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Abstract: This research presents the modelling of non-Fourier)héat conduction using the
Single and Dual-Phase-Lag (SPL/DPL) in the frequenCy doiin. Thermal structures can
be modelled using Foster, Cauer networks or their campact/equivalents, using the analogy
with electrical networks. The key aim of such madelling is to simplify the heat transfer
processes of geometrically complex thermaatructurcs composed of layers with different
materials. In this paper, we propose the analytizal slution of the heat transfer equation for
a single-layer thermal object in the frequency domain. It is achieved by the transformation
of Kirchhoff-Fourier equations into the\multi-cell Cauer network that can be easily solved
using the node potentials methicd. “fimehas case of non-Fourier SPL and DPL models, the
thermal conductivity is no longer aveal value, but it varies with frequency. As a result, the
spatially distributed thermal nicdel can be presented as an electrical network consisting of
thermal resistances, canacitarses und inductances. It makes it possible to take into account
diffusive, wave prapagatiori,and mixed conductive heat transfer. Such modelling allows
confirming the non-iduriersheat transfer in porous-like materials and biostructures with a
better understanding oi¥fe physical nature of heat transfer, which is still discussed in the
scientific literature.

Keywords: Cauer network, DPL, non-Fourier heat transfer, thermal ladder model, ther-
moelectric analogy
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g — heat flux, (F)
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w — angular frequency, ( )

k —thermal conductivity, (ﬁ)

k — modified thermal conductivity for DPL
w

model, (—)

m-K
7q — relaxation time constant, (s)

7r — thermal gradient time constant, (s)

Y., — thermal admittance, (V—IZ)
w)

Gy, — thermal conductance, (
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Z,p, — thermal impedance, (

R, —thermal resistance, (%)
C., — thermal capacity, (&)
Cenr — thermal capacity for DPL mod-
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¢ — specific heat, (L) L¢nq — thermal inductance for DPL
kg K-s
models, (W)

. kg
—density, (=
P y (m3) Repr — thermal resistance for DPL

T — temperature, (K)

_ K
t—time, (S) model, (W)
s — Laplace operator, (rad/s) R¢nq —thermal resistance for DPL
¢, — thermal capacity per cubic meter (ﬁ) model, (%)

2 . . .
Tens — thermal resistance per area unit, (mWK) R, — characteristic resistance for ther-
S — surface, (m?) mal transmission long line, (%)
x — distance, (m) v — propagation velocity, (=
AV — volume, (m3) ~(2)p P20 I 4 (S)
hq — heat transfer coefficient at the bottom of - sKecond derivative of tempera-
the structure, (%) ture, (ﬁ)
ho — heat transfer coefficient at the surface, R(AX)/; reminder in the Taylor expan-
w i N

(=) e\
List of abbreviations:
DPL Dual-Phase Lag heat transter mizdel
SPL Single-Phase Lag heat transfer model
FDM Finite Differerige Wviathod
F-K Fourier — Kirelihov€ hea’ transfer model

1. Introduction

The Dual-Phase Lag (DPL) model is of interest to many researchers [1-13]. However, its
practical application poses challenges due to the fact that the phase lag phenomenon is primarily
observed at the very beginning of the heat process, during the thermal excitation, and appears
mostly in very thin structures [14, 15] and porous materials such as skin tissue [7, 16-23]. The
thermal response signal is usually very weak, making it difficult to obtain precise measurements.
Due to this, it is difficult to confirm that the model is consistent with real structures. There have
been attempts in the literature to confirm the existence of the Dual-Phase Lag phenomenon
through experiments [24-26], but most confirmations have been done through simulations [2,
7-10, 22] or using available experimental data [11, 21]

The Fourier-Kirchhoff model assumes that heat is transferred due to the presence of a
temperature gradient and that the heat is going through the structure without any delay. In
contrast, in the DPL model, there are two additional time constants, which result in a delay in
heat transfer through the structure. This seems to make the DPL model more physically accurate
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than the classical Fourier-Kirchhoff approach. But the physical agreement of the DPL model is
also questioned by some researchers [3, 27, 28]. The DPL model incorporates two-time
constants zq and zr, corresponding to thermal relaxation and thermal diffusion, respectively.
Solving heat transfer equations in the frequency domain leads to a novel definition of thermal
conductivity, which for the DPL model is a complex value and it varies depending on frequency
[23] - Eq. (1.2).
=T
q=-k=,

k= ot (1.1)
1+jwtg
where k is the classical thermal conductivity of a material defined by the Fourier law.

Another issue with the DPL model is that there are no convincing reference values for the
mentioned time constants in the literature. In some references, zq isllexar than zr [29], in others,
opposite [30, 31]. The ratio between these time constants deterntinas tiie nature of the heat flow,
whether it is diffusive or wave-like. From a physical perspective; it is important to consider
whether such an approach has a valid physical meaning {3, 25,°32]. In this article, we present a
comparison of two consistent models: the first is solved wadlytically in the frequency domain,
and the second is based on thermo-electrical agalogy:

The model based on Cauer ladder networks s Vridely used in various engineering fields,
particularly in microelectronics. This approach ‘zan simply model multi-layer structures, heat
sinks, and materials with complex geomatries. In the classical Cauer ladder network, the
standard approach uses thermal resisiances and thermal capacitances to represent the thermal
impedance in a system [33, 34]. Niadificatins of the Cauer network can also be found, where
inductors and/or capacitors-aretused, istead of resistors in the circuit [35-37]. Such circuits are
applied to model wirele¢z systenis’or transformers.

Most thermal models fcyng'in the literature are based on the diffusion equation [33-35]. In
the case of electronic systems, the so-called compact models are particularly useful and are
increasingly popular among researchers and engineers. These models consist of thermal
resistors and capacitances related to material properties, and current and voltage sources
imitating power and temperature. The main advantage of using compact modeling is the
available software package, such as SPICE, which can not only calculate currents and voltages,
but also temperatures and heat flows.

As an example, an electrothermal SPICE simulation was performed for the current mirror
configuration with four cascades [38]. The same approach is also used for air flow simulation
over electronic boards and components. Compact thermal models are made providing a
relationship between the temperature of the junction and the external surfaces cooled by the air
flow [33, 39-42].

Recently, non-Fourier heat transfer modeling has found applications in biomedicine, as
tissue is treated as a type of porous material in which heat not only diffuses but also propagates
as a wave. Interesting results show that in cancerous tissue, heat can partially propagate as an
acoustic wave [8-11, 43]. There is currently growing interest in porous structures for various
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thermal management applications. Porous materials are used to transport fluids and phase-
change materials, thereby increasing cooling and heat removal efficiency [44, 45].

Our work presents a comparison of analytical models for heat transfer solved in the
frequency domain and their equivalent electro-thermal analogy obtained using the Finite
Difference Method to solve heat conduction equations. For the Fourier-Kirchhoff heat transfer
model, the equivalent electrical solution is the Cauer ladder. For SPL and DPL models,
modifications involving thermal impedance or admittance are applied, incorporating different
passive elements such as capacitors and inductors, in place of resistors in the Ry branch of the
Cauer network. Both approaches, the analytical thermal model and the electrical circuit analogy,
align well to each other, confirming that in porous-like materials, heat transfer occurs not only
by diffusion but also through wave propagation. The problem of the physical behavior of the
DPL model can appear when zq is higher than zr.

2. Finite difference thermal model approximation

1D heat conduction in solids is described by the well!known Fourier-Kirchhoff's (F-K)
Formula (2.1).
2T o1
kﬁ—CPE: 0, (21)
where c is the specific heat and p i thesmaierial's density.
The Laplace transform of a derivavive is given by (2.2).

LT /dt} = sT — T+(0). 2.2)

In this research, we“tia rOt need to consider the initial value T*(0). Even though the Laplace
variable s is used. We workiin'the so-called sinusoidal regime. Hence, s can be replaced by jo
and vice versa. In the sinusoidal regime, well known from the analysis of alternating current
electrical networks, the initial condition does not affect the results of interest.

In the frequency domain, after applying the Laplace transformation for s =jw, Eq. (2.1)
takes the form.

d’r .
k@ —jwe, T =0, (2.3)

where ¢ = cp denotes the thermal capacity per cubic meter.
Assume that for a small part of the object, heat flows through 3 discrete points at a distance
of 2Ax, as shown in Fig. 1.

24x

Ti+1




This paper has been accepted for publication in the AEE journal. This is the version, which has not been
fully edited and content may change prior to final publication.
Citation information: DOI 10.24425/aee.2026.156802

Fig. 1. Discrete thermal object with 3 adjacent points

The Finite Difference Method (FDM) allows approximating the second-order derivative in
(2.3). As a result, the heat transfer equation takes the discrete form.

kT. 1_T._kT._T._1
Ax

A _ e, T, = 0. (2.4)

Ax

After introducing the thermal resistance rugs per area unit S perpendicular to the heat flux as:

A
Tths = Tx (2.5)
Equation (2.4) takes the form:
Tig1=Ti Ti-Ti_q
— bS8 — joe,, Ty = 0. (2.6)

Finally, by scaling the last formula by AV = SAx. we @1 abtain the well-known Cauer
approximation of the 1D heat flow in the following form

Tia 7Ty | Tioa ™ — j@C 17= 0, (2.7)
Ren Rth
where:
Ax
th = 15’
Cinl= cpSAx. (2.8)

Using the concept of thermgeleciric analogy, Eg. (2.7) can be presented as an electrical
network with 3 nodes, a8, shown i Fig. 2.

T Rih T Rih T

IL':}_< i :I i+1

— 6,

Fig. 2. Thermoelectric analogy circuit of Fourier-Kirchhoff's heat conduction

3. DPL extensions

The Dual-Phase-Lag (DPL) extension to heat transfer in solids introduces 2-time constants,
one for the heat flux 74 and one for the temperature gradient zr.

aq _ _, (oT 2T
q + Tao = k (ax + TT—axat)' (3.2)
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It is worth to notice that for zr = 74, the DPL model returns to the classical Fourier-Kirchhoff's
form. Using the Laplace transformation for Eq. (3.1), it is possible to redefine heat flux and
thermal conductivity in more general forms.

=~ 0T

q= _kav

= _ 4 1+jotr
- 1+jw‘rq' (32)

Using the DPL approach, thermal conductivity is a complex value and depends on
frequency. In the low-frequency range (o << 1/zr and w << 1/z3), thermal conductivity reaches
the classical value (k — k), while in the high-frequency range, thermal conductivity may be
lower or higher, depending on the ratio of delay times ((k — k Tr/T4).

3.1. Diffusive heat transfer

Let's assume that zr > 0 and zq = 0. In this case, the DPL modealiareduced to the Single Phase
Lag (SPL) form with diffusive heat transfer only. As a resilt, EG7(3.1) can be simplified and
takes the form (3.3).

a 92
¢ =k (5+ S, 3.3)
Using (3.3), Eq. (2.1) can be rewritten as:
9’1 .\ 93T T _
k(B i) = e 3 = 0. (3.4)

Finally, after the Laplace tranisiarmation, we can present the differential equation of heat
transfer as

2
k(1 + jwty) 372 —jwe, T = 0. (3.5)

Assuming that thermal conductivity is no longer a real value and depends on frequency, it is
worth introducing thermal admittance Yu. It consists of a real part - thermal conductivity G
and an imaginary part expressed by thermal capacity Ci, as in the Eq. (3.6). The value of thermal
conductance G, = 1/Rm, where Ry, is given by the Eq. (2.8).

kE=k(1+jwty),

kS . .
Yin = E(l + jwtr) = Gy + jwCipr, (3.6)
where
ks ks
Gen =1 Cenr =Tr = TG 3.7

As a result, 3-node thermal-electrical analogy networks can be represented as in Fig. 3.
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Fig. 3. Thermoelectric analogy circuit of SPL heat conduction for zq =0
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3.2. Wave propagation heat transfer
Let's assume that 74 > 0 and zr = 0. In this case, the DPL model is reduced to the SPL form
with wave propagation character of heat transfer, and Eq. (3.1) can be simplified to the form:

oT

a
q+tq5 =~k (3.8)
As aresult, Eqg. (2.1) can be rewritten as:
a°T aT 92T
kﬁ—cm (E-I-Tq;) =)0. 3.9

It is worth noting that due to the secondWe'arivaiie¢ of temperature with respect to time,
Eg. (3.9) no longer describes heat diffusion, buwave propagation.
After the Laplace transformation, the differential equation of heat conduction (3.9) takes the
form:
k Ny
1NwTtq dx?

— jwc, T = 0. (3.10)

Assuming that therréal condtstivity is no more a real value and it depends on frequency, it
is now worth introducing“the/thermal impedance Z containing thermal resistance Ry and
thermal inductance L as in Eq. (3.11).

k= 1+1qu’
Zon == (14 jwty) = Ry + j@Leng, (3.11)
where:
Leng =14 % = TgRep. (3.12)

Now, the corresponding electrical network consists of 3 components: Ru, Lig and Cu -
Fig. 4.
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Fig. 4. Thermoelectric analogy circuit of SPL heat conduction for zt= 0

3.3. Mixed diffusion-wave heat transfer
Let's consider 2 more cases, where both 7 # 0 and 7, # 0 and they are positive. The first

case refers to 7 > 7. It denotes that the diffusive heat flow dominates over the wave nature of
thermal energy transfer.
In this case thermal conductivity k takes the form:
kF=k (1 +LA’> (3.13)
1+jwtg
where: At = 71— 1q.
Equation (3.6) can be modified to the form:

Y, ="—i<1 > 1—q> (3.14)

jwAt + At

Schematically, Eq. (3.14) can ba preserited as the RinCrn network as in Fig. 5.

RthT {CthT R(hT ﬁthT
Ao JEETErt —
‘ = !
— G

Fig. 5. Thermoelectric analogy circuit of DPL heat conduction for 7 >,

The new elements Zyt and Cyr are defined as:

R _Tqgbx _ g
thT — Ar ks~ ar  th?

Conr = DT> = MGy, (3.15)

Similarly, in the case of 7, > 7, wave propagation dominates over diffusion during heat
flow in the considered material. In this case, thermal conductivity takes the form (3.16).

F=k (ﬂ) (3.16)

1+jw(tr+AT)
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where At = g— 7.
Equation (3.6) can be modified to the form (3.17).

1

Zip = i—z (1 + 1—+TT> (317)

JwAT " At

The new elements Rig and Ling are defined by (3.18).

At Ax At
Reng = 27 = 7, Rew
Leng = AT = ATRy,. (3.18)

Schematically, Eq. (3.17) can be presented as the RiLinCin network as in Fig. 6.

Fig. 6. Thermoelectiiganaiegy circuit of DPL heat conduction for zq > o7

4. Analyticai DPL. tiiermal model in the frequency domain

In order to validate the aiscrete RinLinCin ladder network thermal DPL models, we compare
the simulation results with the results obtained from an analytical model of a thermal object with
a heat source on the top surface, as shown in Fig. 7.

Yo

l “Qho

x=0

i x=d
xVv Ahd

Fig. 7. A porous-like material for modelling heat transfer with the DPL effects
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The 1D Fourier-Kirchhoff heat transfer equation for a sourceless sample in the frequency
domain can be obtained by applying the Laplace transform for s = jw, and it takes the form:

2
Lo, 4.1)

dx2 12

where L denotes the diffusion length expressed by (4.2).

Ljw) = /,-wim’ 4.2)

where k is the heat conductivity of a material with the DPL effect defined by (1.1).
The solution of (4.1) is analytical and takes the form of Eq. (4.3).

T(x, jw) = A(jw)e L0® + B(jw)elley, (4.3)

where 4(jw) and B(jw) are the integration constants.
Let us assume that the sample has a thickness d and is F@ateld by the heat flux qo at the top
surface x = 0.

~ dT(x)
—k dx

Tudo — T =0, (4.4)
x=0
where hy is the convective heat transfer coefficiept at the top surface.
At the bottom surface, the sample is.covled by convection as well.

o )
Kk dx

= he Tly=q, (4.5)

where hg is the heat transier coefficient at the bottom surface.
Using (4.4) and (4.5)it ig possible to define the set of 2 linear equations that allow
calculating the integration censtants A(jw) and B(jw).

AGw) (B2 4 by ) + B(jw) (— 292 + hy) = g,

L(jw) L(jw)
- (RGw) — (L kGe) s
AGw) (L(jw)—hd)e %o + B (jo) ( o hy) €09 = 0, (4.6)

The thermal impedance of the sample for the heat source on the upper surface (x = 0) takes
the form:

T(jw) _ A(jw)+B(jw)
Zip = P s ) (4.7

where P is the Laplace transform of the Dirac function (for s = jw) with P = gS amplitude, S is
the cross-sectional area of the sample from Fig. 7.

10
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5. Comparison of analytical and ladder-network modelling results

The analytical model allows one to determine the thermal impedance on the upper surface
of the material for x =0 as in Eq. (4.7). The numerical simulation uses an equivalent thermal
ladder electrical network, which essentially means that the Finite Difference Method is used to
solve the second-order partial differential equations of heat transfer. This, of course, leads to an
approximation of the exact solution.

In order to validate the RLinCw discrete numerical thermal models of the object with DPL
effects of heat transfer, let's consider the n-sectional 1D ladder thermal network presented in
Fig. 8. The object is heated up at the top side with power P and cooled down by convection
described by the heat transfer coefficients h, and h, on both top and bottom sides. In this
research, it was assumed that all component thermal impedancesand capacitances are equal,
Zini = Znand Cry =Cy, for 1=1, 2,...,n.

o R —

7= I

Fig. 8xThexnial ladder model of an object with DPL effects
The impedance Zi depends on the type of model: Fourier-Kirchhoff, SPL, or DPL with
excess diffusion or wave propagation in heat transfer.
Fourier — Kirchhoff: Z,, = Ry,
SPL(t, = 0):Y, = G (1 + jwty),
SPL(ty = 0): Zy, = Rep (1 + jwt,),
1

DPL(t; > 7,): Yy = Gy, (1 + 1—+_q)

jwAt At

DPL(7, > 77): Ze, = Ren (1 + ﬁ) (5.1)

jwAt At

where Ry is defined by (2.8), Gin = 1/Z and At = |or — 7.

11
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The comparison results of the modelling are presented qualitatively in the figures below and
quantitatively using the mean relative error defined by:

1 Zip())—Zp(wi)
err =—yN tn(@)—Zp(w;
NT Zen(wy)

(5.2)

where Zy and Z,, denote the impedances obtained from the analytical and ladder RyL«Cin
models, and N is the number of frequency points in the simulations.

All presented simulation results were performed for a porous-like material filled with water,
comparable to tissue. The values of the parameters presented in Table 1 are the same in
analytical and numerical models.

Table 1. Values of parameters used in modelling

Parameter Value Unit
k 15 | \;\.’,"nK
Cth 3900000 ! J/m’K
h1 =hn l’i ) W/mK
ho = hd 1 W/m2K
d \ Y 01 m
S 0.05 x 0.05 m?
Jo N 100 W/m?
Cz)minfa,; y ¢ 107-1 1/s
NL'mt;r r:wdes 1000 -

All simulation results are obtained for we(107, 1) 1/s and the number of nodes in the ladder
M =1000. Figure 9 presents the comparative results for classical Fourier-Kirchhoff's models.
As can be noticed, the discrepancy is seen in the high-frequency range. Relative mean error does
not exceed 1%. The dashed line shows the —z/4 asymptote for which the Nyquist plot converges
at high frequencies for a sample of semi-infinity or of sufficient length.

12
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Im{Z, (w)}. (K/W)
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(© (d)

Fig. 9. Results comiparison‘af/analytical (a) and RinCt ladder Fourier-Kirchhoff's model (b) -
=08, 7= 0S5, ei¢ = 0,29%. Subfigures (c) and (d) show a zoomed view of a higher range of
frequencies, respectively

Figure 10 presents the comparative results for SPL. models with purely diffusive heat transfer
(zr =108, 74 = 0s). In this case, the relative mean error is lower compared to the F-K models

and is equal to 0.65%.
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Fig. 10. Results compytison’of analytical (a) and RinCtn ladder SPL model (b) - 7t= 105,74 =0,
err = 0.65%. Subfigdres (c) and (d) show a zoomed view of a higher range of frequencies,
respectively

Figure 11 presents the comparative results for DPL models with excess diffusive heat
transfer (zr = 10's, 7g = 2 5). In this case, the relative mean error is lower compared to the F-K

model and is equal to 0.7%.
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Fig. 11. Results compa:ison ¢f analytical (a) and RinCt ladder DPL diffusive propagation model (b)
-1r=105S, 7 = 2's, grf = 0.7%. Subfigures (c) and (d) show a zoomed view of a higher range
of frequencies, respectively

Interesting results can be obtained for the SPL model with purely wave propagation heat
transfer (zr = 0's, 7q = 10 s) in the frequency range we(107, 1) 1/s. The simulation results show
the discrepancy in the high-frequency range, as shown in Fig. 12. The analytical model displays
the asymptotic approach of Zy curve to the point of pure resistive character. The Zn
characteristic of the ladder numerical model shows convergence at Zs — 0. Moreover, in this
case, a non-monotonic convergence can be observed with a kink in the curve near the resonant
frequency, which depends on the model parameters, €.9.: 7q, Ling and Cin. As a result, the relative
mean error increases to 1.8%.
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Fig. 12. Results comparison ©f calytical (a) and RinC ladder DPL wave model (b) -7t =0's,
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The results of Fig. 12 need further clarification. The analytical solution converges to a
constant and pure resistive value. Also, the results obtained with the ladder network show
something similar. At first, the impedance also seems to converge to a constant resistive value,
but finally it tends to zero. These results are well known in the domain of electromagnetic
radiation and transmission line theories. At high frequencies (Fig. 12), the impedance of the
inductor |wLg| is so high that the series resistance Ry, turns out to be negligible. What remains
is a classical LC transmission line. In many textbooks, it has been proved that an infinitely long
transmission line behaves like a resistor Ry and its value is given by:

Lthq
Ry= =7,
0 Cth
where

Ax
Lthq - Tthh - Tq E
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and
Cth = CthSAx. (55)

By inserting the numerical values listed in Table 1, we get R, = 0.5225%, which agrees
perfectly with the plot shown in Fig. 12.

For the sake of completeness, one can also get the propagation velocity v of the thermal
wave:

Ax 1 k
UZWZE TthhZ 0.0312 mm/s. (56)

Note that to obtain v, we have to use the inductance and the capacitance per unit length. The
speed value is very low due to the value 7y = 10s. For values of z4 in the picosecond range,
propagation speeds approaching the speed of sound can be obtained.

The final simulation was performed for DPL models witli mixad wave propagation and
diffusive heat transfer for ot = 2's, 7= 10 s. The results show the-greatest discrepancy in the
high frequency range with the relative mean error reazitiing=s6 much as 5.92% as shown in
Fig. 13.
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Fig. 13. Results comparison of analytical (a) and RinCw ladder DPL diffusive model (b) - 7t =25,
7q=10s, err = 5.92%. Subfigures (c) and (d) show a zoomed view of a higher range of
frequencies, respectively

In order to improve the simulation accuracy in the high-frequency range, it is recommended
to decrease the distance step Ax in numerical modelling. Unfortunately, this significantly
increases the number of nodes and simulation time. This problem is discussed in the next
section.

6. Discussion

In order to select the optimum number of sections in the RiLinCin ladder network, it's worth
noting that the electrical analogy of heat conduction is based ch.the FDM and the Taylor
expansion of temperature. For solving the 1D heat transfer equétien, e second derivative with
respect to x is approximated by:

2 - . . ) 9
T _ 1@ (x) ~ T 2T Tl 52) (), (6.1)

ax2 Ax?2

where T @(x) and T@® (x) denote the second-uiear derivative of temperature with respect to x
and its FDM approximation, respectively.

Using the Taylor theorem for T(x + AX) and 7 (X — AX), it is possible to represent the second
derivative of temperature as:

T, =TD(x) + R(Ax), (6.2)
where the reminder R(AX) takes the form:

209 (4)
=

© @i) ,
2 _ 2T6—'(X)Ax4 = Yo 20D £ 2o, (6.3)

R(Ax) =- i=2 20!

Ax

The reminder R is not only a function of x but also of @ and must be taken as a small enough
value to provide an acceptable approximation. It allows one to estimate the distance step Ax of
the FDM approximation, which is strongly correlated with the maximum angular frequency of
the analysis in the frequency domain.

|IR(h, w)| < €. (6.4)

If we limit this approximation analysis to the first element of the series (6.3) and take the
analytical solution of the heat transfer model (4.3) to obtain the fourth-order derivative of
temperature, the approximation error R(h,w) can be expressed as:

2 |A(1'w)+B(1'w)

2
) ) |Ax < €. (6.5)

Assuming a given approximation error ¢ and using (4.2), the distance step Ax with respect
to w can be estimated as:
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k(jw) k(jw)
Ax = V12 =12 . .
x € jocipyA(Jw)+B(jw) € Jocepy T ®)lx=0 (6.6)

The results of the accuracy analysis for 2 given frequencies are presented in Table 2. They
confirm the strong dependence between the distance step Ax and the maximum angular
frequency used for modelling.

Table 2. Distance step 4x for maximum angular frequencies wmax =1 and 0.1 1/s, € = 10 K/m?

Model Wmax, 1/S Distance step AX, m

1 6.487 x 10°®
Fourier-Kirchhoff

0.1 3.659 x 1077

1 1.159 x 107¢
SPL,zr=10s

0.1 5629 <1077

1 4241 x 107
DPL, rr=10S,7q=25 S—4

0.1 5.496 x 107

1 3.644 x 107
SPL,7q=10s —

0.- 2.378 x 107

1% 9.934 x 10°°
DPL,7q=10s,71=25 I

| 0.1 2.436 x 107

It is worth emphasizing that"tse Gistance step Ax decreases with the square root of the error
Ve. At the same time, this siep iaereases with the maximum frequency of thermal analysis. To
ensure high modeling acciyracy, the ¢ error must be kept at a sufficiently low level, which
significantly increases the number of nodes in the RinLiCi ladder and consequently increases
the analysis time.

The thermal modelling results presented in this paper refer to the frequency domain. Such
an approach significantly reduces the calculations and, in some cases, makes them analytical, in
particular in the case of one-dimensional Kirchhoff-Fourier and DPL modelling of single- and
multilayer thermal structures. Consequently, it allows for deeper insight into the thermal
phenomena under consideration and a more reliable interpretation of the obtained results. In
bioengineering, when distinguishing between pathological and physiological cases, it is easier
to make such a diagnosis because some anomalous temperature changes may be more
pronounced in the frequency domain. The integral Fourier or Laplace transforms used in this
analysis significantly reduce the ubiquitous noise in the measurements, especially in the case of
weak temperature changes detected by non-contact measurement systems. Currently, sub-noise
temperature measurements are possible using high-speed thermal imaging cameras [46]. In
electronics and electrical engineering, analysis of temperature frequency spectra allows for the
explanation of thermal phenomena occurring at different frequencies, which can sometimes be
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unexpected. For example, high-frequency temperature components become independent of
ambient cooling conditions, unlike mean temperature and slow temperature changes. Asa result,
frequency analysis can be used to precisely characterize the electrical state of the measurement
system [47]. Moreover, temperature frequency analysis directly corresponds to the commonly
used thermal characterization of power electronics using thermal time constant spectra [48, 49].
It is worth noting that frequency analysis does not eliminate the possibility of presenting
temperature evolution in the time domain, and in some cases, it even makes it easier. There are
many numerical methods for converting frequency spectra into time-dependent signals. These
include the inverse Fourier and Laplace transforms, the Vector Fitting method, Continuous-time
System Identification (CONTSID) [50, 51], the Computer-Aided Program for Time-series
Analysis and Identification of Noisy Systems (CAPTAIN) [52], and Transfer Function
Estimation (TFEST) [53-55].

7. Conclusions

Due to the progress and wide application of nanotechiaology, smart and composite materials,
and multi-phase thin-film structures, non-Fourier hect transfer modelling is becoming more and
more attractive and necessary for use. Such modg'ting has already been implemented in many
simulation tools, used mainly for research ai{d prototyping. In many cases, this requires
powerful computer tools equipped with“additional units that increase speed and available
memory, and finally, the FEM simutatior=anvironment must be installed. In many cases, such
simulations, especially for 3-dimegsiorig, tak2 hours.

For engineering applicatior, ithis more helpful to use simulation tools that are not as
advanced but provide satisfactofv/results in a short time, almost immediately. This gives the
possibility of performing viaratiye analysis by frequently adjusting key parameters, e.g. to match
simulation and measurement results during prototyping. For these applications the compact and
the ladder simplified thermal modelling has been developed. It is worth underlining that the
ladder models presented in this research can be easily extended to multilayer structures. In
addition, comparing to the compact modelling, the ladders can model 2D and 3D geometrically
complex thermal structures, and definitely they do not need high computer power.

The modelling presented above is based on the concept of temperature and heat flux delays.
There has been a scientific discussion on the thermodynamic consistency of this approach,
especially for the wave propagation mode of heat transfer in very thin materials excited by very
short energy pulses. Among others, for these applications, a compact and simplified ladder
thermal modelling has been developed. It is worth emphasizing that the ladder models presented
in this study can be easily extended to multilayer structures. Moreover, similarly to compact
modelling, ladders can model 2D and 3D geometrically complex thermal structures and
definitely do not need high computational power. It seems that the thermal ladder approximation
in single and double-phase delay modelling could contribute to the validation of non-Fourier
heat transfer and help in the interpretation of the obtained results, as well as simplify
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calculations. Such modelling can be useful in a variety of applications, including thermal and
electrical engineering.
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