The encoder maps the input sequences to a high-dimensional representation and
replaces the decoder with a fully-connected layer. The sub-module structure of the Transformer
encoder is shown in Fig. 4. The sub-module mainly consists of multi-head attention (multi-head
attention) and a feed-forward network layer, and introduces residual connection and layer
normalization to prevent gradient degradation and accelerate algorithm convergence.
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When the time series are input to the multi-ipead self-attention layer, it is necessary to add
position encoding (also known as pesition embedding) to describe the relative positional
relationship between the time series, e position encoding is expressed as follows:

20
[ PER: 26) = sin(k/10 0002) -
bPEW, 2i + 1) = cos(k/10 000%V/4)

where k is the sequence leng:i; i is the dimension of the feature, and d is the feature length.

The transformer introduces multi-head attention to further enhance the expressive capability
of the model [28]. Through computing the attention scores of multiple ‘heads’ in parallel, each
head captures the features of input data from different dimensions or perspectives, greatly
enhancing the model's ability to capture diverse information and complex dependencies. The
operations are as follows:

i _ (s
Attention(Q, K, V) = SoftMax (m) v, (8)
head; = Attention(Q;, K;,V;), 9)
Multihead(Q, K, V) = Concat[head,, head,,--, head;]W?, (10)

where Attention denotes the attention mechanism; Q, K, and V represent the query, key and value
matrices, respectively; dyx denotes the columns of key matrices; head is an independent attention
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calculation unit in the multi-head attention mechanism; Multihead is a mechanism that computes
the attention scores of multiple "heads" in parallel; Concat is short for concatenation; i is the
number of heads, and W° is the weight matrix of training.

The feed-forward neural network layer (feed-forward network) consists of two layers of fully
connected networks, each mapping linearly to an input vector. The middle-hidden layer is
activated using the ReLU function to enhance the expressive power of the model, which further
extracts features based on the multi-head attention mechanism [29]. The feedforward neural
network is expressed as follows:

where FFN denotes the feed-forward neural network; « denotes the normalized output vector;
W31, W, denote the weight matrices; b: and b, denote the bias terms.

The transformer adopts a multi-head self-attention mechanism to_clobally model the features
extracted from the BiLSTM network, followed by feature trehsfariwation via a feed-forward
network (FFN) to further refine the representation. This fusian=inodel aims to combine the
strengths of both modules, enabling a more comprehensiwe urverstanding of temporal dynamics
in audio while capturing various patterns and features<n w<io.

3.4. Multimodal fusion

Compared with the unimodal model, the multimodal model is more powerful in fault
diagnosis and has achieved significant improvements in accuracy. A central challenge in
multimodal fusion lies in effectivelyyintegrating multiple unimodal data sources into a single
multimodal dataset, while predarving” rfiaximum information content [30-31]. Model-
independent fusion strategias gre/vormimonly categorized into three paradigms: early fusion, late
fusion, and hybrid fusigt, eich with distinct advantages and limitations that must be carefully
evaluated according to spezific application requirements. Based on a comparative analysis of
these fusion strategies, early fusion is determined as the most suitable approach for this acoustic
feature-based framework. This selection was driven by several key factors: first, the extracted
Mel-spectrograms and MFCC features are inherently complementary, as they represent different
perspectives of the same acoustic source; then early fusion facilitates the learning of complex
cross-modal correlations at the feature level, enabling the model to develop richer representations
than single-modal approaches; finally, this approach helps minimize information loss before the
classification stage while maintaining reasonable computational requirements. In our
implementation, early fusion is applied at the feature level by integrating representations from
CNN and BiLSTM-Transformer branches. Specifically, the CNN-derived feature maps from
Mel-spectrogram processing are combined with the temporal features extracted by the BiLSTM-
Transformer branch from MFCCs through concatenation, followed by further integration via
fully connected layers. This strategy effectively addresses the structural differences between
spectral and temporal feature representations while preserving their complementary
characteristics. The experimental results (Table 1) validate the effectiveness of this approach.
Compared with late fusion (78.92% accuracy, 78.87% F1-score) and hybrid fusion (85.35%
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accuracy, 84.30% F1-score) alternatives, the early fusion strategy achieves superiority, providing
high performance (99.61% accuracy, 99.58% F1-score). The demonstrated performance
advantages confirm that early fusion provides an optimal balance between information
preservation and model complexity for transformer fault diagnosis applications, where high
diagnostic accuracy is crucial.

Table 1. Performance of different fusion strategies

Fusion strategy Acc (%) F1-score (%)
Early fusion 99.61 99.58
Late fusion 78.92 78.87
Hybrid fusion 85.35 84.30

3.5. Application of the transformer acoustic diagnostic madei

To achieve the classification of transformer fault_catcgories, a feature fusion parallel
optimization model based on deep learning is designed. The model uses the CNN and BiLSTM-
Transformer in parallel to achieve feature fusion of Mel spectrograms and MFCCs extracted
from raw acoustic data to optimize the original,.8\IN and BiLSTM-Transformer, respectively. It
can extract features more efficiently and improvg the classification performance of the model.

The overall structure of the model i« shown in Fig. 5, which mainly includes the CNN
module, the BiLSTM-Transformerinodataland the feature merging module.

Feature output

Feature fusion
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; |
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. = SoftMax — Output

MFCCs

BiLSTM layerl BiLSTM layer2  TransformerxN

Fig. 5. Structure of the CNN-BiLSTM-Transformer model

After inputting the original voiceprint data into the model, the corresponding Mel
spectrograms and MFCCs are obtained. Then, the obtained Mel spectrograms and MFCCs are
input into the model. The CNN and BiLSTM-Transformers are used to extract and fuse features
from the input. Finally, the SoftMax classifier is used to classify and output the final results.
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4. Experiments and analysis of results

4.1. Collection of voiceprint data samples

To evaluate the accuracy of the method, a dataset consisting of 5000 acoustic samples of 14
state categories was compiled. The data were collected from a pool of over 50 power
transformers in operational substations and from specialized test platforms. Figure 6 shows the
diagram of the sound pattern data monitoring device and field collection.

Importantly, each audio sample corresponds to a single state (normal or one specific fault)
from a single transformer. The dataset is designed for state identification, meaning each sample
is assigned a single label based on its dominant acoustic characteristic. This approach allows the
model to learn distinct acoustic patterns for each condition, avoiding the complexity of multiple
co-occurring faults.

The sampling rate of the sound data is 48 kHz. We collected 3 6(0.2iaces of sound data during
normal operation of transformers with 4 different voltage leveis.2na+1 400 pieces of abnormal
sample data from 10 transformer defects. The sample data/is rangomly disturbed and divided
into a training set and a test set in a ratio of 8:2. The gistrivetion of the sample data and the
corresponding labels are shown in Table 2.

= e £ S &

Fig. 6. Voiceprint monitoring device and field deployment

Table 2. Sample distribution of the voiceprint

States Quantities Labels States Quantities Labels
110 kV 900 0 Corona discharge 150 7
220 kV 900 1 Sustained discharge 50 8
500 kV 900 2 Loose clamps 100 9
+800 kV 900 3 Motor shaft noise 150 10

11
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4.2. Experimental training process

The obtained raw acoustic signals are preprocessed to extract the Mel-spectrogram and
MFCC features (in Section 2). To establish the dataset, all samples are randomly split into
training and testing sets while strictly preserving the original class distribution (such as stratified
sampling) with a ratio of 8:2. This ensures a fair representation of majority and minority classes
in both sets;

The training dataset is fed into the established parallel two-charinel model. To directly
address the significant class imbalance (as shown in Table<3), a vveighted cross-entropy loss
function is adopted during training. The class weights aresst¥o bz inversely proportional to their
frequencies in the training set, which increases the nenalty for misclassifying samples from
underrepresented fault categories. Iterative training it performed to adjust hyperparameters (e.g.,
learning rate, dropout rate). The training procesSszantinues until the performance of the model
converges on a retained validation set and meets(the expected diagnostic accuracy requirements;

The trained model is evaluated on the iftdependent test set. Comprehensive metrics, including
accuracy, precision, recall, and F14ssofe;ate calculated to assess the performance of the model
for all states, especially on the mifiorigz clzsses. The final diagnosis results are obtained and
analyzed.

The multimodal fusizn diagnositc model of the proposed parallel two-channel networks is
shown in Fig. 7. The modal is'trained using the Adam optimizer, which has strong adaptive
learning capability and low r.iemory requirements. To avoid overfitting, a regularization method
is introduced during the training. The dropout is set to 0.4; the cross-entropy is selected as the
loss function; the initial learning rate is defined to be 0.001, and the number of training iterations
is set to be 50. The specific parameters of the model are shown in Table 3.

12
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Table 3. Model parameters

Modules Parameters
Hidden Layer dimension 64
Number of heads of multi-attention mechanisms 8
Head dimension 128
Feedforward neural network layer dimension 2048
Encoder layer 3
Batch size 64

4.3. Experimental environment and configuration

The proposed model was implemented using Python 3.9 and, Ry rorch 2.0.1 frameworks. The
experiments were conducted on a server equipped with 23 intel Xeon Gold 6248R CPU,
256 GB RAM, and four NVIDIA GeForce RTX 3090 GRLJs

The acoustic data were acquired using a GRAS 4€AE ). CCP Free-field Microphone Set
(frequency response: 4 Hz—70 kHz; sensitivity: 50 n\V/Pa) connected to a National Instruments
NI-9234 sound and vibration input module.

The acoustic signals were collected fiom “various power transformers, including
SZ11-50000/110 (110kV, 50 MVA), $SZ11-180000/220 (220kV, 180 MVA),
OFPSZ-250000/500 (500 kV, 250 viVAipand £800 kV UHVDC Converter Transformers (rated
capacity: 400 MVA per valve side)"duing their normal energized operation in substations.

4.4. Experimental resuls ana anzaysis

The mainstream acoudtic alyorithms first extract the MFCC and MEL spectrograms of the
acoustic samples, and then Juse deep learning networks to identify the extracted features. To
comprehensively evaluate this method, additional experiments were carried out; we performed
5-fold cross-validation to verify the stability of this model. The results show that the performance
of all folds is consistent, with an average accuracy of 99.3% (+ 0.2%), demonstrating the
robustness of this method.

To evaluate the practical applicability of this method, its performance under different noises
was tested by adding Gaussian white noise to the test signals. Even at a low signal-to-noise ratio
(SNR) of 10 dB, this model maintains high accuracy (> 98%), demonstrating its excellent noise
robustness in real-world deployment scenarios.

The confusion matrix illustrating the performance of various fault detection algorithms on
the test set is shown in Fig. 8. Several transformer acoustic pattern algorithms are selected for
comparison. Figure 9 shows the relationship between the accuracy of different algorithm models
on the test set and the number of training rounds. This model achieves optimal performance,
exhibiting convergence speed and higher accuracy as the training rounds increase.

14
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Fig. 8. Confusion matrix of the test set
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Fig. 9. Accuracy and loss value change curve of different@igorithms

Table 4 shows different performance metrics of this algorithii'model and other algorithms.
The accuracy of this algorithm increases by using the WMcL-CNN (4.77%), MFCC-GRU
(5.56%), MFCC-LSTM (6.16%), MFCC/biL.S¥M-Transformer  (3.8%), and
MEL-CNN-Transformer (3.9%), respectivelyyThe ouwad comparison metrics are also improved
in different magnitudes.

Table 4. Comparison with classical algorithms

Networks Acc/% Recall/% F1/%
Our,mocel N 99.61 99.56 99.58
CNN / 94.84 95.32 95.80

GRy 94.05 94.70 94.80

LSTM 93.45 94.70 94.90
BiLSTM-Transformer 95.75 94.20 93.86
CNN-Transformer 95.73 95.56 95.67

5. Conclusion

A new fault diagnosis method is proposed, which involves feature extraction from Mel
spectrograms using the CNN and MFCCs, applying the BiLSTM-Transformer. These features
are then fused to achieve the diagnosis of potential faults. The findings demonstrate that:

1) The fusion of Mel spectrograms and MFCCs features can facilitate more comprehensive

data characterization, leveraging information from different modes. By validating the
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datasets, the model can achieve an accuracy of greater than 99.5% in identifying normal
operation and defective samples of level transformers;

2) The accuracy and F1 score of the classification model are 4% higher than the mainstream
network models. Comparing the dual-channel fusion model with other single-feature
extraction methods, we see that the model can combine the advantages of the CNN and
BiLSTM-Transformer and shows high performance in fault diagnosis.

The proposed method contributes to transformer fault diagnosis by incorporating multi-level
acoustic information. However, the recognition of fault types remains limited due to the
constraints of the dataset size. Therefore, future efforts should focus on expanding the fault
sample library and integrating acoustic features from more hierarchical levels to enable deeper
analysis and more comprehensive research.

This study is subject to certain limitations. First, the model is trained and validated on a
dataset with a fixed set of faults. Its ability to generalize novel( ot rare fault signatures not
encountered during training remains to be further investigated;~second, the non-trivial
computational complexity of the deep learning model may hinder-its deployment in real-time on
resource-constrained edge devices within power grid sysiems:

Future research will focus on:

1) expanding the acoustic fault dataset ta_include a' wider variety of fault conditions and

operational environments;

2) exploring model compression and knowledge distillation techniques to develop lighter-
weight versions of the diagnostic model for practical applications; and

3) investigating the model's capaXility 0 diagnosing multiple co-occurring faults within a
single transformer unit.

Acknowledgements
The work was supported by the National Key Research and Development of China
(No. 2022YFF0708400).

References

[1] Liao C.B, Yang J.X. Qiu Z.B., Hu X, lJiang Z.H., Li X., Fault diagnosis of oil-immersed
transformers based on missing data imputation, High Voltage Engineering, vol. 50, no. 9,
pp. 4091-4100 (2024), DOI: 10.13336/j.1003-6520.hve.20231532.

[2] Kang J.Y., Zhang S.X., Zhang Q.P., Gao B., Yan Z.H., Chen H.Z., Fault diagnosis method of
transformer based on ANOVA and BO-SVM, High Voltage Engineering, vol. 49, no. 5,
pp. 1882-1891 (2023), DOI: 10.13336/j.1003-6520.hve.20220630.

[3] Wang J.P., Xu G.L,, Yan F.J., Wang J.J., Wang Z.S., Defect transformer: An efficient hybrid
transformer architecture for surface defect detection, Measurement, vol. 211, 112614 (2023). DOI:
10.1016/j.measurement.2023.112614.

[4] NiuB., Wei Y., Zhang K., Yu Z., An abnormal audio generation meth-od for fault diagnosis of power
transformers, 2025 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Hyderabad, India, IEEE, pp. 1-5 (2025), DOI: 10.1109/ICASSP49660.2025.10887959.

17


https://doi.org/10.13336/j.1003-6520.hve.20231532
https://doi.org/10.13336/j.1003-6520.hve.20220630
https://doi.org/10.1016/j.measurement.2023.112614
https://doi.org/10.1109/ICASSP49660.2025.10887959

This paper has been accepted for publication in the AEE journal. This is the version, which has not been

[3]
[6]

[7]

(8]

[l

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

fully edited and content may change prior to final publication.
Citation information: DOI 10.24425/aee.2026. 156800

An K., Zhang Y., LPVIiT: A transformer based model for PCB image classification and defect
detection, IEEE Access, vol. 10, pp. 42542-42553 (2022), DOI: 10.1109/ACCESS.2022.3168861.
Zhou X., Yi K., Li G, Tian T., Yang X., A transformer DGA fault diagnosis approach based on
neighborhood rough set and AMPOS-ELM, Journal of Electric Power Science and Technology,
vol. 37, no. 3, pp. 157-164 (2022), DOI: 10.19781/j.issn.1673-9140.2022.03.019.

Secic A., Aizpurua J.1., Garro U., Muxika E., Kuzle I., Transformer OLTC operation monitoring
framework through acoustic signal processing and convolutional neural networks, IEEE
Transactions on Instrumentation and Measurement (2025), DOI: 10.1109/TIM.2025.3550221.
Wang F.H., Wang S.J., Chen S., Yuan G.G., Zhang J., Transformer voiceprint recognition model
based on improved MFCC and VQ, Proceedings of the CSEE, vol. 37, no. 5, pp. 1535-1543 (2017),
DOI: 10.13334/j.0258-8013.pcsee.152581.

Zhou D.X., Wang F.H., Dang X.J., Zhang X., Liu S.G., Dry Type Transformer Voiceprint
Recognition Based on Compressed Observation and Discrimination Dictionary Learning,
Proceedings of the CSEE, vol. 40, no. 19, pp. 6380-6390 (2020), DOI: 10.13334/].0258-
8013.pcsee.191577.

Zhang C.Y., Luo S.H., Yue H.T., Wang B.W., Liu Y.P., Pattern Recugnition of Acoustic Signals of
Transformer Core Based on Mel-spectrum and CNN, High Veitage Engineering, vol. 46, no. 2,
pp. 413-423 (2020), DOI: 10.13336/j.1003-6520.hve.202001310422:

Cui JJ., Ma H.Z., Voiceprint recognition model of transfoimesivCore looseness fault based on
improved MFCC and 3D-CNN, Electric Machines and Cantroirol. 26, no. 12, pp. 150-160 (2022),
DOI: 10.15938/j.emc.2022.12.015.

LiuY.P.,, Wang B.W.,, Yue H.T., Gao F., Han S., Luc¢ S.H,, Zhang C.C., Identification of Transformer
Bias Voiceprint Based on 50Hz Frequeniys, Multigtication Cepstrum Coefficients and Gated
Recurrent Unit, Proceedings of the CSEE, \o) <9y no. 14, pp. 4681-4694+4746 (2020), DOI:
10.13334/].0258-8013.pcsee.191922.

Nethala S., Chopra P., Kamaluddin K.;%Alam 5., Alharbi S., Alsaffar M., A deep learning-based
ensemble framework for robust #Android malware detection, IEEE Access (2025), DOI:
10.1109/ACCESS.2025.3551152

Saarika K., Varsha V., Harsha F3., SheikliA.N., Deep learning for automated image captioning: A
CNN and transformer, mogemnanciysis, 2025 3rd International Conference on Intelligent Data
Communication Teginclogi¢s jdnd Internet of Things (IDCloT), Bengaluru, India, IEEE,
pp. 2160—-2165 (2025,,201:)10.1109/IDCIOT64235.2025.10914740.

Zhang T., Feng G., Licag’J., An T., Acoustic scene classification based on Mel spectrogram
decomposition and model merging, Applied Acoustics, vol. 182, 108258 (2021), DOI:
10.1016/j.apacoust.2021.108258.

Zhang S., Su F., Wang Y., Mai S., Pun K.P., Tang X., A Low-Power Keyword Spotting System with
High-Order Passive Switched-Capacitor Bandpass Filters for Analog-MFCC Feature Extraction,
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 11, pp. 4235-4248 (2023),
DOI: 10.1109/TCS1.2023.3299855.

Wang Y., Wang H., Li Z,, Zhang H., Yang L., Li J., Wang Q., Sound as a bell: A deep learning
approach for health status classification through speech acoustic biomarkers, Chinese Medicine,
vol. 19, no. 1, 101 (2024), DOI: 10.1186/s13020-024-00973-3.

Joysingh S.J., Vijayalakshmi P., Nagarajan T., Significance of chirp MFCC as a feature in speech
and audio applications, Computer Speech & Language, vol. 89, 101713 (2025), DOI:
10.1016/j.cs1.2024.101713.

Yan Y., Simons S.O., van Bemmel L., Reinders L.G., Franssen F.M., Urovi V., Optimizing MFCC
parameters for the automatic detection of respiratory diseases, Applied Acoustics, vol. 228, 110299
(2025), DOI: 10.1016/j.apacoust.2024.110299.

Fahad M.S., Deepak A., Pradhan G., Yadav J., DNN-HMM-based speaker-adaptive emotion
recognition using MFCC and epoch-based features, Circuits, Systems, and Signal Processing, vol. 40,
pp. 466489 (2021), DOI: 10.1007/s00034-020-01486-8.

18


https://doi.org/10.1109/ACCESS.2022.3168861
https://doi.org/10.19781/j.issn.1673-9140.2022.03.019
https://doi.org/10.1109/TIM.2025.3550221
https://doi.org/10.13334/j.0258-8013.pcsee.152581
https://doi.org/10.13334/j.0258-8013.pcsee.191577
https://doi.org/10.13334/j.0258-8013.pcsee.191577
https://doi.org/10.13336/j.1003-6520.hve.20200131005
https://doi.org/10.15938/j.emc.2022.12.015
https://doi.org/10.13334/j.0258-8013.pcsee.191922
https://doi.org/10.1109/ACCESS.2025.3551152
https://doi.org/10.1109/IDCIOT64235.2025.10914740
https://doi.org/10.1016/j.apacoust.2021.108258
https://doi.org/10.1109/TCSI.2023.3299855
https://doi.org/10.1186/s13020-024-00973-3
https://doi.org/10.1016/j.csl.2024.101713
https://doi.org/10.1016/j.apacoust.2024.110299
https://doi.org/10.1007/s00034-020-01486-8

This paper has been accepted for publication in the AEE journal. This is the version, which has not been

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

fully edited and content may change prior to final publication.
Citation information: DOI 10.24425/aee.2026. 156800

MaH.Z., Wang J., Yang Q.F., Ni Y.M., SMA-optimized SVM transformer state identification method
based on acoustic vibration feature differentiation, Electric Machines and Control, vol. 27, no. 10,
pp. 42-53 (2023), DOI: 10.15938/j.emc.2023.10.005.

Yu D., Zhang W., Wang H., Abnormal voiceprint diagnosis method of oil-immersed transformer
based on LSTM neural network, Smart Power, vol. 51, no. 2, pp. 45-52 (2023).

Yang J., Zhao J.M., Meng R.Q., Zhang D.X., Li B.Y., Wu Y.X., Power system operation state
identification based on particle swarm optimization and convolutional neural network, Power System
Technology, vol. 48, no. 1, pp. 315-324 (2024), DOI: 10.13335/j.1000-3673.pst.2022.2257.

Feng S., Peng X.J., Chen J.N., Lu Y.W.,, Chen L., Hong X., Lei J.X., Tang Y., Forced Oscillation
Location and Propagation Prediction Based on Temporal Graph Convolutional Network,
Proceedings of the CSEE, vol. 44, no. 4, pp. 1298-1310 (2024), DOI: 10.13334/j.0258-
8013.pcsee.222657.

Messaoudi M., Kameli S.M., Refaat S.S., Abu-Rub H., Trabelsi, M., Deep learning based corona
discharge severity classification for high voltage equipment, IECON 2024 - 50th Annual Conference
of the IEEE Industrial Electronics Society, Chicago, IL, USA, IEEE, pp. 1-5 (2024), DOI:
10.1109/IECON55916.2024.10905579.

Wang Y., Huang M., Zhu X., Zhao L., Attention-based LSTM for azpeci-lgvel sentiment classification,
Proceedings of the 2016 Conference on Empirical Methodswi*Natural Language Processing
(EMNLP), pp. 606-615 (2016).

Zeng J., Ma X., Zhou K., Enhancing attention-based L&%M%witn position context for aspect-level
sentiment  classification, IEEE Access, vol.._ 7 Jpp. 20462-20471 (2019), DOI:
10.1109/ACCESS.2019.2893806.

Dosovitskiy A., Beyer L., Kolesnikov A., WiissenbGiwsD., Zhai X., Unterthiner T., Houlsby N., An
image is worth 16x16 words: Transformels /juirimage recognition at scale, arXiv preprint
arXiv:2010.11929 (2020).

Krueangsai A., Supratid S., Effects of saortcut-level amount in lightwei-ght ResNet of ResNet on
object recognition with distinct/Aqurisas, of categories, 2022 International Electrical Engineering
Congress  (IEECON), Khon, “Kaen,\ Thailand, IEEE, pp. 14 (2022), DOL:
10.1109/iEECON53204.2022. 9811665

Wang H.X., Wang B.. DoiighX.2y Yao L.Z., Zhang J.X., Ma H.R., Semantic Difference and
Performance Differeiice, Anglyms Method for Power Multimodal Data fusion, High Voltage
Engineering, vol. 50, %279, ph. 4037-4047 (2024), DOI: 10.13336/].1003-6520.hve.20230490.
Long K., Ma L., Gao Y YU G., Feature stacking fusion in multimodal neural architecture search,
2024 6th International Conference on Data-driven Optimization of Complex Systems (DOCS),
Hangzhou, China, IEEE, pp. 414-419 (2024), DOI: 10.1109/DOCS63458.2024.10704481.

19


https://doi.org/10.15938/j.emc.2023.10.005
https://doi.org/10.13335/j.1000-3673.pst.2022.2257
https://doi.org/10.13334/j.0258-8013.pcsee.222657
https://doi.org/10.13334/j.0258-8013.pcsee.222657
https://doi.org/10.1109/IECON55916.2024.10905579
https://doi.org/10.1109/ACCESS.2019.2893806
https://doi.org/10.1109/iEECON53204.2022.9741665
https://doi.org/10.13336/j.1003-6520.hve.20230490
https://doi.org/10.1109/DOCS63458.2024.10704481



