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Abstract: This paper proposes a modified geometric mean optimizer (MGMO) based on 

nonlinear functions of the control parameter, the first being a logarithmic function 
(MGMOI) and the second being an exponential function (MGMOII), while the original 
geometric mean optimizer (OGMO) has a linear control parameter. To demonstrate the ef-
fectiveness and efficiency of an MGMOI and MGMOII, they were implemented to 
benchmark functions, the results observed a best balance in exploration and exploitation 
and faster convergence to the best solution compared to the OGMO. On the other hand, 
the OGMO, MGMOI and MGMOII algorithms have been implemented on the standard 
IEEE 33 bus and the practical IRAQI 71 bus to obtain the optimal position and capacity of 
photovoltaic distributed generator (PV-DG), while the beta probability distribution func-

tion (BPDF) is implemented to model the uncertainty of solar irradiation. Moreover, the 
performances of radial distribution networks (RDNs) are improved after incorporating a 
PV-DG into the RDN; the power losses are minimized (65.159%, 65.500%, and 65.505% 
for the OGMO, MGMOI, and MGMOII, respectively, in the IEEE 33 bus, 66.739%, 
66.858%, and 67.490% for the OGMO, MGMOI, and MGMOII, respectively, in the 
IRAQI 71 bus), while the voltage profile and stability are maximized (15.205%, 15.205%, 
and 15.230% for the OGMO, MGMOI, and MGMOII, respectively, in the IEEE 33 bus, 
12.813%, 12.997%, and 12.997% for the OGMO, MGMOI, and MGMOII, respectively, 

in the IRAQI 71 bus). Finally, the proposed modified algorithms proved their superiority 
and dominance over the original algorithm in converging to the optimal solution for find-
ing the optimal position and sizing of a PV-DG (after 28, 25, and 19 iterations for the 
OGMO, MGMOI, and MGMOII, respectively, in the IEEE 33 bus, after 27, 23, and 20 it-
erations for the OGMO, MGMOI, and MGMOII, respectively, in the IRAQI 71 bus), and 
the performance of the MGMOII is better than the performance of the MGMOI because it 
requires fewer iterations to reach the optimal solution. 

Key words: beta probability distribution function, modified geometric mean optimizer, 

photovoltaic distributed generators, power losses minimized, practical Iraqi distribution 
networks, radial distribution networks 
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1. Introduction 

 

A photovoltaic distributed generator (PV-DG) is one of the most important green energy 

resources that can be used to generate electricity. In recent years, interest in using PV-DGs as 

distribution generators in radial distribution networks (RDNs) has grown due to their numerous 

advantages, including reduced losses, lower fuel costs, and increased stability and reliability of 

RDNs. A PV-DG can be used to generate electricity in remote and rural areas far from power 

generation centers, where traditional electricity grids are unavailable or unreliable [1]. This 

study aims to investigate the impact of climate change on the performance of home 

photovoltaic systems and develop smart models to predict energy consumption in distributed 

solar plants. Combining climate analysis with data forecasting aims to improve the efficiency 

and sustainability of solar energy systems and support smart energy management in the face of 

future environmental changes [2, 3].  Furthermore, several modern algorithms have been 

developed to improve the performance of electrical networks that use PV-DGs as distribution 

generators. Optimization algorithms are used to optimize network design and determine the 

optimal capacity and siting for PV-DGs. The use of optimization algorithms contributes to 

improving network efficiency, reducing costs, and enhancing the quality and reliability of 

electrical power [4]. 

The use of PV-DGs as distribution generators in RDNs can contribute to improving 

network efficiency and reducing electrical losses, and help to improve the quality of electrical 

power and reduce environmental pollution [5, 6]. Furthermore, using PV-DGs as distribution 

generators can reduce greenhouse gas emission [7, 8]. Finally, it is indicated that using PV-

DGs can improve grid stability and reduce the risk of power outages [9]. 

However, there are several challenges that must be overcome when using PV-DGs as 

distribution generators in RDNs, one of the main challenges is ensuring network stability and 

avoiding voltage and current fluctuations. This requires the development of control and 

monitoring techniques to ensure RDN’s stability and improve its performance [10, 11]. On the 

other hand, PV-DG use can be affected by changes in weather and environmental conditions 

[12]. 

In the literature, many researchers have addressed modern and developed algorithms for 

calculating the optimal location and size of PV-DGs to improve the overall performance of 

RDNs. In [13], AEO-OBL (artificial ecosystem-based optimization-opposition based Learning) 

is an improved version of AEO utilized to compute the optimal position and capacity of a PV-

DG of the RDN;  the paper is comprehensive in its integration of multiple renewable energy 

sources. However, it suffers from limitations related to simplistic assumptions and its limited 

reliance on actual operating data. In [14], an improved Harris Hawks optimization (IHHO) 

algorithm was introduced to obtain the optimal allocation of a PV-DG to improve the 

performance of the RDN; the advantages of this paper include its high accuracy and speed in 

arriving at optimal solutions. Its drawbacks include its heavy reliance on control parameters. In 

[15], the authors proposed a novel student psychology-based optimization (SPBO) to obtain the 

optimum site and size of a PV-DG in the RDN, the paper has the potential to balance 
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exploration and exploitation, but its limitations include only limited empirical validation and 

reliance on simulation studies. In [16], the authors proposed Genetic algorithm and Teaching 

learning-based optimization (GA-TLBO and TLBO-GA) two newly developed schemes of 

optimization algorithms, to solve the optimal integration of PV-DGs and optimal network 

reconfiguration; the advantage of the paper is its ability to deal with complex multi-objective 

problems, but its disadvantages are its reliance on limited simulation environments and the lack 

of practical verification in real networks. In [17], a modified version of the Search Group 

Algorithm (SGA) was presented, named the enhanced search group algorithm (ESGA), to 

determine the optimal placement and capacity of PV-DGs. The paper has high efficiency in 

exploring the solution space and speed in reaching optimal results. It faces limitations related 

to the weakness of testing the algorithm in realistic operating scenarios. In [18], the multi-

objective non-dominated sorting genetic algorithm II (NSGA-II) is presented to detect the 

optimal allocation of PV-DGs; the paper is distinguished by its comprehensive approach in 

integrating several evaluation criteria, but its limitations are the limited experimental 

verification. In [19], Rüppell’s fox optimizer (RFO) is proposed to determine the optimal 

locations and sizes of PV-DGs in RDNs; the paper is innovative in using a new algorithm 

inspired by animal behavior and suffers from limitations related to poor validation in real 

environments.  In [20], the authors introduced the AOA (arithmetic optimization algorithm) for 

detecting the optimal position and capacity of a PV-DG in the RDNs; the paper is distinguished 

by its speed in converging to the optimal solution, but its drawback is its reliance on limited 

simulation environments. In [21], an enhanced coyote optimization algorithm (ECOA) was 

implemented to optimally select the location and capacity of a PV-DG to decrease the power 

loss and improve voltage stability of the RDN, the paper has the ability to deal with continuous 

and integer variables effectively, with balanced exploration and exploitation in the solution 

space. Its disadvantages are the complexity of calculations and the long execution time. In [22], 

a modified version of homonuclear molecules optimization (mHMO) was developed to 

calculate the optimal allocation of a PV-DG; the paper presents an efficient integration 

between the PV-DG and DSTATCOM modules, which is flexible and adaptable. Its drawbacks 

are the difficulty of calculations and the long time to reach the solution. In [23], a multi-

objective fruit fly optimization algorithm based on population Manhattan distance 

(pmdMOFOA) is presented to solve the optimal integration of a PV-DG in the RDN; the paper 

features a good diversity of solutions when using the Manhattan distance between populations 

and the difficulty of ensuring the global optimal solution in large and complex networks. In 

[24], a teaching–learning-based optimization (TLBO) was employed to solve the optimal PV-

DG allocation in the RDN; the paper has the benefit of increasing system reliability and power 

quality and its limitation is the dependence of the results on the initial algorithm settings. In 

[25], an improved raven roosting optimization (IRRO) was implemented for optimal 

incorporating of a PV-DG in the RDN; the paper strikes a balance between the technical and 

economic aspects of distribution networks, and its drawback is the complexity of the 

calculations due to dealing with multiple objectives. In [26], a rider optimization algorithm 

(ROA) was employed to generate the optimal location and size of a PV-DG of the RDN; the 
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paper has an effective integration between PV-DG units and battery energy storage (BES) 

units, but it has computational complexity and longer execution time due to dealing with 

probabilistic variables and storage constraints. In [27], an adaptive modified whale 

optimization algorithm (A-MWOA) was proposed to obtain the optimal allocation of PV-DGs 

and optimal network reconfiguration; the paper features an integrated reconfiguration solution 

to increase network reliability, and its drawback is that the results depend on the initial 

algorithm settings. In [28], the authors presented a hybrid optimization method based on 

analytical and modern algorithms; the loss sensitivity factor (LSF) and sine cosine algorithm 

(SCA) was applied for optimal PV-DG allocation in the RDN; the paper strikes a balance 

between technical performance and operational cost, but is constrained by the complexity of 

the calculations due to the results relying on hybrid research techniques. In [29], an improved 

simulated annealing-based particle swarm optimization (SAPSO) was introduced for optimal 

incorporation of a PV-DG in the RDN; the paper features an ideal coordination between PV-

DGs and electric vehicles (EVs), but its drawback is the complexity of the mathematical model 

due to the dynamic interaction between PV-DGs and EVs. In [30], the Mixed Particle Swarm 

Optimization (MPSO) was presented to identify the optimal network reconfiguration and 

allocation of a PV-DG in the RDN. The algorithm in this paper provides high convergence 

speed and accuracy in solutions, but there is an increase in computational complexity due to 

the combination of the PV-DG allocation and network reconfiguration stages. 

Despite significant research efforts in identifying optimal locations for a PV-DG in the 

RDN, current challenges remain in electrical distribution networks, such as slow convergence 

and reliance on precise tuning criteria based on initial algorithm settings. The current research 

gap demonstrates the need for an efficient and effective algorithm to determine the optimal 

locations of a PV-DG in the RDN and reach the optimal solution with the least possible 

number of iterations. This paper aims to present a modified algorithm based on nonlinear 

optimization to achieve a balance between exploration and exploitation. The advantage of 

developing this algorithm is its accuracy and convergence speed, and that it can cope with the 

complexities of RDNs. 

According to the reviewed literature, this paper proposes the use of a modified geometric 

mean optimizer (MGMO) to detect the optimal location and capacity of a PV-DG for its 

integration into the RDN. Two types of MGMOs are proposed based on the benefits of the 

nonlinearity of control parameters; the first is the logarithmic function (MGMOI) and the 

second is the exponential function (MGMOII). As a result, a balance is achieved between 

exploration and exploitation, using the nonlinear control parameter to reach the best optimal 

solution.  

The major contributions of this paper are that PV-DGs are optimally sized and positioned 

by the proposed MGMO, as well as the optimal insertion of the PV-DGs to minimize power 

loss, improve voltage level and stability while maintaining the equality and inequality 

constraints. The main contributions of this paper are outlined as follows: 

– A modified geometric mean optimizer (MGMO) is proposed to enhance the performance 

of the original geometric mean optimizer (OGMO). 
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– Assessing the validity of the proposed algorithms (MGMOI and MGMOII) compared to 

the original algorithm (OGMO) using benchmark functions. 

– Consider the beta probability distribution function (BPDF) model as a model of the 

stochastic nature of PV-DGs.  

– Validating the performance of the proposed algorithms (MGMOI and MGMOII) using 

the standard IEEE 33 bus and the practical IRAQI 71 bus distribution networks.  

– Significant reduction in active and reactive power losses, significant increase in voltage 

level and stability when deploying a PV-DG in the RDN based on the proposed algorithms 

(MGMOI and MGMOII). 

This paper is organized as follows: Section 2 presents the mathematical modeling of a PV-

DG, and the BPDF calculation of the standard IEEE 33 bus and the practical IRAQI 71 bus 

distribution networks. Section 3 presents the mathematical modeling of the RDN, modeling of 

active and reactive power losses, and modeling of voltage deviation and the voltage stability 

index. Section 4 presents the proposed algorithms (MGMOI and MGMOII) compared with the 

original algorithm (OGMO), using benchmark functions. Section 5 presents and discusses the 

simulation results based on the MGMOI and MGMOII to determine the optimal location and 

capacity of a PV-DG in the RDN and compare them with the OGMO. Section 6 introduced the 

conclusion and future work of this paper. 

 

 

2. Mathematical modeling of PV-DG 

 

Solar irradiance plays an important role in calculating the power of PV-DGs. To obtain 

logical solutions, it is necessary to accurately model the solar irradiance at a specific location. 

By analyzing historical data collected for hourly and daily solar irradiance, the mean (𝜇) and 

standard deviation (𝜎) are determined. The beta probability distribution function (BPDF) was 

applied to describe the probabilistic nature of solar irradiance over a specific time period [12, 

13, 17, 25, 31, 32]. The beta distribution for solar irradiance (𝑠) is expressed mathematically by 

the equation: 

 𝑓𝑏(𝑠) = {
𝑎       0 ≤ 𝑠 ≤ 1, 𝛼, 𝛽 ≥ 0
0                 otherwise       

, (1) 

 𝑎 =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
𝑠(𝛼−1)(1 − 𝑠)(𝛽−1), (2) 

where: 𝑓𝑏(𝑠) is the beta distribution function of  𝑠, 𝑠 is the random parameter of solar radiation 

(kW m2⁄ ), 𝛼 and 𝛽 are the factors of 𝑓𝑏(𝑠), which are computed using the mean (𝜇) and 

standard deviation (𝜎) of solar irradiance as follows: 

 𝛼 =
𝜇∗𝛽

1−𝜇
, (3) 

 𝛽 = (1 − 𝜇) (
𝜇(1+𝜇)

𝜎2 − 1) . (4) 
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The probability of the solar radiation state 𝑠 during any given hour can be determined from 

Eq. (1) as follows: 

 𝜌(𝑠) = ∫ 𝑓𝑏(𝑠)d𝑠
𝑠2

𝑠1
, (5) 

where 𝑠1 and 𝑠2 are the solar irradiance limits of the state. The output power of a photovoltaic 

module can be modeled mathematically in any state by the equations: 

 𝑃PV𝑜
(𝑠) = 𝑁 × FF × 𝑉𝑦 × 𝐼𝑦, (6) 

 FF =
𝑉MPP × 𝐼MPP

𝑉𝑂𝐶 × 𝐼𝑆𝐶
 , (7) 

 𝑉𝑦 = 𝑉𝑂𝐶 − 𝐾𝑣 × 𝑇𝑐𝑦, (8) 

 𝐼𝑦 = 𝑠[𝐼𝑆𝐶 + 𝐾𝑖 × (𝑇𝑐𝑦 − 25)], (9) 

 𝑇𝑐𝑦 = 𝑇𝐴 + 𝑠 (
𝑁𝑂𝑇−20

0.8
), (10) 

where: 𝑁 represents the numbers of modules, FF is the fill factor, 𝐾𝑣 and 𝐾𝑖 are the 

temperature factors for voltage and current, respectively, 𝑇𝑐𝑦 and 𝑇𝐴 are the cell and ambient 

temperatures, respectively, 𝑁𝑂𝑇 is the normal operating temperature of cell.  

The total expected output power of photovoltaic module during any given period can be 

obtained from Eq. (5), and Eq. (5) is expressed mathematically by the equation: 

 𝑃PV(𝑡) = ∫ 𝑃PV𝑜
(𝑠)𝜌(𝑠)d𝑠

𝑡

0
. (11) 

The BPDF is employed on the standard IEEE 33 buses and the practical IRAQI 71 buses 

(BAQ-WEST-ALRAHMA) of RDNs, based on historical data. 

 

2.1. BPDF implemented on standard IEEE 33 buses 

The IEEE 33 buses, as shown in Fig. 1, consist of 32 lines, the base voltage is 12.66 kV, the 

base MVA is 100 MVA. The mean (𝜇) and standard deviation (𝜎) for every hour of the day are 

computed by the hourly historical solar radiation data obtained hourly for a period of three 

years, as given in Table 1 [17, 31, 32]. The BPDF of solar irradiance are calculated for each 

hour of the day, for example, Fig. 2(a) and Fig. 2(b) illustrate the BPDF at 9 AM and 4 PM, 

respectively. Since solar irradiance changes over a 24 hour per day, therefore, the power 

produced by the PV-DG changes for each hour. 
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Fig. 1. One line diagram of IEEE 33 buses 

 
Table 1.  Mean and standard deviation of solar radiation for IEEE 33 bus [17, 31, 32] 

Hour 6 7 8 9 10 11 12 

𝝁 (𝐤𝐖 𝐦𝟐⁄ ) 0.019 0.096 0.222 0.381 0.511 0.610 0.657 

𝝈 (𝐤𝐖 𝐦𝟐⁄ ) 0.035 0.110 0.182 0.217 0.253 0.273 0.284 

Hour 13 14 15 16 17 18 19 

𝝁 (𝐤𝐖 𝐦𝟐⁄ ) 0.648 0.590 0.477 0.338 0.190 0.080 0.017 

𝝈 (𝐤𝐖 𝐦𝟐⁄ ) 0.282 0.265 0.237 0.204 0.163 0.098 0.032 

 

 

Fig. 2. BPDF of solar irradiance: (a) BPDF at 9 AM; (b) BPDF at 4 PM 

 

2.2. BPDF implemented on practical IRAQI 71 buses 

The IRAQI 71 buses (BAQ-WEST-ALRAHMA), as shown in Fig. 3, consist of 70 lines, 

the base voltage is 11 kV, the base MVA is 100 MVA. The mean (μ) and standard deviation (σ) 

for every hour of the day are computed by the hourly historical solar radiation data obtained 

hourly for a period of three years, as given in Table 2. The BPDF of solar radiation are 
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calculated for each hour of the day, for example, Fig. 4(a) and Fig. 4(b) illustrate the BPDF at 

7 AM and 2 PM, respectively. Since solar irradiance changes over a 24 hour per day, therefore, 

the power produced by the PV-DG changes for each hour. 

 

 

Fig. 3. One line diagram of IRAQI 71 buses 

 
Table 2.  Mean and standard deviation of solar radiation for IRAQI 71 bus 

Hour 6 7 8 9 10 11 12 

𝝁 (𝐤𝐖 𝐦𝟐⁄ ) 0.0321 0.1661 0.3550 0.5553 0.7186 0.8430 0.9016 

𝝈 (𝐤𝐖 𝐦𝟐⁄ ) 0.0072 0.0311 0.0446 0.0395 0.0471 0.0398 0.0434 

Hour 13 14 15 16 17 18 19 

𝝁 (𝐤𝐖 𝐦𝟐⁄ ) 0.9203 0.8741 0.7707 0.6104 0.4199 0.2181 0.0569 

𝝈 (𝐤𝐖 𝐦𝟐⁄ ) 0.0367 0.0373 0.0370 0.0393 0.0327 0.0241 0.0086 
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Fig. 4. BPDF of solar irradiance: (a) BPDF at 7 AM; (b) BPDF at 2 PM 

 

 

3. Mathematical modeling of RDN 

 

This part of the paper presents the mathematical modeling of the RDN, including the 

modeling of active power losses (APL) and reactive power losses (RPL), the modeling of the 

voltage deviation index (VDI) and voltage stability index (VSI), as well as equality and 

inequality constraints [6, 7, 11]. 

 

3.1. Modeling of APL and RPL 

The aim is to decrease active power and reactive power losses in RDNs by incorporating 

PV-DGs in distribution networks. The APL and RPL modeling are mathematically expressed 

by the following equations: 

 APL = ∑ ∑ (
|𝑉𝑖−𝑉𝑗|

|𝑅𝑖𝑗+𝑋𝑖𝑗|
)

2

× 𝑅𝑖𝑗
𝑁𝐵

𝑗=2
𝑗≠𝑖,𝑗>𝑖

𝑁𝐵
𝑖=1 , (12) 

 RPL = ∑ ∑ (
|𝑉𝑖−𝑉𝑗|

|𝑅𝑖𝑗+𝑋𝑖𝑗|
)

2

× 𝑋𝑖𝑗
𝑁𝐵

𝑗=2
𝑗≠𝑖,𝑗>𝑖

𝑁𝐵
𝑖=1 , (13) 

where: 𝑁𝐵 is the buses’ number of the radial distribution network, 𝑉𝑖 is the voltage at the i-th 

bus, 𝑉𝑗  is the voltage at the j-th bus, 𝑅𝑖𝑗 is the resistance between the buses i-th and j-th, and 

𝑋𝑖𝑗  is the reactance between the buses i-th and j-th. 

 

3.2. Modeling of VDI and VSI 

The aim is to minimize the VDI and maximize the VSI of the RDN by incorporating 

PV‑DGs into distribution networks, the VDI and VSI modeling are mathematically expressed 

by the following equations: 
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 VDI = |
∑ 𝑉𝑖

𝑁𝐵
𝑖=1

𝑁𝐵
− 1|, (14) 

 VSI =
1

𝑁𝐵
∑ ∑ [|𝑉𝑖|

4 − 4(𝑃𝑗𝑅𝑖𝑗 − 𝑄𝑗𝑋𝑖𝑗)
2

− 4(𝑃𝑗𝑋𝑖𝑗 − 𝑄𝑗𝑅𝑖𝑗)
2

× |𝑉𝑖|
2]

𝑁𝐵
𝑗=2

𝑗≠𝑖,𝑗>𝑖

𝑁𝐵
𝑖=1 , (15) 

where 𝑃𝑗  is the active power at the j-th bus and 𝑄𝑗 is the reactive power at the j-th bus. 

 

3.3. Equality and inequality constraints 

A set of constraints (equality and inequality) must be satisfied; the active and reactive 

powers balanced represent equality constraints, which are mathematically expressed by the 

following equations:  

 𝑃slack + ∑ 𝑃PV,𝑖
𝑁PV
𝑖=1 = ∑ 𝑃𝑖

𝐷𝑁𝐵
𝑖=1 + APL, (16) 

 𝑄slack = ∑ 𝑄𝑖
𝐷𝑁𝐵

𝑖=1 + RPL, (17) 

where: 𝑃slack is the active power generation from the slack bus (bus 1),  𝑄slack is the reactive 

power generation from the slack bus (bus 1),  𝑃PV,𝑖  is the active power of the PV-DG at the i-th 

bus,   𝑃𝑖
𝐷  is the total active power demand of the RDN,  𝑄𝑖

𝐷  is the total reactive power demand 

of the RDN. 

Additionally, the voltage limits, generation of PV-DG unit limits, and PV-DG locations 

represent inequality constraints, which are mathematically expressed by the following 

equations: 

 𝑉𝑖
min ≤ 𝑉𝑖 ≤ 𝑉𝑖

max, (18) 

 𝑃PV,𝑖
min ≤ 𝑃PV,𝑖 ≤ 𝑃PV,𝑖

max, (19) 

 ∑ 𝑃PV,𝑖
𝑁PV
𝑖=1 ≤ ∑ 𝑃𝑖

𝐷𝑁𝐵
𝑖=1 + APL, (20) 

 2 ≤ PV − DGLocation ≤ 𝑁𝐵, (21) 

where: 𝑉𝑖
min   is the minimum voltage at the i-th bus, 𝑉𝑖

max is the maximum voltage at the i-th 

bus, 𝑃PV,𝑖
min  is the minimum active power of the PV-DG at the i-th bus,  𝑃PV,𝑖

max  is the maximum 

active power of the PV-DG at the i-th bus, PV − DGLocation   is the location of the PV-DG in 

the RDN. 

 

 

4. Modified geometric mean optimizer (MGMO) 

 

The GMO is a new optimization technique that mathematically simulates the qualitative 

properties of the geometric mean operator. This operator can simultaneously evaluate the 

objective function and the diversity of search agents in the search space. In the GMO, the 

weight of each agent is calculated based on the geometric mean; taking into account the 

corresponding measured objective values. Thus, the optimization problem can be solved based 
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on the state of the agent to guide other agents [33–35]. To perform the GMO process  

mathematically, the following steps can be used in calculation: 

Step 1: Calculate the fuzzy membership function (MF) for all agents using the following 

equation: 

 MF𝑗
iter =

1

1+exp
(−

4

𝜎iter√𝑒
×(𝑧best,𝑗

iter −𝜇iter))

,      𝑗 = 1, 2, … , 𝑁, (22) 

where: MF𝑗
iter is the MF value of the j-th personal best agent at the current iteration, 𝑍best,𝑗

iter  is 

the fitness function amount of the j-th personal best agent at the current iteration, 𝜎iter and 

 𝜇iter  are the standard and mean deviations of the fitness function amount of all agents at the 

current iteration. 

Step 2: Calculate the dual fitness index (DFI) for a search agent using the following 

equation: 

 DFI𝑖
iter = MF1

iter × … × MF𝑖−1
iter ∗ MF𝑖+1

iter × … × MF𝑁
iter = ∏ MF𝑗

iter𝑁
𝑗=1
𝑗≠𝑖

, (23) 

where DFI𝑖
iter is the DFI of the i-th agent at the current iteration, and 𝑁 is the number of the 

population. 

Step 3: Calculate the locations of guide agents using the following equation: 

 𝑌𝑖
iter =

∑ DFI𝑗
iter  × 𝑋𝑗

best
𝑗∈𝑁best,𝑗≠𝑖

∑ 𝐷𝐹𝐼𝑗
iter+𝜀𝑗∈𝑁best

 ,     (24) 

where: 𝑌𝑖
iter is the location parameter of the unique global directory agent computed for the 

agent i-th at the current iteration, 𝑋𝑗
best is the best location parameter of the j-th search agent, 𝜀 

is a very small positive number to prevent singularity. 

Step 4: The Gaussian mutation process is incorporated to grow the diversity of the guide 

agents. This mutation process is expressed using the following equation: 

 𝑌𝑖,mut
iter = 𝑌𝑖

iter + 𝑤 ∗ rand𝑛 × (Stdmax
iter − Stditer), (25) 

where: 𝑌𝑖,mut
iter  represents the mutated 𝑌𝑖

iter used for guide search agents at the current iteration, 

rand𝑛 represents a random number derived from the standard normal distribution,  Stdmax
iter  

represents the maximum standard deviation value of the best agents at the current iteration, 

 Stditer  represents the standard deviation parameter computed for the best agents at the current 

iteration, and 𝑤 is the control parameter used to keep balance between exploration and 

exploitation when searching for optimal solutions and described briefly in Section 4.1. 

Step 5: The update velocity and location of the agents are expressed using the following 

equations: 

 𝑉𝑖
iter+1 = 𝑤 × 𝑉𝑖

𝑖ter + 𝜑 × (𝑌𝑖,mut
iter − 𝑋𝑖

iter), (26) 

 𝑋𝑖
iter+1 = 𝑋𝑖

iter + 𝑉𝑖
iter+1, (27) 
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 𝜑 = 1 + (2 × rand − 1) × 𝑤 , (28) 

where: 𝑉𝑖
iter+1 is the velocity of the i-th agent at the (iter + 1) iteration, 𝑉𝑖

iter  is the velocity of 

the i-th agent at the current iteration, 𝑋𝑖
iter+1 is the location of the i-th agent at the (iter + 1) 

iteration, 𝑋𝑖
iter  is the location of the i-th agent at the current iteration, 𝜑 is the scaling parameter 

vector, rand is the random coefficient number that lies between 0 and 1. 

 

4.1. Control parameter (𝒘) 

The control parameter (w ) mentioned in Eq. (25), Eq. (26), and Eq. (28) decreases linearly 

in the original geometric mean optimizer (OGMO). This leads to an imbalance between 

exploration and exploitation when searching for optimal solutions within the search region. 

Therefore, the search process does not cover the entire region, and the chance of the agents 

converging to the optimal solution quickly is slow. To overcome this problem, an improvement 

on the control parameter (w )  is proposed where it decreases nonlinearly. Consequently, the 

optimal solution can be converged more quickly. 

In the OGMO, the control parameter (w ) is expressed by the equation: 

 𝑤 = 1 −
iter

maxiter
. (29a) 

Two formulas, a logarithmic function MGMOI and exponential function MGMOI were 

proposed in the modified geometric mean optimizer (MGMO). They are expressed 

mathematically using the following equations: 

 𝑤 = log2 [1 + (1 −
iter

maxiter
)

3

], (29b) 

 𝑤 = exp
(−2.5 × (

iter

maxiter
))

2

. (29c) 

According to Eqs. (29a), (29b), and (29c), Fig. 5 shows the behavior of the control 

parameter (w ) with iterations. The rate of change is observed to be constant for the OGMO; 

making it suitable for early convergence toward local optimum values. Therefore, we propose a 

nonlinear control parameter (MGMOI and MGMOII) to improve the global search. The 

nonlinear control parameter (MGMOI and MGMOII)  changes rapidly, which enhances the 

overall search ability, improves the search range efficiency, accelerates the convergence speed, 

and improves the flexibility of detecting optimal solutions. 

To verify the validity and effectiveness of the proposed control parameter, the MGMOI and 

MGMOII were implemented and compared with the OGMO based on benchmark functions in 

the next part of the paper. 
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Fig. 5. The control parameter (w) verse iterations 

 

4.2. Validation of MGMO based on benchmark functions 

To verify the validity, accuracy, effectiveness, and performance of the proposed modified 

algorithms, the MGMOI and MGMOII were applied to 5 benchmark functions and compared 

with the original algorithm (OGMO). The benchmark functions are expressed mathematically 

by the following equations: 

 𝑦1 = max𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑑}, (30) 

 𝑦2 = ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]𝑑

𝑖=1 , (31) 

 𝑦3 =
1

4000
∑ 𝑥𝑖

2 − ∏ cos (
𝑥𝑖

√𝑖
) + 1𝑑

𝑖=1
𝑑
𝑖=1 , (32) 

 𝑦4 = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4, (33) 

 𝑦5 = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−15
𝑖=1 , (34) 

where: 𝑦1 represents the unimodal benchmark function, 𝑦2 and 𝑦3 represent the multimodal 

benchmark functions, while 𝑦4 and 𝑦5 represent the fixed-dimension multimodal benchmark 

functions [16, 36]. 

The statistical performance represented by the average (mean), standard deviation (std), 

best and execution time was presented in Table 3. The results were obtained from 20 runs, a 

maximum iteration of 50, and a population of 50. The specifications of the personal computer 

are:   Intel(R) Core(TM) i5-7200U CPU @2.50Gz, Installed RAM 4.00 GB. 

 
Table 3.  The statistical performance of the benchmark functions 

 Mean Std Best Time 

 OGMO 1.9842e-12 6.0191e-12 4.3521e-13 7.7332 
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𝒚𝟏 MGMOI 2.8891e-31 9.6687e-31 1.1563e-31 7.7005 

MGMOII 7.3363e-32 2.3204e-32 3.3462e-33 7.6836 

 

𝒚𝟐 

OGMO 22.2365 39.0695 0.000 7.7302 

MGMOI 7.1739 26.6196 0.000 7.6648 

MGMOII 5.7727 25.8164 0.000 7.6269 

 

𝒚𝟑 

OGMO 9.7235e-07 4.3485e-06 0.000 8.1201 

MGMOI 6.2741e-13 5.5382e-13 0.000 8.0761 

MGMOII 4.9693e-22 8.6603e-21 0.000 7.8127 

 

𝒚𝟒 

OGMO –1.0297 4.6227e-03 –1.0316 6.9766 

MGMOI –1.0309 1.7207e-03 –1.0316 6.9178 

MGMOII –1.0519 1.0766e-05 –1.0316 6.8792 

 

𝒚𝟓 

OGMO –8.1411 3.2216 –10.1532 7.9344 

MGMOI –8.4309 3.1659 –10.1532 7.8634 

MGMOII –9.2715 2.2017 –10.1532 7.7789 

 

Figures 6(a), 7(a), 8(a), 9(a), and 10(a) illustrate the convergence rates of the proposed 

algorithms. Consequently, by carefully observing the shape of the curves, it is clear that the 

MGMOII converges to the best solution faster and with less iteration compared to the MGMOI 

and OGMO. Moreover, the MGMOI converges to the best solution faster and with fewer 

iterations compared to the OGMO. 

In addition to the convergence rates, the results were represented using box plots to visually 

depict the distribution of the data in the quartiles. The box plot curves were presented in 

Figs. 6(b), 7(b), 8(b), 9(b), and 10(b), where the MGMOII achieved the best distribution and 

lowest mean line values compared to the MGMOI and OGMO. Furthermore, the MGMOI 

achieved the best distribution and lowest mean line values compared to the OGMO. 
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Fig. 6. OGMO and MGMO performance of 𝑦1: (a) convergence rate; (b) box plot 

 

 

Fig. 7. OGMO and MGMO performance of 𝑦2: (a) convergence rate; (b) box plot 

 

 

Fig. 8. OGMO and MGMO performance of 𝑦3: (a) convergence rate; (b) box plot 
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Fig. 9. OGMO and MGMO performance of 𝑦4: (a) convergence rate; (b) box plot 

 

 

Fig. 10. OGMO and MGMO performance of 𝑦5: (a) convergence rate; (b) box plot 

 

 

5. Simulation results and discussion 

 

A MGMO is implemented on the standard IEEE 33 bus RDN and on the practical 

IRAQI 71 bus (BAQ-WEST-ALRAHMA) RDN; the validation of the MGMOI and MGMOII 

to compute the optimal position and sizing of the PV-DG is satisfied compared with the 

OGMO. The flowchart for detecting the optimal allocation of the PV-DG in the RDN using the 

OGMO, MGMOI, and MGMOII is shown in Fig. 11, and the pseudo-code algorithm has been 

shown in Fig. 12. The results of load flow analysis are carried out using the backward-

foreword sweep algorithm. 
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5.1. Results of IEEE 33 buses RDN 

The one-line diagram of the IEEE 33 bus is presented in Fig. 1; it consists of 32 lines, the 

base voltage is 12.66 kV, the base MVA is 100 MVA, the total active power load is 3 715 kW, 

and the total reactive power load is 2300 kvar [37]. The base case power flow results are as 

follows: The APL is 210.99 kW, the RPL is 143.03 kvar, the VDI is 0.0547 per unit, and the 

VSI is 0.8043 per unit. 

 

Fig. 11. Flowchart of the proposed MGMO to detect the optimal allocation of PV-DG 
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Fig. 12. Algorithm GMO for optimal PV-DG allocation 

The proposed algorithms were implemented to determine the three optimal PV-DG sizes 

and locations when the APL is considered as an objective function (OF). From the results 

presented in Table 4, we observed an improvement in the overall performance of the RDN 

compared to the baseline case. From the convergence rate curves illustrated in Fig. 13(a), it is 

observed that the proposed algorithms accelerated and converged to the optimal solution are in 

the following order: the MGMOII is ranked first, the MGMOI is ranked second, and the 

OGMO is ranked last. Furthermore, Fig. 13(b) illustrates the box plot behavior of the proposed 

algorithms, and it is observed that some of them outperform and dominate each other in the 

following order: the MGMOII ranks first, the MGMOI ranks second, and the OGMO ranks 

last. 

 
Table 4.  Results of PV-DG for IEEE 33 buses 

  PV location PV size (kW) APL (kW) RPL (kvar) VDI (P.U) VSI (P.U) 

OGMO  13, 25, 30 821.3, 883.5, 1069.4 73.51 50.99 0.0190 0.9266 

MGMOI  14, 24, 30 769.7, 1096.2, 1067.4 72.79 50.69 0.0191 0.9266 

MGMOII  14, 24, 30 800.8, 1092.6, 1054.3 72.78 50.65 0.0190 0.9268 
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Fig. 13. OGMO and MGMO performance of IEEE 33 bus: (a) convergence rate; (b) box plot 

 

On the other hand, the overall performance of the RDN is enhanced after incorporated the 

PV-DG; the reductions of active power losses are 65.159%, 65.500%, and 65.505% for the 

OGMO, MGMOI, and MGMOII, respectively. The reductions of reactive power losses are 

64.350%, 64.559%, and 64.587% for the OGMO, MGMOI, and MGMOII, respectively, and 

the voltage profile is shown in Fig. 14. 

Moreover, the power produced by the PV-DG changes each hour. Figure 15(a) shows the 

active power of three PV-DG positions on buses 13, 25, and 30 for the OGMO. Figure 15(b) 

shows the active power of three PV-DG positions on buses 14, 24, and 30 for the MGMOI, and 

Fig. 15(c) shows the active power of three PV-DG positions on buses 14, 24, and 30 for the 

MGMOII. The power curves shown in Fig. 15 follow a realistic and regular physical pattern 

that reflects the natural variation in solar radiation throughout the day, without any anomalous 

behavior or inflated model output. This confirms that the proposed model was not overly tuned 

to specific data, but rather demonstrated stable and consistent performance at different points 

on the grid and under a variety of conditions, enhancing its generalizability and reducing the 

risk of overfitting. 
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Fig. 14. The voltage profile of IEEE 33 bus 

 

 
(a)                                                         (b)                                                (c) 

Fig. 15. PV output power of IEEE 33 bus: (a) PV by OGMO; (b) PV by MGMOI; (c) PV by 
MGMOII 

 

5.2. Results of IRAQI 71buses RDN 

The one-line diagram of the IRAQI 71 bus (BAQ-WEST-ALRAHMA) is presented in 

Fig. 3; it consists of 70 lines, the base voltage is 11 kV, the base MVA is 100 MVA, the total 

active power load is 8956 kW and the total reactive power load is 5542 kvar. The base case 

power flow results are as follows: the APL is 532.95 kW, the RPL is 650.51 kvar, the VDI is 

0.0674 per unit, and the VSI is 0.7586 per unit. 

The proposed algorithms were implemented to determine the three optimal PV-DG sizes 

and locations when the APL is considered as an objective function (OF). From the results 

presented in Table 5, we observed an improvement in the overall performance of the RDN 
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compared to the baseline case. From the convergence rate curves illustrated in Fig. 16(a), it is 

observed that the proposed algorithms are accelerated and converged to the optimal solution in 

the following order: the MGMOII is ranked first, the MGMOI is ranked second, and the 

OGMO is ranked last. Furthermore, Fig. 16(b) illustrates the box plot behavior of the proposed 

algorithms, and it is observed that some of them outperform and dominate each other in the 

following order: the MGMOII ranks first, the MGMOI ranks second, and the OGMO ranks 

last. 

 
Table 5.  Results of PV-DG for IRAQI 71 buses 

 PV location PV size (kW) APL (kW) RPL (kvar) VDI (P.U) VSI (P.U) 

OGMO 8, 34, 67 1972.4, 2398.6, 1781.7 177.26 216.38 0.0383 0.8558 

MGMOI 11, 35, 66 1941.3, 2404.8, 1758.5 176.63 215.60 0.0379 0.8572 

MGMOII 11, 36, 65 1927.6, 2407.2, 1767.4 173.26 211.46 0.0379 0.8572 

 

 

Fig. 16. OGMO and MGMO performance of IRAQI 71 bus: (a) onvergence rate; (b) ox plotc 

 

On the other hand, the overall performance of the RDN is enhanced after the PV-DG is 

incorporated; the reductions of active power losses are 66.739%, 66.858%, and 67.490% for 

the OGMO, MGMOI, and MGMOII, respectively. The reductions of reactive power losses are 

66.736%, 66.856%, and 67.493% for the OGMO, MGMOI, and MGMOII, respectively, and 

the voltage profile is shown in Fig. 17.  

Moreover, the power produced by the PV-DG changes each hour. Figure 18(a) shows the 

active power of three PV-DG positions on buses 8, 34, and 67 for the OGMO. Figure 18(b) 

shows the active power of three PV-DG positions on buses 11, 35, and 66 for the MGMOI, and 

Fig. 18(c) shows the active power of three PV-DG positions on buses 11, 36, and 65 for the 

MGMOII. Figure 18 illustrates that the behavior of the generated power follows a realistic 

physical pattern that reflects the variation in solar radiation throughout the day, without any 
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illogical fluctuations or exaggeration in the resulting values. A clear gradient is also evident 

between different node locations, consistent with local radiation levels in the network. These 

results indicate that the proposed model maintained stable performance and accuracy across 

various locations and operating conditions, confirming its adaptability and robustness against 

overfitting. 

 

 

Fig. 17. The voltage profile of IRAQI 71 bus 

 

 
(a)                                                         (b)                                                (c) 

Fig. 18. PV output power of IRAQI 71 bus: (a) PV by OGMO; (b) PV by MGMOI; (c) PV by 
MGMOII 

 

 

6. Conclusions 
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This paper presents two modified versions of the original geometric mean optimizer 

(OGMO) by modifying the linear control parameter and converting it to a nonlinear control 

parameter using a logarithmic function as the first modification (MGMOI) and using an 

exponential function as the second modification (MGMOII). The proposed algorithms 

(OGMO, MGMOI, and MGMOII) have been validated and proven effective by performing 

quantification on benchmark functions. In addition, the proposed algorithms were used to 

calculate the optimal values and optimal locations of a PV-DG on the standard IEEE 33 bus 

and the practical IRAQI 71 bus. Regarding the uncertainty in solar irradiation intensity, 

mathematical modeling was performed using the beta probability distribution function (BPDF). 

The simulation results showed a significant enhancement in the performance of both the 

standard RDN and practical RDN after incorporating a PV-DG in the networks, which led to a 

diminution in both active power losses (APL) and reactive power losses (RPL). The results 

also showed that the voltage stability index (VSI) was maximized, and the level of the voltage 

profile for each bus has reached a level higher than the minimum allowable limit (VDI is 

minimized). Moreover, comparing the proposed algorithms to find optimal solutions based on 

convergence rate curves and box plot curves shows the dominance and precedence of the 

proposed algorithms according to the following order:  the MGMOII is ranked first (reduction 

RPL is 67.493% for IRAQI 71 bus), the MGMOI is ranked second (reduction RPL is 66.856% 

for IRAQI 71 bus), and the OGMO is ranked last (reduction RPL is 66.736% for IRAQI 71 

bus). This article can be highlighted in the future work by enhancing network resilience and the 

impact of a PV-DG on the resilience of the RDN in the event of earthquakes, typhoons, or 

strong winds. Furthermore, the proposed algorithms can be used to improve energy 

management by integrating energy storage systems (EESs) and electric vehicles (EVs) into the 

model to manage charging and discharging. 
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