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Abstract: This paper proposes a modified geometric insar optimizer (MGMO) based on
nonlinear functions of the control parameter, the first being a logarithmic function
(MGMOI) and the second being an expon:itial function (MGMOII), while the original
geometric mean optimizer (OGMO) has a liriedr cuntrol parameter. To demonstrate the ef-
fectiveness and efficiency of an MGMOI ‘and MGMOII, they were implemented to
benchmark functions, the results obseryved a best balance in exploration and exploitation
and faster convergence to the ‘uast sGietion compared to the OGMO. On the other hand,
the OGMO, MGMOI and MG*CH algcdrithms have been implemented on the standard
IEEE 33 bus and the practical 12AQi 71 bus to obtain the optimal position and capacity of
photovoltaic distributed géngziator (PV-DG), while the beta probability distribution func-
tion (BPDF) is imzlemented,t0 model the uncertainty of solar irradiation. Moreover, the
performances of raaid disfribution networks (RDNs) are improved after incorporating a
PV-DG into the RDN; {xe power losses are minimized (65.159%, 65.500%, and 65.505%
for the OGMO, MGMOI, and MGMOII, respectively, in the IEEE 33 bus, 66.739%,
66.858%, and 67.490% for the OGMO, MGMOI, and MGMOIl, respectively, in the
IRAQI 71 bus), while the voltage profile and stability are maximized (15.205%, 15.205%,
and 15.230% for the OGMO, MGMOI, and MGMOI|, respectively, in the IEEE 33 bus,
12.813%, 12.997%, and 12.997% for the OGMO, MGMOI, and MGMOII, respectively,
in the IRAQI 71 bus). Finally, the proposed modified algorithms proved their superiority
and dominance over the original algorithm in converging to the optimal solution for find-
ing the optimal position and sizing of a PV-DG (after 28, 25, and 19 iterations for the
OGMO, MGMOI, and MGMOI, respectively, in the IEEE 33 bus, after 27, 23, and 20 it-
erations for the OGMO, MGMOI, and MGMOIl, respectively, in the IRAQI 71 bus), and
the performance of the MGMOII is better than the performance of the MGMOI because it
requires fewer iterations to reach the optimal solution.
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1. Introduction

A photovoltaic distributed generator (PV-DG) is one of the most important green energy
resources that can be used to generate electricity. In recent years, interest in using PV-DGs as
distribution generators in radial distribution networks (RDNSs) has grown due to their numerous
advantages, including reduced losses, lower fuel costs, and increased stability and reliability of
RDNSs. A PV-DG can be used to generate electricity in remote and rural areas far from power
generation centers, where traditional electricity grids are unavailable or unreliable [1]. This
study aims to investigate the impact of climate change on the performance of home
photovoltaic systems and develop smart models to predict energy consumption in distributed
solar plants. Combining climate analysis with data forecasting aims to improve the efficiency
and sustainability of solar energy systems and support smart energy management in the face of
future environmental changes [2, 3]. Furthermore, several modern algorithms have been
developed to improve the performance of electrical networks fiiat use’ PV-DGs as distribution
generators. Optimization algorithms are used to optimize setwork design and determine the
optimal capacity and siting for PV-DGs. The use of eatiinization algorithms contributes to
improving network efficiency, reducing costs, and_erihancing the quality and reliability of
electrical power [4].

The use of PV-DGs as distribution genzrasars in RDNs can contribute to improving
network efficiency and reducing electrical losses, and help to improve the quality of electrical
power and reduce environmental pollution [5, 6]. Furthermore, using PV-DGs as distribution
generators can reduce greenhouse”yas emssion [7, 8]. Finally, it is indicated that using PV-
DGs can improve grid stability and(reauce tke risk of power outages [9].

However, there are severaischailenges that must be overcome when using PV-DGs as
distribution generators ixi RDNs. ane of the main challenges is ensuring network stability and
avoiding voltage and curent/fluctuations. This requires the development of control and
monitoring techniques to ensure RDN’s stability and improve its performance [10, 11]. On the
other hand, PV-DG use can be affected by changes in weather and environmental conditions
[12].

In the literature, many researchers have addressed modern and developed algorithms for
calculating the optimal location and size of PV-DGs to improve the overall performance of
RDNSs. In [13], AEO-OBL (artificial ecosystem-based optimization-opposition based Learning)
is an improved version of AEO utilized to compute the optimal position and capacity of a PV-
DG of the RDN; the paper is comprehensive in its integration of multiple renewable energy
sources. However, it suffers from limitations related to simplistic assumptions and its limited
reliance on actual operating data. In [14], an improved Harris Hawks optimization (IHHO)
algorithm was introduced to obtain the optimal allocation of a PV-DG to improve the
performance of the RDN; the advantages of this paper include its high accuracy and speed in
arriving at optimal solutions. Its drawbacks include its heavy reliance on control parameters. In
[15], the authors proposed a novel student psychology-based optimization (SPBO) to obtain the
optimum site and size of a PV-DG in the RDN, the paper has the potential to balance



This paper has been accepted for publication in the AEE journal. This is the version, which has not been
fully edited and content may change prior to final publication.
Citation information: DOI 10.24425/aee.2026.156803

exploration and exploitation, but its limitations include only limited empirical validation and
reliance on simulation studies. In [16], the authors proposed Genetic algorithm and Teaching
learning-based optimization (GA-TLBO and TLBO-GA) two newly developed schemes of
optimization algorithms, to solve the optimal integration of PV-DGs and optimal network
reconfiguration; the advantage of the paper is its ability to deal with complex multi-objective
problems, but its disadvantages are its reliance on limited simulation environments and the lack
of practical verification in real networks. In [17], a modified version of the Search Group
Algorithm (SGA) was presented, named the enhanced search group algorithm (ESGA), to
determine the optimal placement and capacity of PV-DGs. The paper has high efficiency in
exploring the solution space and speed in reaching optimal results. It faces limitations related
to the weakness of testing the algorithm in realistic operating scenarios. In [18], the multi-
objective non-dominated sorting genetic algorithm Il (NSGA-II) is presented to detect the
optimal allocation of PV-DGs; the paper is distinguished by its,Lomprehensive approach in
integrating several evaluation criteria, but its limitations /ave the limited experimental
verification. In [19], Riippell’s fox optimizer (RFO) is preposea to determine the optimal
locations and sizes of PV-DGs in RDNs; the paper is nivztive in using a new algorithm
inspired by animal behavior and suffers from limitations related to poor validation in real
environments. In [20], the authors introduced the ADA {arithmetic optimization algorithm) for
detecting the optimal position and capacity of {™3.-DG in the RDNSs; the paper is distinguished
by its speed in converging to the optimal soluiion, ‘but its drawback is its reliance on limited
simulation environments. In [21], an enilanced coyote optimization algorithm (ECOA) was
implemented to optimally select thalocatian and capacity of a PV-DG to decrease the power
loss and improve voltage stability @7 tha, RDN, the paper has the ability to deal with continuous
and integer variables effectiveiy;, with balanced exploration and exploitation in the solution
space. Its disadvantages.dre the coniplexity of calculations and the long execution time. In [22],
a modified version of “womoriuclear molecules optimization (MHMO) was developed to
calculate the optimal allocation of a PV-DG; the paper presents an efficient integration
between the PV-DG and DSTATCOM modules, which is flexible and adaptable. Its drawbacks
are the difficulty of calculations and the long time to reach the solution. In [23], a multi-
objective fruit fly optimization algorithm based on population Manhattan distance
(pmdMOFOA) is presented to solve the optimal integration of a PV-DG in the RDN; the paper
features a good diversity of solutions when using the Manhattan distance between populations
and the difficulty of ensuring the global optimal solution in large and complex networks. In
[24], a teaching—learning-based optimization (TLBO) was employed to solve the optimal PV-
DG allocation in the RDN; the paper has the benefit of increasing system reliability and power
quality and its limitation is the dependence of the results on the initial algorithm settings. In
[25], an improved raven roosting optimization (IRRO) was implemented for optimal
incorporating of a PV-DG in the RDN; the paper strikes a balance between the technical and
economic aspects of distribution networks, and its drawback is the complexity of the
calculations due to dealing with multiple objectives. In [26], a rider optimization algorithm
(ROA) was employed to generate the optimal location and size of a PV-DG of the RDN; the



This paper has been accepted for publication in the AEE journal. This is the version, which has not been
fully edited and content may change prior to final publication.
Citation information: DOI 10.24425/aee.2026.156803

paper has an effective integration between PV-DG units and battery energy storage (BES)
units, but it has computational complexity and longer execution time due to dealing with
probabilistic variables and storage constraints. In [27], an adaptive modified whale
optimization algorithm (A-MWOA) was proposed to obtain the optimal allocation of PV-DGs
and optimal network reconfiguration; the paper features an integrated reconfiguration solution
to increase network reliability, and its drawback is that the results depend on the initial
algorithm settings. In [28], the authors presented a hybrid optimization method based on
analytical and modern algorithms; the loss sensitivity factor (LSF) and sine cosine algorithm
(SCA) was applied for optimal PV-DG allocation in the RDN; the paper strikes a balance
between technical performance and operational cost, but is constrained by the complexity of
the calculations due to the results relying on hybrid research techniques. In [29], an improved
simulated annealing-based particle swarm optimization (SAPSO) was introduced for optimal
incorporation of a PV-DG in the RDN; the paper features an ideai~coordination between PV-
DGs and electric vehicles (EVs), but its drawback is the complgxity of’the mathematical model
due to the dynamic interaction between PV-DGs and EVs. 23| 3U1) the Mixed Particle Swarm
Optimization (MPSO) was presented to identify the antima’ network reconfiguration and
allocation of a PV-DG in the RDN. The algorithm_inithis) paper provides high convergence
speed and accuracy in solutions, but there is an in¢rease in computational complexity due to
the combination of the PV-DG allocation and iyicwsark reconfiguration stages.

Despite significant research efforts in ideriifying optimal locations for a PV-DG in the
RDN, current challenges remain in electrical distribution networks, such as slow convergence
and reliance on precise tuning critéiia‘vaead on initial algorithm settings. The current research
gap demonstrates the need for an (effigient.and effective algorithm to determine the optimal
locations of a PV-DG in theRDI%,and reach the optimal solution with the least possible
number of iterations. Tis baplr/aims to present a modified algorithm based on nonlinear
optimization to achieve & balénce between exploration and exploitation. The advantage of
developing this algorithm is/its accuracy and convergence speed, and that it can cope with the
complexities of RDNS.

According to the reviewed literature, this paper proposes the use of a modified geometric
mean optimizer (MGMO) to detect the optimal location and capacity of a PV-DG for its
integration into the RDN. Two types of MGMOs are proposed based on the benefits of the
nonlinearity of control parameters; the first is the logarithmic function (MGMOI) and the
second is the exponential function (MGMOII). As a result, a balance is achieved between
exploration and exploitation, using the nonlinear control parameter to reach the best optimal
solution.

The major contributions of this paper are that PV-DGs are optimally sized and positioned
by the proposed MGMO, as well as the optimal insertion of the PV-DGs to minimize power
loss, improve voltage level and stability while maintaining the equality and inequality
constraints. The main contributions of this paper are outlined as follows:

— A modified geometric mean optimizer (MGMO) is proposed to enhance the performance
of the original geometric mean optimizer (OGMO).
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— Assessing the validity of the proposed algorithms (MGMOI and MGMOII) compared to
the original algorithm (OGMO) using benchmark functions.

— Consider the beta probability distribution function (BPDF) model as a model of the
stochastic nature of PV-DGs.

— Validating the performance of the proposed algorithms (MGMOI and MGMOII) using
the standard IEEE 33 bus and the practical IRAQI 71 bus distribution networks.

— Significant reduction in active and reactive power losses, significant increase in voltage
level and stability when deploying a PV-DG in the RDN based on the proposed algorithms
(MGMOI and MGMOIlI).

This paper is organized as follows: Section 2 presents the mathematical modeling of a PV-
DG, and the BPDF calculation of the standard IEEE 33 bus and the practical IRAQI 71 bus
distribution networks. Section 3 presents the mathematical modeling of the RDN, modeling of
active and reactive power losses, and modeling of voltage deviatith and the voltage stability
index. Section 4 presents the proposed algorithms (MGMOI ana~MGNIOII) compared with the
original algorithm (OGMO), using benchmark functions. Segtion & presents and discusses the
simulation results based on the MGMOI and MGMOII 19 ‘éete'mine the optimal location and
capacity of a PV-DG in the RDN and compare them with th: OGMO. Section 6 introduced the
conclusion and future work of this paper.

2. Mathematical’modeling of PV-DG

Solar irradiance plays an impgrtarirols in calculating the power of PV-DGs. To obtain
logical solutions, it is necessapyo ascurately model the solar irradiance at a specific location.
By analyzing historical data, collecied for hourly and daily solar irradiance, the mean (u) and
standard deviation (o) araddete’mined. The beta probability distribution function (BPDF) was
applied to describe the probubilistic nature of solar irradiance over a specific time period [12,
13, 17, 25, 31, 32]. The beta distribution for solar irradiance (s) is expressed mathematically by
the equation:

_fa 0<s<1l,ap=20
fo(s) = {0 otherwise @)
= F@th) (a-1(1 _ \(B-D)
ror S AT, ©

where: f,(s) is the beta distribution function of s, s is the random parameter of solar radiation
(kW/m?), a and B are the factors of f; (s), which are computed using the mean (1) and
standard deviation (o) of solar irradiance as follows:

a=t2 3)
p=a-w (1) )
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The probability of the solar radiation state s during any given hour can be determined from
Eqg. (1) as follows:

p(s) = [ fy(s)ds, (5)

where s; and s, are the solar irradiance limits of the state. The output power of a photovoltaic
module can be modeled mathematically in any state by the equations:

Ppy,(s) = N X FF x V, X I, (6)
FF = YMPP X Impp %)
Voc X Isc
Vy =Voc — K, X Ty, ()
L, = S[Isc + K; x (Tcy - 25)]' )]
Toy =Ty +s (FE2), (10)
where: N represents the numbers of modules, FF is the=ull factor, K, and K; are the

temperature factors for voltage and current, respectivelyy?., and T, are the cell and ambient
temperatures, respectively, N, is the normal goeratiag.t2mperature of cell.

The total expected output power of photovoliaip"module during any given period can be
obtained from Eq. (5), and Eq. (5) is expressed raathematically by the equation:

PovCt) =L Poy, (s)p(s)ds. (11)

The BPDF is employed on _thestandard IEEE 33 buses and the practical IRAQI 71 buses
(BAQ-WEST-ALRAHMA) of*R LS, based on historical data.

2.1. BPDF implemented oiystandard IEEE 33 buses

The IEEE 33 buses, as shown in Fig. 1, consist of 32 lines, the base voltage is 12.66 kV, the
base MVA is 100 MVA. The mean (1) and standard deviation (o) for every hour of the day are
computed by the hourly historical solar radiation data obtained hourly for a period of three
years, as given in Table 1 [17, 31, 32]. The BPDF of solar irradiance are calculated for each
hour of the day, for example, Fig. 2(a) and Fig. 2(b) illustrate the BPDF at 9 AM and 4 PM,
respectively. Since solar irradiance changes over a 24 hour per day, therefore, the power
produced by the PV-DG changes for each hour.
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Fig. 1. One line diagram of IEEE 33 buses

Table 1. Mean and standard deviation of solar radiation for IEEESS uus [17, 31, 32]

Hour 6 7 8 9 } 10 11 12

u (kW/m?) 0.019 | 0.096 | 0.222 | 0.381 | u.511 | 0.610 | 0.657
o (kW/m?) 0.035 | 0.110 | 0.182 [(0.217 | 0.253 | 0.273 | 0.284

Hour 13 14 15 16 17 18 19
u (KW/m?) 0.648 | 0.590 4 0.477- | 0.338 | 0.190 | 0.080 | 0.017

o (kW/m?) 0.282 | 78205 : 0.237 | 0.204 | 0.163 | 0.098 | 0.032

Hour at 9 A'M Hour at4 P.M
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Fig. 2. BPDF of solar irradiance: (a) BPDF at 9 AM; (b) BPDF at 4 PM

2.2. BPDF implemented on practical IRAQI 71 buses

The IRAQI 71 buses (BAQ-WEST-ALRAHMA), as shown in Fig. 3, consist of 70 lines,
the base voltage is 11 kV, the base MVA is 100 MVVA. The mean () and standard deviation (o)
for every hour of the day are computed by the hourly historical solar radiation data obtained
hourly for a period of three years, as given in Table 2. The BPDF of solar radiation are
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calculated for each hour of the day, for example, Fig. 4(a) and Fig. 4(b) illustrate the BPDF at
7 AM and 2 PM, respectively. Since solar irradiance changes over a 24 hour per day, therefore,
the power produced by the PV-DG changes for each hour.
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Fig. 3. One line diagram of IRAQI 71 buses

Table 2. Mean and standaid Gevéation of solar radiation for IRAQI 71 bus
Hour 6 ¢ l 8 9 10 11 12

u (KW/m?) | 0.0821 » 02561 | 0.3550 | 0.5553 | 0.7186 | 0.8430 | 0.9016

o (kW/m?) | 0.0072 _0.0311 0.0446 | 0.0395 | 0.0471 | 0.0398 | 0.0434
Hour 13 14 15 16 17 18 19

1 (kW/m?) | 0.9203 | 0.8741 | 0.7707 | 0.6104 | 0.4199 | 0.2181 | 0.0569

o (kW/m?) | 0.0367 | 0.0373 | 0.0370 | 0.0393 | 0.0327 | 0.0241 | 0.0086
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Fig. 4. BPDF of solar irradiance: (a) BPDF at 7 AM(b) BEDF at 2 PM

3. Mathematical modzling of RDN

This part of the paper presents the mathcmaticai modeling of the RDN, including the
modeling of active power losses (APL) and reqgCtive power losses (RPL), the modeling of the
voltage deviation index (VDI) and voltage stability index (VSI), as well as equality and
inequality constraints [6, 7, 11].

3.1. Modeling of APL and RRY,

The aim is to decrease active sower and reactive power losses in RDNs by incorporating
PV-DGs in distribution 1igiworks. The APL and RPL modeling are mathematically expressed
by the following equations:

Np wN Vvl \*
APL =37 X0, <|Ru+xji,-|) X Ry, (12)
j#ij>i
Np ©N Vvl \?
RPL = X5 X%, <|R..+X’..|) X Xy, (13)
jeigsi Y

where: N is the buses’ number of the radial distribution network, V; is the voltage at the i-th
bus, V; is the voltage at the j-th bus, R;; is the resistance between the buses i-th and j-th, and
X;; is the reactance between the buses i-th and j-th.

3.2. Modeling of VDI and VSI

The aim is to minimize the VDI and maximize the VSI of the RDN by incorporating
PV-DGs into distribution networks, the VDI and VSI modeling are mathematically expressed
by the following equations:



This paper has been accepted for publication in the AEE journal. This is the version, which has not been
fully edited and content may change prior to final publication.
Citation information: DOI 10.24425/aee.2026.156803

Np
i Vi

Np

VDI =

- 1‘, (14)

1 2 2
VSI = N_BZ?ZZN?:z [|Vi|4 —4(PR;j — Q;X;;)" — 4(PXy — Q;Ry;)” X |Vi|2]' (15)

J#ELJ>1

where P; is the active power at the j-th bus and Q; is the reactive power at the j-th bus.

3.3. Equality and inequality constraints

A set of constraints (equality and inequality) must be satisfied; the active and reactive
powers balanced represent equality constraints, which are mathematically expressed by the
following equations:

Pgack + Ziv:]lv PPV,i = Z;V:B1 PiD + APL, (16)
Qsiack = 1% QP + RPL, a7)

where: Py, iS the active power generation from the slack4us (ous 1), Qgack IS the reactive
power generation from the slack bus (bus 1), Ppy; is the active power of the PV-DG at the i-th
bus, PP is the total active power demand of the RN, \¢; is the total reactive power demand
of the RDN.

Additionally, the voltage limits, generation/0f #VV-DG unit limits, and PV-DG locations
represent inequality constraints, whichq are Iriathematically expressed by the following
equations:

Vi_«in 4y, < ymax, (18)

PR < Ppy; < PRFE, 19)
NPV Py < S PP + APL, (20)
2 < PV = DGyocation < N, (21)

where: V™0 s the minimum voltage at the i-th bus, V™2 is the maximum voltage at the i-th

bus, Ppy; is the minimum active power of the PV-DG at the i-th bus, Ppy is the maximum

active power of the PV-DG at the i-th bus, PV — DG} ycation 1S the location of the PV-DG in
the RDN.

4. Modified geometric mean optimizer (MGMO)

The GMO is a new optimization technique that mathematically simulates the qualitative
properties of the geometric mean operator. This operator can simultaneously evaluate the
objective function and the diversity of search agents in the search space. In the GMO, the
weight of each agent is calculated based on the geometric mean; taking into account the
corresponding measured objective values. Thus, the optimization problem can be solved based

10
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on the state of the agent to guide other agents [33-35]. To perform the GMO process
mathematically, the following steps can be used in calculation:

Step 1: Calculate the fuzzy membership function (MF) for all agents using the following
equation:

1

MFiter —
J 4 iter it !
<_Jiter\/zx(zbest,j_”1 er)

=12 ..\, (22)

1+exp

where: MF}*" is the MF value of the j-th personal best agent at the current iteration, Z\\sY, ; is
the fitness function amount of the j-th personal best agent at the current iteration, o'*" and
©iteT are the standard and mean deviations of the fitness function amount of all agents at the
current iteration.

Step 2: Calculate the dual fitness index (DFI) for a search agent using the following

equation:
DFIJ" = MFJ*r x ... x MF[*] * MF[% x ... x MEG< 2= [[)_; MF}*", (23)
Jj#i
where DFIItT is the DFI of the i-th agent at the curranuiteration, and N is the number of the
population.
Step 3: Calculate the locations of guide agenisusing the following equation:

~priter best
yiter — Yjenpest,j=iPF1; " X X;
i

2[ENbestDFI]i'ter+5 ’ (24)
where: Y/ is the location param&zter vf the unique global directory agent computed for the
agent i-th at the current iteratiginX")** is the best location parameter of the j-th search agent, ¢
is a very small positive4tumber tasprevent singularity.

Step 4: The Gaussian nutation process is incorporated to grow the diversity of the guide
agents. This mutation process is expressed using the following equation:

yiter. = Yi*r 4+ w x randn x (Stdifer, — Stditer), (25)

where: Y  represents the mutated Y;**" used for guide search agents at the current iteration,
randn represents a random number derived from the standard normal distribution, Stditer,
represents the maximum standard deviation value of the best agents at the current iteration,
Stditer represents the standard deviation parameter computed for the best agents at the current
iteration, and w is the control parameter used to keep balance between exploration and
exploitation when searching for optimal solutions and described briefly in Section 4.1.

Step 5: The update velocity and location of the agents are expressed using the following
equations:

Viiter+1 =wX Viiter + ¢ x (K.I:I?{It _ Xl_iter), (26)
Xiiter+1 — Xl_iter + Viiter+1’ (27)

11
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¢=1+@x%xrand—1) Xw, (28)

where: ViteT+1 s the velocity of the i-th agent at the (iter + 1) iteration, V*" is the velocity of
the i-th agent at the current iteration, X"+ s the location of the i-th agent at the (iter + 1)
iteration, Xt is the location of the i-th agent at the current iteration, ¢ is the scaling parameter
vector, rand is the random coefficient number that lies between 0 and 1.

4.1. Control parameter (w)

The control parameter (w) mentioned in Eq. (25), Eq. (26), and Eq. (28) decreases linearly
in the original geometric mean optimizer (OGMO). This leads to an imbalance between
exploration and exploitation when searching for optimal solutions within the search region.
Therefore, the search process does not cover the entire region, and the chance of the agents
converging to the optimal solution quickly is slow. To overcome this problem, an improvement
on the control parameter (w) is proposed where it decreases ncatimearly. Consequently, the
optimal solution can be converged more quickly.

In the OGMO, the control parameter (w) is expressed by thejeguation:

w=1-——=r_ (29a)

maxiter’

Two formulas, a logarithmic function MGROI1 and exponential function MGMOI were
proposed in the modified geometric meary optimizer (MGMO). They are expressed
mathematically using the following equations:

w =10z, [1 +(1- mttﬂ (29b)
. 2
b el 2 ) 290

According to Egs. (29a), (29b), and (29c), Fig. 5 shows the behavior of the control
parameter (w) with iterations. The rate of change is observed to be constant for the OGMO;
making it suitable for early convergence toward local optimum values. Therefore, we propose a
nonlinear control parameter (MGMOI and MGMOII) to improve the global search. The
nonlinear control parameter (MGMOI and MGMOII) changes rapidly, which enhances the
overall search ability, improves the search range efficiency, accelerates the convergence speed,
and improves the flexibility of detecting optimal solutions.

To verify the validity and effectiveness of the proposed control parameter, the MGMOI and
MGMOII were implemented and compared with the OGMO based on benchmark functions in
the next part of the paper.
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4.2. Validation of MGMO based on benchmark functiang

To verify the validity, accuracy, effectiveness, and \xerformance of the proposed modified
algorithms, the MGMOI and MGMOII were applied to)5 benchmark functions and compared
with the original algorithm (OGMO). The bencimark functions are expressed mathematically
by the following equations:

yl = ‘_‘QX:{lxil,l S i S d}, (30)
Y2 =Aibalyf 10 cos(2mx;) + 10], GD
1 i
Y35 ‘_JOGZ?=1 xf =TI, cos (%) +1 (32)
ya A = 200 + 1] + o, — 45 + 4, (33)
ys=—XilX —a)X —a)" + ], (34

where: y; represents the unimodal benchmark function, y, and y; represent the multimodal
benchmark functions, while y, and y. represent the fixed-dimension multimodal benchmark
functions [16, 36].

The statistical performance represented by the average (mean), standard deviation (std),
best and execution time was presented in Table 3. The results were obtained from 20 runs, a
maximum iteration of 50, and a population of 50. The specifications of the personal computer
are: Intel(R) Core(TM) i5-7200U CPU @2.50Gz, Installed RAM 4.00 GB.

Table 3. The statistical performance of the benchmark functions

Mean Std Best Time

OGMO 1.9842e-12 6.0191e-12 4.3521e-13 7.7332
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Y1 MGMOI 2.8891e-31 9.6687e-31 1.1563e-31 7.7005
MGMOIlI 7.3363e-32 2.3204e-32 3.3462e-33 7.6836
OGMO 22.2365 39.0695 0.000 7.7302

¥ MGMOI 7.1739 26.6196 0.000 7.6648
MGMOII 5.7727 25.8164 0.000 7.6269
OGMO 9.7235e-07 4.3485e-06 0.000 8.1201

s MGMOI 6.2741e-13 5.5382e-13 0.000 8.0761
MGMOIlI 4.9693e-22 8.6603e-21 0.000 7.8127
OGMO -1.0297 4.6227e-03 -1.0316 6.9766

Vs MGMOI —-1.0309 1.7207e-03 -1£0316 6.9178
MGMOIlI -1.0519 1.0766e-05 29516 6.8792
OGMO -8.1411 3.2216 ]I_ _—ﬂ).1532 7.9344

Vs MGMOI —-8.4309 3.1659 -10.1532 7.8634
MGMOII —9.2715 2.2007 -10.1532 7.7789

Figures 6(a), 7(a), 8(a), 9(a), and 1C(a) illustrate the convergence rates of the proposed
algorithms. Consequently, by careflly=ahserving the shape of the curves, it is clear that the
MGMOII converges to the best solation fastar and with less iteration compared to the MGMOI
and OGMO. Moreover, the MGNMQI converges to the best solution faster and with fewer
iterations compared to th¢ OGO,

In addition to the conuargence rates, the results were represented using box plots to visually
depict the distribution of tpé data in the quartiles. The box plot curves were presented in
Figs. 6(b), 7(b), 8(b), 9(b), and 10(b), where the MGMOII achieved the best distribution and
lowest mean line values compared to the MGMOI and OGMO. Furthermore, the MGMOI
achieved the best distribution and lowest mean line values compared to the OGMO.
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Fig. 10. OGMO and MGMO performance of ys: (a) convergence rate; (b) box plot

5.  Simulation results and discussion

A MGMO is implemented on the standard IEEE 33 bus RDN and on the practical
IRAQI 71 bus (BAQ-WEST-ALRAHMA) RDN; the validation of the MGMOI and MGMOII
to compute the optimal position and sizing of the PV-DG is satisfied compared with the
OGMO. The flowchart for detecting the optimal allocation of the PV-DG in the RDN using the
OGMO, MGMOI, and MGMOII is shown in Fig. 11, and the pseudo-code algorithm has been
shown in Fig. 12. The results of load flow analysis are carried out using the backward-
foreword sweep algorithm.
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5.1. Results of IEEE 33 buses RDN

The one-line diagram of the IEEE 33 bus is presented in Fig. 1; it consists of 32 lines, the
base voltage is 12.66 kV, the base MVA is 100 MVA, the total active power load is 3715 kW,
and the total reactive power load is 2300 kvar [37]. The base case power flow results are as
follows: The APL is 210.99 kW, the RPL is 143.03 kvar, the VDI is 0.0547 per unit, and the

VSl is 0.8043 per unit.

Read initial
parameters of GMO
Te
'r A

Run the load flow and
determine the OF

¥

Determine the personal best of GMO
based on minimum of the Gr

A

N

—
Yes ifiter-umayiter No
iter=iter+1 —
Determine MF and DFI of l Output the optimal location
GMO by Eq. (22) and Eq. \‘“J and size of PV-DG
Run the load flow and ¥ J’
determine the OF ] V.
Select first Nbest elite agents Run the load flow and
/ based on descend DEs sorting determine the OF

LY S

Lotermine o gents unique
Quiadaf GM by Eq. (24)

GMO by Egq. (26) and Eq. (27)

Update velocity and location of |’

| p__ -
Determine mutation on DetQghine control parameter (w) by Print the optimal @
each guide by Eq. (25 | | Wt (29)a or Eq. (29)b or Eq. (29)¢ allocation of PV-DG

Fig. 11. Flowchary st the proposed MGMO to detect the optimal allocation of PV-DG
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Initialize parameters: population size N,
Initialize paopulation X[i], i = I to N'n
Run LoadFlow(X[i]) to determine OF
Determine Personal Best Pbest[i] =
iter
while iter = Maxlter do
Compute MF[i] and DFIfi] using Eq. (22) and (23)
Sert agents by DFIin descending order
Select top Nbest elite agents
For each agent i:
Determine unigue guide G[i] using Eg. (24)
Determine control parameter w using Eg. (29a) or (295) or (29c)
Apply mutation en Gfif using Eg. (23)
Update velocity and location using Eg. (20) and (27)
Riun LoadFlow(X[i]) and determine new OF[i]

If OF[i] = Pbest|

Mexlter, __efc

by

iter = iter + 1
end while
If constraints satisfied: Output the optinfal lpltion and size of PV-DG
Print results: Optimal PV-DG AllggatiotNEb iaid
End Algorithm

Fig. 12. Algorithm(GMO 10r optimal PV-DG allocation

The proposed algorithms weretimgiamented to determine the three optimal PV-DG sizes
and locations when the APL is censidereqa as an objective function (OF). From the results
presented in Table 4, we obsersedyan improvement in the overall performance of the RDN
compared to the baseline/case’” Frgen the convergence rate curves illustrated in Fig. 13(a), it is
observed that the proposad-algarithms accelerated and converged to the optimal solution are in
the following order: the Ny3MOII is ranked first, the MGMOI is ranked second, and the
OGMO is ranked last. Furthermore, Fig. 13(b) illustrates the box plot behavior of the proposed
algorithms, and it is observed that some of them outperform and dominate each other in the
following order: the MGMOII ranks first, the MGMOI ranks second, and the OGMO ranks
last.

Table 4. Results of PV-DG for IEEE 33 buses

PV location PV size (kW) APL (kW) | RPL (kvar) | VDI (P.U) | VSI (P.U)

OGMO 13, 25, 30 821.3, 883.5, 1069.4 73.51 50.99 0.0190 0.9266
MGMOI | 14,24,30 | 769.7,1096.2, 1067.4 72.79 50.69 0.0191 0.9266
MGMOII | 14,24,30 | 800.8,1092.6, 1054.3 72.78 50.65 0.0190 0.9268
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Fig. 13. OGMO and MGMO performance of IEEE 33 bus: (a).cenvcigence rate; (b) box plot

On the other hand, the overall performance of the RDNLis ennanced after incorporated the
PV-DG; the reductions of active power losses are 65/159%, 65.500%, and 65.505% for the
OGMO, MGMOI, and MGMOII, respectively. The reauctions of reactive power losses are
64.350%, 64.559%, and 64.587% for the OGO, NMZMOI, and MGMOI, respectively, and
the voltage profile is shown in Fig. 14.

Moreover, the power produced by the PV-DG changes each hour. Figure 15(a) shows the
active power of three PV-DG position<.or, buses 13, 25, and 30 for the OGMO. Figure 15(b)
shows the active power of three PV;L'G positions on buses 14, 24, and 30 for the MGMOI, and
Fig. 15(c) shows the active power af three PV-DG positions on buses 14, 24, and 30 for the
MGMOII. The power curves showar in Fig. 15 follow a realistic and regular physical pattern
that reflects the naturat™variation in solar radiation throughout the day, without any anomalous
behavior or inflated model ¢#tput. This confirms that the proposed model was not overly tuned
to specific data, but rather demonstrated stable and consistent performance at different points

on the grid and under a variety of conditions, enhancing its generalizability and reducing the
risk of overfitting.
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5.2. Results of IRAQI 71buses RDN

The one-line diagram of the IRAQI 71 bus (BAQ-WEST-ALRAHMA) is presented in
Fig. 3; it consists of 70 lines, the base voltage is 11 kV, the base MVA is 100 MVA, the total
active power load is 8956 kW and the total reactive power load is 5542 kvar. The base case
power flow results are as follows: the APL is 532.95 kW, the RPL is 650.51 kvar, the VDI is
0.0674 per unit, and the VSl is 0.7586 per unit.

The proposed algorithms were implemented to determine the three optimal PV-DG sizes
and locations when the APL is considered as an objective function (OF). From the results
presented in Table 5, we observed an improvement in the overall performance of the RDN
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compared to the baseline case. From the convergence rate curves illustrated in Fig. 16(a), it is
observed that the proposed algorithms are accelerated and converged to the optimal solution in
the following order: the MGMOII is ranked first, the MGMOI is ranked second, and the
OGMO is ranked last. Furthermore, Fig. 16(b) illustrates the box plot behavior of the proposed
algorithms, and it is observed that some of them outperform and dominate each other in the

following order: the MGMOII ranks first, the MGMOI ranks second, and the OGMO ranks
last.

Table 5. Results of PV-DG for IRAQI 71 buses

PV location PV size (kW) APL (kW) | RPL (kvar) | VDI (P.U) | VSI (P.U)

OGMO 8,34,67 | 1972.4, 2398.6, 1781.7 177.26 216.38 0.0383 0.8558

MGMOI 11, 35,66 | 1941.3, 2404.8, 1758.5 176.63 2158 0.0379 0.8572

MGMOII | 11, 36,65 | 1927.6, 2407.2, 1767.4 173.26 21146 0.0379 0.8572
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Fig. 16. OGMO and MGMO performance of IRAQI 71 bus: (a) onvergence rate; (b) ox plotc

On the other hand, the overall performance of the RDN is enhanced after the PV-DG is
incorporated; the reductions of active power losses are 66.739%, 66.858%, and 67.490% for
the OGMO, MGMOI, and MGMOI|, respectively. The reductions of reactive power losses are
66.736%, 66.856%, and 67.493% for the OGMO, MGMOI, and MGMOI, respectively, and
the voltage profile is shown in Fig. 17.

Moreover, the power produced by the PV-DG changes each hour. Figure 18(a) shows the
active power of three PV-DG positions on buses 8, 34, and 67 for the OGMO. Figure 18(b)
shows the active power of three PV-DG positions on buses 11, 35, and 66 for the MGMOI, and
Fig. 18(c) shows the active power of three PV-DG positions on buses 11, 36, and 65 for the
MGMOII. Figure 18 illustrates that the behavior of the generated power follows a realistic
physical pattern that reflects the variation in solar radiation throughout the day, without any
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illogical fluctuations or exaggeration in the resulting values. A clear gradient is also evident
between different node locations, consistent with local radiation levels in the network. These
results indicate that the proposed model maintained stable performance and accuracy across
various locations and operating conditions, confirming its adaptability and robustness against
overfitting.
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6. Conclusions
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This paper presents two modified versions of the original geometric mean optimizer
(OGMO) by modifying the linear control parameter and converting it to a nonlinear control
parameter using a logarithmic function as the first modification (MGMOI) and using an
exponential function as the second modification (MGMOII). The proposed algorithms
(OGMO, MGMOI, and MGMOII) have been validated and proven effective by performing
quantification on benchmark functions. In addition, the proposed algorithms were used to
calculate the optimal values and optimal locations of a PV-DG on the standard IEEE 33 bus
and the practical IRAQI 71 bus. Regarding the uncertainty in solar irradiation intensity,
mathematical modeling was performed using the beta probability distribution function (BPDF).
The simulation results showed a significant enhancement in the performance of both the
standard RDN and practical RDN after incorporating a PV-DG in the networks, which led to a
diminution in both active power losses (APL) and reactive power losses (RPL). The results
also showed that the voltage stability index (VSI) was maximized,“and the level of the voltage
profile for each bus has reached a level higher than the mipimum allowable limit (VDI is
minimized). Moreover, comparing the proposed algorithms-42 1ind/optimal solutions based on
convergence rate curves and box plot curves shows the ‘@orrinance and precedence of the
proposed algorithms according to the following order: the MGMOII is ranked first (reduction
RPL is 67.493% for IRAQI 71 bus), the MGMOI is.ranked second (reduction RPL is 66.856%
for IRAQI 71 bus), and the OGMO is rankeq Sest (reduction RPL is 66.736% for IRAQI 71
bus). This article can be highlighted in the futuré work by enhancing network resilience and the
impact of a PV-DG on the resilience ofithe RON in the event of earthquakes, typhoons, or
strong winds. Furthermore, the/faropeaad algorithms can be used to improve energy
management by integrating energy/(stoiage systems (EESs) and electric vehicles (EVs) into the
model to manage charging and.&iscriarging.
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