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Abstract: This research presents the modelling of non-Fourier heat conduction using the 
Single and Dual-Phase-Lag (SPL/DPL) in the frequency domain. Thermal structures can 
be modelled using Foster, Cauer networks or their compact equivalents, using the analogy 
with electrical networks. The key aim of such modelling is to simplify the heat transfer 
processes of geometrically complex thermal structures composed of layers with different 
materials. In this paper, we propose the analytical solution of the heat transfer equation for 

a single-layer thermal object in the frequency domain. It is achieved by the transformation 
of Kirchhoff-Fourier equations into the multi-cell Cauer network that can be easily solved 
using the node potentials method. In the case of non-Fourier SPL and DPL models, the 
thermal conductivity is no longer a real value, but it varies with frequency. As a result, the 
spatially distributed thermal model can be presented as an electrical network consisting of 
thermal resistances, capacitances and inductances. It makes it possible to take into account 
diffusive, wave propagation and mixed conductive heat transfer. Such modelling allows 
confirming the non-Fourier heat transfer in porous-like materials and biostructures with a 

better understanding of the physical nature of heat transfer, which is still discussed in the 
scientific literature. 

Keywords: Cauer network, DPL, non-Fourier heat transfer, thermal ladder model, ther-
moelectric analogy 

 

 

Nomenclature 

q – heat flux, (
W/

m2) 

ω – angular frequency, (
rad

s
) 

k – thermal conductivity, (
W

m∙K
) 

𝑘̃ – modified thermal conductivity for DPL 

model, (
W

m∙K
) 

τq – relaxation time constant, (s) 

τT – thermal gradient time constant, (s) 

𝑌𝑡ℎ – thermal admittance, (
W

K
) 

𝑍𝑡ℎ – thermal impedance, (
K

W
) 

𝐺𝑡ℎ – thermal conductance, (
W

K
) 

𝑅𝑡ℎ – thermal resistance, (
K

W
) 

𝐶𝑡ℎ – thermal capacity, (
J

K
),  

𝐶𝑡ℎ𝑇 – thermal capacity for DPL mod-

els, (
J

K
) 
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c – specific heat, (
J

kg∙K
)  

ρ – density, (
kg

m3) 

T – temperature, (K) 

t – time, (s) 

s – Laplace operator, (rad/s) 

𝑐𝑡ℎ – thermal capacity per cubic meter (
J

m3K
) 

𝑟𝑡ℎ𝑆 – thermal resistance per area unit, (
m2K

W
) 

S – surface, (m2) 

x – distance, (m) 

ΔV – volume, (m3) 

hd – heat transfer coefficient at the bottom of 

the structure, (
W

m2K
) 

h0 – heat transfer coefficient at the surface, 

(
W

m2K
) 

 

𝐿𝑡ℎ𝑞 – thermal inductance for DPL 

models, (
K∙s

W
) 

𝑅𝑡ℎ𝑇 – thermal resistance for DPL 

model, (
K

W
) 

𝑅𝑡ℎ𝑞 – thermal resistance for DPL 

model, (
K

W
) 

𝑅0 – characteristic resistance for ther-

mal transmission long line, (
K

W
) 

v – propagation velocity, (
m

s
) 

𝑇̃(2) – second derivative of tempera-

ture, (
K

m2) 

R(Δx) – reminder in the Taylor expan-

sion, (
K

m2) 

 

List of abbreviations: 

DPL Dual-Phase Lag heat transfer model 

SPL Single-Phase Lag heat transfer model 

FDM Finite Difference Method 

F-K Fourier – Kirchhoff heat transfer model 

 

 

 

1. Introduction 

 

The Dual-Phase Lag (DPL) model is of interest to many researchers [1–13]. However, its 

practical application poses challenges due to the fact that the phase lag phenomenon is primarily 

observed at the very beginning of the heat process, during the thermal excitation, and appears 

mostly in very thin structures [14, 15] and porous materials such as skin tissue [7, 16–23]. The 

thermal response signal is usually very weak, making it difficult to obtain precise measurements. 

Due to this, it is difficult to confirm that the model is consistent with real structures. There have 

been attempts in the literature to confirm the existence of the Dual-Phase Lag phenomenon 

through experiments [24–26], but most confirmations have been done through simulations [2, 

7–10, 22] or using available experimental data [11, 21] 

The Fourier-Kirchhoff model assumes that heat is transferred due to the presence of a 

temperature gradient and that the heat is going through the structure without any delay. In 

contrast, in the DPL model, there are two additional time constants, which result in a delay in 

heat transfer through the structure. This seems to make the DPL model more physically accurate 
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than the classical Fourier-Kirchhoff approach. But the physical agreement of the DPL  model is 

also questioned by some researchers [3, 27, 28]. The DPL model incorporates two-time 

constants τq and τT, corresponding to thermal relaxation and thermal diffusion, respectively. 

Solving heat transfer equations in the frequency domain leads to a novel definition of thermal 

conductivity, which for the DPL model is a complex value and it varies depending on frequency 

[23] - Eq. (1.1). 

 𝑞 = −𝑘̃
𝜕𝑇

𝜕𝑥
,  

 𝑘̃ = 𝑘
1+𝑗𝜔𝜏𝑇

1+𝑗𝜔𝜏𝑞
, (1.1) 

where k is the classical thermal conductivity of a material defined by the Fourier law. 

Another issue with the DPL model is that there are no convincing reference values for the 

mentioned time constants in the literature. In some references, τq is lower than τT [29], in others, 

opposite [30, 31]. The ratio between these time constants determines the nature of the heat flow, 

whether it is diffusive or wave-like. From a physical perspective, it is important to consider 

whether such an approach has a valid physical meaning [3, 28, 32]. In this article, we present a 

comparison of two consistent models: the first is solved analytically in the frequency domain, 

and the second is based on thermo-electrical analogy.  

The model based on Cauer ladder networks is widely used in various engineering fields, 

particularly in microelectronics. This approach can simply model multi-layer structures, heat 

sinks, and materials with complex geometries. In the classical Cauer ladder network, the 

standard approach uses thermal resistances and thermal capacitances to represent the thermal 

impedance in a system [33, 34]. Modifications of the Cauer network can also be found, where 

inductors and/or capacitors are used instead of resistors in the circuit [35–37]. Such circuits are 

applied to model wireless systems or transformers. 

Most thermal models found in the literature are based on the diffusion equation [33–35]. In 

the case of electronic systems, the so-called compact models are particularly useful and are 

increasingly popular among researchers and engineers. These models consist of thermal 

resistors and capacitances related to material properties, and current and voltage sources 

imitating power and temperature. The main advantage of using compact modeling is the 

available software package, such as SPICE, which can not only calculate currents and voltages, 

but also temperatures and heat flows.  

As an example, an electrothermal SPICE simulation was performed for the current mirror 

configuration with four cascades [38]. The same approach is also used for air flow simulation 

over electronic boards and components. Compact thermal models are made providing a 

relationship between the temperature of the junction and the external surfaces cooled by the air 

flow [33, 39–42].  

Recently, non-Fourier heat transfer modeling has found applications in biomedicine, as 

tissue is treated as a type of porous material in which heat not only diffuses but also propagates 

as a wave. Interesting results show that in cancerous tissue, heat can partially propagate as an 

acoustic wave [8–11, 43]. There is currently growing interest in porous structures for various 
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thermal management applications. Porous materials are used to transport fluids and phase-

change materials, thereby increasing cooling and heat removal efficiency [44, 45]. 

Our work presents a comparison of analytical models for heat transfer solved in the 

frequency domain and their equivalent electro-thermal analogy obtained using the Finite 

Difference Method to solve heat conduction equations. For the Fourier-Kirchhoff heat transfer 

model, the equivalent electrical solution is the Cauer ladder. For SPL and DPL models, 

modifications involving thermal impedance or admittance are applied, incorporating different 

passive elements such as capacitors and inductors, in place of resistors in the Rth branch of the 

Cauer network. Both approaches, the analytical thermal model and the electrical circuit analogy, 

align well to each other, confirming that in porous-like materials, heat transfer occurs not only 

by diffusion but also through wave propagation. The problem of the physical behavior of the 

DPL model can appear when τq is higher than τT. 

 

 

2. Finite difference thermal model approximation 

 

1D heat conduction in solids is described by the well-known Fourier-Kirchhoff's (F-K) 

Formula (2.1).  

 𝑘
𝜕2𝑇

𝜕𝑥2 − 𝑐𝜌
𝜕𝑇

𝜕𝑡
= 0, (2.1) 

where c is the specific heat and ρ is the material's density.  

The Laplace transform of a derivative is given by (2.2). 

 ℒ{d𝑇/d𝑡} = 𝑠𝑇 − 𝑇+(0). (2.2) 

In this research, we do not need to consider the initial value T+(0). Even though the Laplace 

variable s is used. We work in the so-called sinusoidal regime. Hence, s can be replaced by jω 

and vice versa. In the sinusoidal regime, well known from the analysis of alternating current 

electrical networks, the initial condition does not affect the results of interest. 

In the frequency domain, after applying the Laplace transformation for s = jω, Eq. (2.1) 

takes the form. 

 𝑘
d2𝑇

d𝑥2 − 𝑗𝜔𝑐𝑡ℎ𝑇 = 0, (2.3) 

where cth = cρ denotes the thermal capacity per cubic meter. 

Assume that for a small part of the object, heat flows through 3 discrete points at a distance 

of 2Δx, as shown in Fig. 1. 
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Fig. 1. Discrete thermal object with 3 adjacent points 

 

The Finite Difference Method (FDM) allows approximating the second-order derivative in 

(2.3). As a result, the heat transfer equation takes the discrete form. 

 
𝑘

𝑇𝑖+1−𝑇𝑖
Δ𝑥

−𝑘
𝑇𝑖−𝑇𝑖−1

Δ𝑥

Δ𝑥
− 𝑗𝜔𝑐𝑡ℎ𝑇i = 0. (2.4) 

After introducing the thermal resistance rthS per area unit S perpendicular to the heat flux as: 

 𝑟𝑡ℎ𝑆 =
Δ𝑥

𝑘
. (2.5) 

Equation (2.4) takes the form: 

 

𝑇𝑖+1−𝑇𝑖
𝑟𝑡ℎ𝑆

−
𝑇𝑖−𝑇𝑖−1

𝑟𝑡ℎ𝑆

Δ𝑥
− 𝑗𝜔𝑐𝑡ℎ𝑇i = 0. (2.6) 

Finally, by scaling the last formula by ΔV = SΔx. we can obtain the well-known Cauer 

approximation of the 1D heat flow in the following form. 

 
𝑇𝑖+1−𝑇𝑖

𝑅𝑡ℎ
+

𝑇𝑖−1−𝑇𝑖

𝑅𝑡ℎ
− 𝑗𝜔𝐶𝑡ℎ𝑇𝑖 = 0, (2.7) 

where: 

 𝑅𝑡ℎ =
Δ𝑥

𝑘𝑆
,  

 𝐶𝑡ℎ = 𝑐𝜌𝑆Δ𝑥. (2.8) 

Using the concept of thermoelectric analogy, Eq. (2.7) can be presented as an electrical 

network with 3 nodes, as shown in Fig. 2. 

 

 

Fig. 2. Thermoelectric analogy circuit of Fourier-Kirchhoff's heat conduction 

 

 

3. DPL extensions 

 

The Dual-Phase-Lag (DPL) extension to heat transfer in solids introduces 2-time constants, 

one for the heat flux τq and one for the temperature gradient τT. 

 𝑞 +  𝜏𝑞
𝜕𝑞

𝜕𝑡
= −𝑘 (

𝜕𝑇

𝜕𝑥
 + 𝜏𝑇

𝜕2 𝑇

𝜕𝑥 𝜕𝑡
). (3.1) 
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It is worth to notice that for τT = τq, the DPL model returns to the classical Fourier-Kirchhoff's 

form. Using the Laplace transformation for Eq. (3.1), it is possible to redefine heat flux and 

thermal conductivity in more general forms.  

 𝑞 = −𝑘̃
𝜕𝑇

𝜕𝑥
,  

 𝑘̃ = 𝑘
1+𝑗𝜔𝜏𝑇

1+𝑗𝜔𝜏𝑞
. (3.2) 

Using the DPL approach, thermal conductivity is a complex value and depends on 

frequency. In the low-frequency range (ω << 1/τT and ω << 1/τq), thermal conductivity reaches 

the classical value (𝑘̃ → 𝑘), while in the high-frequency range, thermal conductivity may be 

lower or higher, depending on the ratio of delay times ((𝑘̃ → 𝑘 𝜏𝑇 𝜏𝑞⁄ ). 

 

3.1.  Diffusive heat transfer 

Let's assume that τT > 0 and τq = 0. In this case, the DPL model is reduced to the Single Phase 

Lag (SPL) form with diffusive heat transfer only. As a result, Eq. (3.1) can be simplified and 

takes the form (3.3).  

 𝑞 = −𝑘 (
∂𝑇

∂𝑥
 +  𝜏𝑇

∂2 𝑇

∂𝑥 ∂𝑡
). (3.3) 

Using (3.3), Eq. (2.1) can be rewritten as: 

 𝑘 (
∂2𝑇

∂𝑥2 + 𝜏𝑇
𝜕3𝑇

𝜕𝑥2𝜕𝑡
) − 𝑐𝑡ℎ

∂𝑇

∂𝑡
= 0. (3.4) 

Finally, after the Laplace transformation, we can present the differential equation of heat 

transfer as  

 𝑘(1 + 𝑗𝜔𝜏𝑇)
d2𝑇

d𝑥2 − 𝑗𝜔𝑐𝑡ℎ𝑇 = 0. (3.5) 

Assuming that thermal conductivity is no longer a real value and depends on frequency, it is 

worth introducing thermal admittance Yth. It consists of a real part - thermal conductivity Gth 

and an imaginary part expressed by thermal capacity Cth as in the Eq. (3.6). The value of thermal 

conductance Gth = 1/Rth, where Rth is given by the Eq. (2.8). 

 𝑘̃ = 𝑘(1 + 𝑗𝜔𝜏𝑇),  

 𝑌𝑡ℎ =
𝑘𝑆

Δ𝑥
(1 + 𝑗𝜔𝜏𝑇) = 𝐺𝑡ℎ + 𝑗𝜔𝐶𝑡ℎ𝑇, (3.6) 

where 

 𝐺𝑡ℎ =
𝑘𝑆

Δ𝑥
,      𝐶𝑡ℎ𝑇 = 𝜏𝑇

𝑘𝑆

Δ𝑥
= 𝜏𝑇𝐺𝑡ℎ. (3.7) 

As a result, 3-node thermal-electrical analogy networks can be represented as in Fig. 3. 
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Fig. 3. Thermoelectric analogy circuit of SPL heat conduction for τq = 0 

 

3.2. Wave propagation heat transfer 

Let's assume that τq > 0 and τT = 0. In this case, the DPL model is reduced to the SPL form 

with wave propagation character of heat transfer, and Eq. (3.1) can be simplified to the form: 

 𝑞 + 𝜏𝑞
∂𝑞

∂𝑡
= −𝑘

∂𝑇

∂𝑥
. (3.8) 

As a result, Eq. (2.1) can be rewritten as: 

 𝑘
∂2𝑇

∂𝑥2 − 𝑐𝑡ℎ (
∂𝑇

∂𝑡
+ 𝜏𝑞

∂2𝑇

∂𝑡2) = 0. (3.9) 

It is worth noting that due to the second derivative of temperature with respect to time, 

Eq. (3.9) no longer describes heat diffusion, but wave propagation. 

After the Laplace transformation, the differential equation of heat conduction (3.9) takes the 

form: 

 
𝑘

1+𝑗𝜔𝜏𝑞

d2𝑇

d𝑥2 − 𝑗𝜔𝑐𝑡ℎ𝑇 = 0. (3.10) 

Assuming that thermal conductivity is no more a real value and it depends on frequency, it 

is now worth introducing the thermal impedance Zth containing thermal resistance Rth and 

thermal inductance Lthq as in Eq. (3.11). 

 𝑘̃ =
𝑘

1+𝑗𝜔𝜏𝑞
,  

 𝑍𝑡ℎ =
Δ𝑥

𝑘𝑆
(1 + 𝑗𝜔τ𝑞) = 𝑅𝑡ℎ + 𝑗𝜔𝐿𝑡ℎ𝑞, (3.11) 

where: 

 𝐿𝑡ℎ𝑞 = 𝜏𝑞
Δ𝑥

𝑘𝑆
= 𝜏𝑞𝑅𝑡ℎ.  (3.12) 

Now, the corresponding electrical network consists of 3 components: Rth, Lthq and Cth - 

Fig. 4. 
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Fig. 4. Thermoelectric analogy circuit of SPL heat conduction for τT = 0 

 

3.3.  Mixed diffusion-wave heat transfer 

Let's consider 2 more cases, where both 𝜏𝑇 ≠ 0 and 𝜏𝑞 ≠ 0 and they are positive. The first 

case refers to 𝜏𝑇 > 𝜏𝑞 . It denotes that the diffusive heat flow dominates over the wave nature of 

thermal energy transfer. 

In this case thermal conductivity 𝑘̃ takes the form: 

 𝑘̃ = 𝑘 (1 +
 𝑗𝜔Δ𝜏

1+𝑗ω𝜏𝑞
), (3.13) 

where: Δτ = τT – τq. 

Equation (3.6) can be modified to the form: 

 𝑌𝑡ℎ  =
𝑘𝑆

Δ𝑥
(1 +  

1
1

𝑗𝜔Δτ
 + 

𝜏𝑞

Δ𝜏

). (3.14) 

Schematically, Eq. (3.14) can be presented as the RthCth network as in Fig. 5. 

 

 

Fig. 5. Thermoelectric analogy circuit of DPL heat conduction for 𝜏𝑇 > 𝜏𝑞 

 

The new elements ZthT and CthT are defined as: 

 𝑅𝑡ℎ𝑇 =
𝜏𝑞

Δ𝜏

Δ𝑥

𝑘𝑆
=

𝜏𝑞

Δ𝜏
𝑅𝑡ℎ,  

 𝐶𝑡ℎ𝑇 = Δ𝜏
𝑘𝑆

Δ𝑥
= Δ𝜏𝐺𝑡ℎ. (3.15) 

Similarly, in the case of 𝜏𝑞 > 𝜏𝑇   wave propagation dominates over diffusion during heat 

flow in the considered material. In this case, thermal conductivity takes the form (3.16). 

 𝑘̃ = 𝑘 (
1+𝑗𝜔𝜏𝑇

1+𝑗𝜔(𝜏𝑇+Δ𝜏)
), (3.16) 
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where Δτ = τq – τT. 

Equation (3.6) can be modified to the form (3.17). 

 𝑍𝑡ℎ  =
Δ𝑥

𝑘𝑆
 (1 +

1
1

𝑗𝜔Δ𝜏
+

𝜏𝑇
Δ𝜏

). (3.17) 

The new elements Rthq and Lthq are defined by (3.18). 

 𝑅𝑡ℎ𝑞 =
Δ𝜏

𝜏𝑞

Δ𝑥

𝑘𝑆
=

Δ𝜏

𝜏𝑞
𝑅𝑡ℎ,  

 𝐿𝑡ℎ𝑞 = Δ𝜏
Δ𝑥

𝑘𝑆
= Δ𝜏𝑅𝑡ℎ. (3.18) 

Schematically, Eq. (3.17) can be presented as the RthLthCth network as in Fig. 6. 

 

 

Fig. 6. Thermoelectric analogy circuit of DPL heat conduction for τq > τT 

 

 

4.  Analytical DPL thermal model in the frequency domain 

 

In order to validate the discrete RthLthCth ladder network thermal DPL models, we compare 

the simulation results with the results obtained from an analytical model of a thermal object with 

a heat source on the top surface, as shown in Fig. 7. 

 

 

Fig. 7. A porous-like material for modelling heat transfer with the DPL effects 
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The 1D Fourier-Kirchhoff heat transfer equation for a sourceless sample in the frequency 

domain can be obtained by applying the Laplace transform for s = jω, and it takes the form: 

 
d2𝑇

d𝑥2 −
𝑇

𝐿2 = 0, (4.1) 

where L denotes the diffusion length expressed by (4.2). 

 𝐿(𝑗𝜔) = √
𝑘̃

𝑗𝜔𝑐𝑡ℎ
, (4.2) 

where 𝑘̃ is the heat conductivity of a material with the DPL effect defined by (1.1). 

The solution of (4.1) is analytical and takes the form of Eq. (4.3). 

 𝑇(𝑥, 𝑗𝜔) = 𝐴(𝑗𝜔)𝑒
−

𝑥

𝐿(𝑗𝜔) + 𝐵(𝑗𝜔)𝑒
𝑥

𝐿(𝑗𝜔), (4.3) 

where A(jω) and B(jω) are the integration constants. 

Let us assume that the sample has a thickness d and is heated by the heat flux q0 at the top 

surface x = 0.  

 −𝑘̃
d𝑇(𝑥)

d𝑥
|

𝑥=0
=  𝑞0 − ℎ0𝑇|𝑥=0, (4.4) 

where h0 is the convective heat transfer coefficient at the top surface. 

At the bottom surface, the sample is cooled by convection as well. 

 −𝑘̃
d𝑇(𝑥)

d𝑥
|

𝑥=𝑑
= ℎ𝑑 ⋅ 𝑇|𝑥=𝑑, (4.5) 

where hd is the heat transfer coefficient at the bottom surface. 

Using (4.4) and (4.5), it is possible to define the set of 2 linear equations that allow 

calculating the integration constants A(jω) and B(jω). 

 𝐴(𝑗𝜔) (
𝑘̃(𝑗𝜔)

𝐿(𝑗𝜔)
+ ℎ0) + 𝐵(𝑗𝜔) (−

𝑘̃(𝑗𝜔)

𝐿(𝑗𝜔)
+ ℎ0) = 𝑞0,  

 𝐴(𝑗𝜔) (
𝑘̃(𝑗𝜔)

𝐿(𝑗𝜔)
− ℎ𝑑) 𝑒

−
𝑑

𝐿(𝑗𝜔) + 𝐵(𝑗𝜔) (−
𝑘̃(𝑗𝜔)

𝐿(𝑗𝜔)
− ℎ𝑑) 𝑒

𝑑

𝐿(𝑗𝜔) = 0. (4.6) 

The thermal impedance of the sample for the heat source on the upper surface (x = 0) takes 

the form: 

 𝑍𝑡ℎ =
𝑇(𝑗𝜔)

𝑃
=

𝐴(𝑗𝜔)+𝐵(𝑗𝜔)

𝑞𝑆
, (4.7) 

where P is the Laplace transform of the Dirac function (for s = jω) with P = qS amplitude, S is 

the cross-sectional area of the sample from Fig. 7. 
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5. Comparison of analytical and ladder-network modelling results 

 

The analytical model allows one to determine the thermal impedance on the upper surface 

of the material for x = 0 as in Eq. (4.7). The numerical simulation uses an equivalent thermal 

ladder electrical network, which essentially means that the Finite Difference Method is used to 

solve the second-order partial differential equations of heat transfer. This, of course, leads to an 

approximation of the exact solution.  

In order to validate the RthLthCth discrete numerical thermal models of the object with DPL 

effects of heat transfer, let's consider the n-sectional 1D ladder thermal network presented in 

Fig. 8. The object is heated up at the top side with power P and cooled down by convection 

described by the heat transfer coefficients h1 and hn on both top and bottom sides. In this 

research, it was assumed that all component thermal impedances and capacitances are equal, 

Zthi = Zth and Cthi = Cth, for I = 1, 2,…, n. 

 

 

Fig. 8. Thermal ladder model of an object with DPL effects 

 

The impedance Zth depends on the type of model: Fourier-Kirchhoff, SPL, or DPL with 

excess diffusion or wave propagation in heat transfer. 

 Fourier − Kirchhoff: 𝑍𝑡ℎ  =  𝑅𝑡ℎ,  

 SPL(𝜏𝑞 = 0): 𝑌𝑡ℎ = 𝐺𝑡ℎ(1 + 𝑗𝜔𝜏𝑇),  

 SPL(𝜏𝑇 = 0): 𝑍𝑡ℎ = 𝑅𝑡ℎ(1 + 𝑗𝜔𝜏𝑞),  

 DPL(𝜏𝑇 > 𝜏𝑞): 𝑌𝑡ℎ = 𝐺𝑡ℎ (1 +
1

1

𝑗𝜔Δ𝜏
+

𝜏𝑞

Δ𝜏

),  

 DPL(𝜏𝑞 > 𝜏𝑇): 𝑍𝑡ℎ = 𝑅𝑡ℎ (1 +
1

1

𝑗𝜔Δ𝜏
+

𝜏𝑇
Δ𝜏

), (5.1) 

where Rth is defined by (2.8), Gth = 1/Zth and Δτ = |τT – τq|. 
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The comparison results of the modelling are presented qualitatively in the figures below and 

quantitatively using the mean relative error defined by: 

 err =
1

𝑁
∑ |

𝑍𝑡ℎ(𝜔𝑖)−𝑍𝑡ℎ(𝜔𝑖)

𝑍𝑡ℎ(𝜔𝑖)
|𝑁

𝑖=1 , (5.2) 

where Zth and 𝑍𝑡ℎ denote the impedances obtained from the analytical and ladder RthLthCth 

models, and N is the number of frequency points in the simulations.  

All presented simulation results were performed for a porous-like material filled with water, 

comparable to tissue. The values of the parameters presented in Table 1 are the same in 

analytical and numerical models. 

 
Table 1.  Values of parameters used in modelling 

Parameter Value Unit 

k 1.5 W/mK 

cth 3 900 000 J/m³K 

h1 = hn 10 W/m²K 

h0 = hd 10 W/m²K 

d 0.1 m 

S 0.05 × 0.05 m² 

q0 100 W/m² 

ωmin–ωmax 10⁻⁷ – 1 1/s 

Number of nodes 1 000 – 

 

All simulation results are obtained for ωϵ(10-7, 1) 1/s and the number of nodes in the ladder 

M = 1 000. Figure 9 presents the comparative results for classical Fourier-Kirchhoff's models. 

As can be noticed, the discrepancy is seen in the high-frequency range. Relative mean error does 

not exceed 1%. The dashed line shows the –π/4 asymptote for which the Nyquist plot converges 

at high frequencies for a sample of semi-infinity or of sufficient length. 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

Fig. 9. Results comparison of analytical (a) and RthCth ladder Fourier-Kirchhoff's model (b) - 
τT = 0 s, τq = 0 s, err = 0.99%. Subfigures (c) and (d) show a zoomed view of a higher range of 

frequencies, respectively 

 

Figure 10 presents the comparative results for SPL models with purely diffusive heat transfer 

(τT = 10 s, τq = 0s). In this case, the relative mean error is lower compared to the F-K models 

and is equal to 0.65%. 
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(a) 

 
 

 
(b) 

 
 

 
(c) 

 
(d) 

Fig. 10. Results comparison of analytical (a) and RthCth ladder SPL model (b) - τT = 10 s, τq = 0 s, 
err = 0.65%. Subfigures (c) and (d) show a zoomed view of a higher range of frequencies, 

respectively 

 

Figure 11 presents the comparative results for DPL models with excess diffusive heat 

transfer (τT = 10 s, τq = 2 s). In this case, the relative mean error is lower compared to the F-K 

model and is equal to 0.7%. 
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(a) 

 
 

 
(b) 

 
(c) 

 
(d) 

Fig. 11. Results comparison of analytical (a) and RthCth ladder DPL diffusive propagation model (b) 
- τT = 10 s, τq = 2 s, err = 0.7%. Subfigures (c) and (d) show a zoomed view of a higher range 

of frequencies, respectively 

 

Interesting results can be obtained for the SPL model with purely wave propagation heat 

transfer (τT = 0 s, τq = 10 s) in the frequency range ωϵ(10-7, 1) 1/s. The simulation results show 

the discrepancy in the high-frequency range, as shown in Fig. 12. The analytical model displays 

the asymptotic approach of Zth curve to the point of pure resistive character. The Zth 

characteristic of the ladder numerical model shows convergence at Zth → 0. Moreover, in this 

case, a non-monotonic convergence can be observed with a kink in the curve near the resonant 

frequency, which depends on the model parameters, e.g.: τq, Lthq and Cth. As a result, the relative 

mean error increases to 1.8%. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12. Results comparison of analytical (a) and RthCth ladder DPL wave model (b) - τT = 0 s, 
τq = 10 s, err = 1.8%. Subfigures (c) and (d) show a zoomed view of a higher range of 

frequencies, respectively 

 

The results of Fig. 12 need further clarification. The analytical solution converges to a 

constant and pure resistive value. Also, the results obtained with the ladder network show 

something similar. At first, the impedance also seems to converge to a constant resistive value, 

but finally it tends to zero. These results are well known in the domain of electromagnetic 

radiation and transmission line theories. At high frequencies (Fig. 12), the impedance of the 

inductor |ωLthq| is so high that the series resistance Rth turns out to be negligible. What remains 

is a classical LC transmission line. In many textbooks, it has been proved that an infinitely long 

transmission line behaves like a resistor R0 and its value is given by: 

 𝑅0 =  √
𝐿𝑡ℎ𝑞

𝐶𝑡ℎ
, (5.3) 

where  

 𝐿𝑡ℎ𝑞 = 𝜏𝑞𝑅𝑡ℎ = 𝜏𝑞
Δ𝑥

𝑘𝑆
 (5.4) 
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and 

 𝐶𝑡ℎ = 𝑐𝑡ℎ𝑆Δ𝑥. (5.5) 

By inserting the numerical values listed in Table 1, we get 𝑅0 = 0.5225
K

W
, which agrees 

perfectly with the plot shown in Fig. 12.  

For the sake of completeness, one can also get the propagation velocity v of the thermal 

wave: 

 𝑣 =
Δ𝑥

2𝜋√𝐿𝑡ℎ𝑞𝐶𝑡ℎ
=

1

2𝜋
√

𝑘

𝜏𝑞𝑐𝑡ℎ
= 0.0312 mm/s. (5.6) 

Note that to obtain v, we have to use the inductance and the capacitance per unit length. The 

speed value is very low due to the value τq = 10 s. For values of τq in the picosecond range, 

propagation speeds approaching the speed of sound can be obtained. 

The final simulation was performed for DPL models with mixed wave propagation and 

diffusive heat transfer for τT = 2 s, τq = 10 s. The results show the greatest discrepancy in the 

high frequency range with the relative mean error reaching as much as 5.92% as shown in 

Fig. 13.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Fig. 13. Results comparison of analytical (a) and RthCth ladder DPL diffusive model (b) - τT = 2 s, 
τq = 10 s, err = 5.92%. Subfigures (c) and (d) show a zoomed view of a higher range of 

frequencies, respectively 

 

In order to improve the simulation accuracy in the high-frequency range, it is recommended 

to decrease the distance step Δx in numerical modelling. Unfortunately, this significantly 

increases the number of nodes and simulation time. This problem is discussed in the next 

section. 

 

 

6. Discussion 

 

In order to select the optimum number of sections in the RthLthCth ladder network, it's worth 

noting that the electrical analogy of heat conduction is based on the FDM and the Taylor 

expansion of temperature. For solving the 1D heat transfer equation, the second derivative with 

respect to x is approximated by: 

 
∂2𝑇

∂𝑥2 = 𝑇(2)(𝑥) ≈
𝑇𝑖+1−2𝑇𝑖+𝑇𝑖−1

Δ𝑥2 = 𝑇̃(2)(𝑥), (6.1) 

where T (2)(x) and 𝑇̃(2)(𝑥) denote the second-order derivative of temperature with respect to x 

and its FDM approximation, respectively. 

Using the Taylor theorem for T(x + Δx) and T(x – Δx), it is possible to represent the second 

derivative of temperature as: 

 𝑇(2)(𝑥) = 𝑇̃(2)(𝑥) + 𝑅(Δ𝑥), (6.2) 

where the reminder R(Δx) takes the form: 

 𝑅(Δ𝑥) = −
2𝑇(4)(𝑥)

4!
Δ𝑥2 −

2𝑇(6)(𝑥)

6!
Δ𝑥4 − ⋯ = ∑

2𝑇(2𝑖)(𝑥)

(2𝑖)!

∞
𝑖=2 Δ𝑥2(𝑖−1). (6.3) 

The reminder R is not only a function of x but also of ω and must be taken as a small enough 

value to provide an acceptable approximation. It allows one to estimate the distance step Δx of 

the FDM approximation, which is strongly correlated with the maximum angular frequency of 

the analysis in the frequency domain. 

 |𝑅(ℎ, 𝜔)| < 𝜖. (6.4) 

If we limit this approximation analysis to the first element of the series (6.3) and take the 

analytical solution of the heat transfer model (4.3) to obtain the fourth-order derivative of 

temperature, the approximation error R(h,ω) can be expressed as: 

 
2

(4!)
  |

𝐴(𝑗𝜔) + 𝐵(𝑗𝜔)

𝐿4(𝑗𝜔)
|  Δ𝑥2  <  𝜖. (6.5) 

Assuming a given approximation error ϵ and using (4.2), the distance step Δx with respect 

to ω can be estimated as: 
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 ∆𝑥 =  √12𝜖 | 
𝑘̃(𝑗𝜔)

𝑗𝜔𝑐𝑡ℎ√𝐴(𝑗𝜔)+𝐵(𝑗𝜔)
| = √12𝜖 | 

𝑘̃(𝑗𝜔)

𝑗𝜔𝑐𝑡ℎ√𝑇(𝑗𝜔)|𝑥=0
|. (6.6) 

The results of the accuracy analysis for 2 given frequencies are presented in Table 2. They 

confirm the strong dependence between the distance step Δx and the maximum angular 

frequency used for modelling. 

 
Table 2.  Distance step Δx for maximum angular frequencies ωmax = 1 and 0.1 1/s, ϵ = 10-4 K/m2 

Model ωₘₐₓ, 1/s Distance step Δx, m 

Fourier-Kirchhoff 
1 6.487 × 10⁻⁸ 

0.1 3.659 × 10⁻⁷ 

SPL, τT = 10 s 
1 1.159 × 10⁻⁶ 

0.1 5.629 × 10⁻⁷ 

DPL, τT = 10 s, τq = 2 s 
1 4.241 × 10⁻⁷ 

0.1 5.496 × 10⁻⁷ 

SPL, τq = 10 s 
1 3.644 × 10⁻⁹ 

0.1 2.378 × 10⁻⁷ 

DPL, τq = 10 s, τT = 2 s 
1 9.934 × 10⁻⁹ 

0.1 2.436 × 10⁻⁷ 

 

It is worth emphasizing that the distance step Δx decreases with the square root of the error 

√𝜖. At the same time, this step increases with the maximum frequency of thermal analysis. To 

ensure high modeling accuracy, the ϵ error must be kept at a sufficiently low level, which 

significantly increases the number of nodes in the RthLthCth ladder and consequently increases 

the analysis time. 

The thermal modelling results presented in this paper refer to the frequency domain. Such 

an approach significantly reduces the calculations and, in some cases, makes them analytical, in 

particular in the case of one-dimensional Kirchhoff–Fourier and DPL modelling of single- and 

multilayer thermal structures. Consequently, it allows for deeper insight into the thermal 

phenomena under consideration and a more reliable interpretation of the obtained results. In 

bioengineering, when distinguishing between pathological and physiological cases, it is easier 

to make such a diagnosis because some anomalous temperature changes may be more 

pronounced in the frequency domain. The integral Fourier or Laplace transforms used in this 

analysis significantly reduce the ubiquitous noise in the measurements, especially in the case of 

weak temperature changes detected by non-contact measurement systems. Currently, sub-noise 

temperature measurements are possible using high-speed thermal imaging cameras [46]. In 

electronics and electrical engineering, analysis of temperature frequency spectra allows for the 

explanation of thermal phenomena occurring at different frequencies, which can sometimes be 
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unexpected. For example, high-frequency temperature components become independent of 

ambient cooling conditions, unlike mean temperature and slow temperature changes. As a result, 

frequency analysis can be used to precisely characterize the electrical state of the measurement 

system [47]. Moreover, temperature frequency analysis directly corresponds to the commonly 

used thermal characterization of power electronics using thermal time constant spectra [48, 49]. 

It is worth noting that frequency analysis does not eliminate the possibility of presenting 

temperature evolution in the time domain, and in some cases, it even makes it easier. There are 

many numerical methods for converting frequency spectra into time-dependent signals. These 

include the inverse Fourier and Laplace transforms, the Vector Fitting method, Continuous-time 

System Identification (CONTSID) [50, 51], the Computer-Aided Program for Time-series 

Analysis and Identification of Noisy Systems (CAPTAIN) [52], and Transfer Function 

Estimation (TFEST) [53–55]. 

 

 

7. Conclusions 

 

Due to the progress and wide application of nanotechnology, smart and composite materials, 

and multi-phase thin-film structures, non-Fourier heat transfer modelling is becoming more and 

more attractive and necessary for use. Such modelling has already been implemented in many 

simulation tools, used mainly for research and prototyping. In many cases, this requires 

powerful computer tools equipped with additional units that increase speed and available 

memory, and finally, the FEM simulation environment must be installed. In many cases, such 

simulations, especially for 3-dimensions, take hours.  

For engineering applications, it is more helpful to use simulation tools that are not as 

advanced but provide satisfactory results in a short time, almost immediately. This gives the 

possibility of performing iterative analysis by frequently adjusting key parameters, e.g. to match 

simulation and measurement results during prototyping. For these applications the compact and 

the ladder simplified thermal modelling has been developed. It is worth underlining that the 

ladder models presented in this research can be easily extended to multilayer structures. In 

addition, comparing to the compact modelling, the ladders can model 2D and 3D geometrically 

complex thermal structures, and definitely they do not need high computer power. 

The modelling presented above is based on the concept of temperature and heat flux delays. 

There has been a scientific discussion on the thermodynamic consistency of this approach, 

especially for the wave propagation mode of heat transfer in very thin materials excited by very 

short energy pulses. Among others, for these applications, a compact and simplified ladder 

thermal modelling has been developed. It is worth emphasizing that the ladder models presented 

in this study can be easily extended to multilayer structures. Moreover, similarly to compact 

modelling, ladders can model 2D and 3D geometrically complex thermal structures and 

definitely do not need high computational power. It seems that the thermal ladder approximation 

in single and double-phase delay modelling could contribute to the validation of non-Fourier 

heat transfer and help in the interpretation of the obtained results, as well as simplify 
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calculations. Such modelling can be useful in a variety of applications, including thermal and 

electrical engineering. 
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