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Abstract: The paper ' resents an abnormal noise detection method for a three-phase induc-
tion motor. The follow):ig motor conditions were analyzed: healthy (H), motor with one
broken rotor bar (LBRB), motor with two broken rotor bars (2BRB), and motor with three
broken rotor bars (3BRB). The dataset was split into 48 training samples (12 per class) and
168 test samples (42 per class) for the training and evaluation of the neural networks. Linear
predictive coding (LPC) was used for feature extraction. The next three original neural net-
works were proposed for classification: Neural Network V01, V02, and VV03. The authors
of the paper also used ResNet-50. The proposed approach achieved a recognition efficiency
of 100%.
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1. Introduction

Electric motor diagnostics are essential for safety and cost efficiency in industrial
applications. Detection of electric motor faults, such as bearing wear, winding defects,
misalignment, shorted rotor coils, and broken bars, can prevent costly breakdowns, extend motor
lifespan, and reduce repair expenses. The fault diagnosis technique minimizes unplanned
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downtimes, keeping production lines running and avoiding financial losses. The fault diagnosis
technique also reduces the risk of fires and equipment damage caused by motor failures. Fault
diagnosis techniques provide financial savings, higher safety standards, and uninterrupted
production.

2. Literature review on acoustic fault diagnosis

Existing literature includes numerous studies on acoustic-based fault diagnosis for electric
motors [1-12]. Article [1] presented a fault diagnosis technique for three-phase induction motors
using acoustic analysis. Acoustic signals for three conditions of the motors were analyzed:
healthy, motor with two broken bars, and motor with a faulty ring of the squirrel cage. The
models were trained on 60 one-second samples (20 per class) and tested on 180 (60 per class).
The microphone was positioned parallel to the induction motor. The authors introduced an
innovative feature extraction method called MoD-7 (maxima-«<*aifferences between conditions).
neural networks, GooglLeNet, and ResNet-50 were used far (assification. The computed results
were very high, achieving a diagnostic accuracy of 100%; across all three conditions.

Article [2] presented a method for diagnosing faults in commutator motors using acoustic
data and a transfer learning approach. The mzuwad called high contrast frequency maps with
lowpass filter (HCFMwLF) was proposed. The ¢uthor of the paper analyzed the following states
of the commutator motor: healthy, brokeri gear,’broken gear tooth, broken fan, short-circuit in
stator winding, and four drilled hoiss 1i=the front bearing. The models were trained on 814
training samples and tested on 111,(rhe¥<669B microphone was used. The study evaluated three
deep learning architectures: GgogLeMet, ResNet-50, and VGG-19, achieving 100% efficiency
of fault classification.

The next article propoaad a ovel approach to address the issue of mill fault diagnosis under
limited datasets [3]. The progosed approach leveraged vibration and acoustic signal analysis to
enhance diagnostic accuracy. Two experimental datasets were used, and the computed results
showed high diagnostic performance despite data constraints. The models were trained on 146
samples and evaluated on 1314 samples.

A novel rolling bearing fault diagnosis method based on feature extraction and a word bag
model was presented [4]. The experimental evaluation was conducted using 400 test samples. It
used the adaptive extended bag-of-words model (AEBW). The approach showed high
effectiveness, achieving a classification accuracy of 98.2% for five distinct fault types. This
methodology presents a viable solution for mechanical equipment condition monitoring.

The next paper presented fan fault diagnosis using acoustic emission [5]. The original dataset
of 120 samples was expanded to 840 through data augmentation. Three different microphone
positions were analyzed. The authors used a spectrogram and a convolutional neural network.
The following conditions were analyzed: no-fault and fault. The accuracy of the proposed
technique was equal to 0.95.
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In another study, an acoustic fault diagnosis technique for rolling bearing faults was presented
[6]. The proposed approach was based on Squeeze and Excitation ResNet (SE-ResNet). The
computed accuracy for rolling bearing faults and SE-ResNet was equal to 99.02%.

The following paper proposed the use of the artificial fish swarm algorithm (AFSA) for
rolling bearing fault diagnosis [7]. The method was based on the analysis of acoustic signals, and
the results showed that it can effectively diagnose bearing faults.

The following article proposed a few-shot learning-based graph neural network model for
the acoustic analysis of planetary gears in a wind turbine gearbox [8]. The dataset of 120 images
(24 categories) was split into training (70 images, 14 categories), test (25 images, 5 categories),
and validation (25 images, 5 categories) sets. The authors used the short-time Fourier transform
(STFT) to preprocess the acoustic data. The proposed method achieved an accuracy of 98.69%.

The next method is based on analyzing the features of vibration and acoustic signals from an
induction motor using a multi-input convolutional neural network f3]. Six operating conditions
were analyzed for the bearing and gear. The accuracy of the preposed /nethod was in the range
of 93% to 100%.

A fault diagnosis technique for milling machines using.acéustic signals was presented in [10].
A total of 400 samples were recorded, with 100 samnles pe- investigated class. The following
conditions were analyzed: bearing fault, gear fault, healthy state, and tool fault. A deep learning
model optimized using a genetic algorithm \vaayusea for the analysis. The accuracy of the
proposed methods was in the range of 91% to 180%:

The study introduces an acoustic-bated framework for compound fault diagnosis. The
proposed framework is based oiman™=R-LSGAN - a latent space-controlled generative
adversarial network with a local pevception nechanism [11]. The proposed method achieved a
diagnostic accuracy of 93.49%:

A rolling bearing fault diagnpsis method using vibro-acoustic data fusion is introduced [12].
The authors of the study wsed fast Fourier transform (FFT) and a convolutional neural network
(CNN). The accuracy of the groposed method reaches 99.98%.

3. Acoustic measurements

Four similar three-phase induction motors (500 W) were analyzed. The following motor
conditions were analyzed: healthy motor, motor with one broken rotor bar, motor with two
broken rotor bars, and motor with three broken rotor bars (Fig. 1). The motors were mounted to
the ground. The motors were arranged as shown in Figs 1 and 2. The room was 7 meters by 5
meters. A Redmi Note 9 smartphone with a microphone, positioned 0.25 meters from each
motor, captured the sound in AAC (advanced audio coding) format at a 48 kHz sampling rate,
later converted to WAV (waveform audio file) format at 44.1 kHz for analysis. The use of a
smartphone for measurements is justified by its ubiquity, cost-effectiveness, and sufficient
technical capability for acoustic measurement. Smartphones are equipped with high-quality
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microphones and processing power for capturing and storing acoustic signals. A smartphone can
perform rapid and low-cost diagnostics.

The acoustic recording of the motor was performed in the room. The following tasks were
taken to minimize ambient noise, such as closing windows and having no mechanical ventilation.
Under these conditions, the sources of interference were reduced to reverberations and sound
reflections from the walls. The detection method achieved a 100% recognition efficiency. It
indicates that ambient factors were at an amplitude level sufficiently low not to overlap with the
essential harmonic components of the motor acoustic signals.
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Fig. 2. Measurements of acoustic signals of three-phase induction motors

Acoustic signals of three-phase induction motors are presented in Fig. 3.



This paper has been accepted for publication in the AEE journal. This is the version, which has not been
fully edited and content may change prior to final publication.
Citation information: DOI 10.24425/aee.2026.156804

[Pa]
[Pa]

=)

&

Amplitude of
acoustic pressure
Amplitude of
acoustic pressure

0.2 -02

a3 . . . . . 03
0 05 1 15 2 25 3 35 4 a 05 1 15 2 25 3 as 4
Pali 0t

Number of sample Number of sample

G (b)

[Pa]
[Pa]

- pressure

Amplitude of
acoustic pressure
Ampli ude of

acousti

a 0‘5 1 1.5 2 2‘5 '\ 3 nl. o 0‘5 1 1 .ﬁ ? 7.5 'l ’4‘"5 -; .
Number of Sampis e Number of sample o
() (d)
Fig. 3. Acoustic signals £ three-phase induction motors: (a) healthy; (b) motor with one broken rotor
bar; (c) motor w.th two broken rotor bars; (d) motor with three broken rotor bars

4. Acoustic fault diagnosis method

The authors proposed an innovative diagnostic technique based on linear predictive coding
(LPC) and neural networks V01, V02, and V03 (Fig. 4). First, the acoustic signal is recorded
using a smartphone and saved in AAC format at a 48 kHz sampling rate. The signal is then
converted into WAV (waveform audio file format) at 44.1 kHz for further processing. The
recorded acoustic data are segmented into 1-second samples. 196 and 25 LPC coefficients are
computed. Next, LPC coefficients are subsequently reshaped into acoustic images with
dimensions of 224 x 224 x 3. Three original neural networks are proposed and implemented:
Neural Network V01, V02, and VO03. The ResNet-50 neural network is also used for acoustic
analysis.
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4.1. Linear predictive coding

Linear predictive couing (LRC) is a method for compressing signals, speech, using modeling
audio signals in the time doaain. LPC assumes that the vocal tract can be represented by a filter.
LPC is widely used in speech compression, speech synthesis, speech recognition, speaker
identification, and speech signal analysis. LPC assumes that the current sample of a signal y(n)
can be approximated as a linear combination of its previous samples. The current sample y(n)
can be expressed as (1):

y(n) =Xi_, ;- y(n—k), 1)

where, y(n) is the current sample, ax is the LPC coefficient with the k-index, p is the prediction
order.

The linear predictive coding determines the LPC coefficients that minimize the error between
the actual sample and the predicted sample. The LPC coefficients can be achieved using methods
such as the autocorrelation method or the covariance method. The advantages of LPC are its
simplicity and good approximation of the vocal tract. The limitation of LPC is its sensitivity to
background noise. A comprehensive discussion of LPC can be found in [13-15].
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4.2. Acoustic images
The proposed neural networks require images with a resolution of 224 x 224 x 3. The

acoustic signals of an induction motor are first converted into LPC coefficients (196 coefficients
in total, derived from the original 197 coefficients minus the first coefficient, and 25 coefficients,
derived from the original 26 minus the first coefficient). These coefficients are then transformed
into a 14 x 14 matrix and a 5 X 5 matrix. Next, the computed matrices are reshaped into the
acoustic image with a target resolution of 224 x 224 x 3. The computed 14 X 14 acoustic

images are shown in Fig. 5.

14 pixels
a) b) c) d)
Fig. 5. Acoustic images of an induction motor\( 19w 14 matrix representing 196 LPC coefficients):

(a) healthy (H); b) motor with one broken rotcy’bar(1BRB); (c) motor with two broken rotor bars
(2BRB); (d) motor.with thiee broken rotor bars (3BRB)

14 pixels

We can see that the LPC coefficients ‘are different for the four acoustic signals of the
induction motor. These computetsacoustic images serve as inputs for the proposed Neural
Networks (V01, V02, and’v/02)./ 122re are also other types of neural networks described in the

literature [16, 17, 18].

4.3. Neural Network V01
Neural Network V01 is a small neural network designed for image recognition. The required

input images must have a resolution of 224 x 224 x 3. The Neural Network V01 consists of 8
blocks and is illustrated in Fig. 6.
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4.4. Neural Network V02

Neural Network V02 is also a neural \network designed for image recognition. The input
images must have a resolution of 224 X224 x 3. It is similar to Neural Network V01. The
Neural Network V02 is presentes in pig.</. Additional layers have been added, including:
Convolution2D Layer (3 X 3,(32\. batch Normalization Layer, ReLU Layer, MaxPooling2D
Layer, and FullyConnettedrLayar (32). The layers in Neural Network V02 are connected

sequentially.
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Fig. 7. Structure of Neural Network V02

4.5. Neural Network V03

Neural Network V03 is a neural network designed for image recognition. Its image input
layer requires images in 224 x 224 x 3 format. The Neural Network V03 is shown in Fig. 8.
The architecture of Neural Network VO3 is illustrated in Fig. 8 and includes the following
additional layers: Convolution2D Layer (1 x 1, 16), Convolution2D Layer (3 x 3, 32),
FullyConnected Layer (64), Batch Normalization Layer, and DepthConcatenation Layer. The
layers in the VO3 Neural Network are connected in parallel, enabling more complex feature
processing.



This paper has been accepted for publication in the AEE journal. This is the version, which has not been
fully edited and content may change prior to final publication.
Citation information: DOI 10.24425/aee.2026.156804

Image Input Layer
(224 x 224 X 3)

.

l |

Convolution2D Layer Convolution2D Layer
(1 x 1,16) (3x3,32)
I

Batch Normalization Layer Batch Normalization Layer

' i

[ )
[ l
e ) [ i
[ 1
[ )
[ ]

—

ConvolutxonZD Layer
(3 >< 3,32)

Batch Normalization Layer

ReLU Layer

l ]

DepthConcwtenarlo thayd

MaxPooling2D Lay (2 x 2)
i

[ FuilyConnected Layer
(64 neurons)

g

\ IeLU Layer

!

e

i

Dropout Layer
i

J
L )
[ FullyConnected Layer ]
[ )
)

(4 neurom)

Softmax Layer

[ Classification Layer

Fig. 8. Structure of Neural Network V03

4.6. ResNet-50

ResNet-50 is a convolutional neural network. It was introduced in 2015 to solve the vanishing
gradient problem using residual blocks. It allows gradients to flow directly by adding input to
deeper layers. It enables stable training. ResNet-50 also uses bottleneck blocks (1 x 1, 3 x 3,
1 x 1 convolutions) to reduce computational complexity. It achieved very good results for object
detection. It is an efficient neural network using residual blocks. Further details can be found in
the literature [19-25].
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5. Acoustic analysis of the three-phase induction motor

Acoustic analysis was performed on four induction motors with the following conditions:
healthy (H), motor with one broken rotor bar (1BRB), motor with two broken rotor bars (2BRB),
and motor with three broken rotor bars (3BRB). The authors used 48 training samples (12
training samples per class) to train the neural networks. The authors used 168 test samples (42
test samples per class) to test the neural networks. K-fold cross-validation was applied in the
acoustic analysis. Recognition efficiency (Er) was computed as follows (2):

Er = 100% * (RecognizedTestSamples / OneClassTestSamples), 2

where: RecognizedTestSamples — correctly identified test samples/OneClassTestSamples — test
samples per class (42 test samples in the study).

Table 1 presents the acoustic analysis results of the threg=phase/induction motor using LPC
(196 coefficients), and the following neural networks: Mets2!Network V01, V02, V03, and
ResNet-50.

Table 1. Acoustic analysis results of the three-phasctaduction motor using LPC (196 coefficients),
and Neural Network V0%, V2, V03, and ResNet-50

Condition of the ) Er [%]
motor ResNet-50 ffa\l/ \ Iftwork Neura\l/l(;lstwork Neura{/l(\)lgtwork
Er, healthy (H) 100 100 100 100
Erz, (1BRB) 109 100 100 100
Ers, (2BRB) 1007 100 100 100
Ers, (3BRB) 100 100 100 100

Table 2 presents the acoustic analysis results of the three-phase induction motor using LPC
(25 coefficients), and the following neural networks: Neural Network V01, V02, V03, and

ResNet-50.

Table 2. Acoustic analysis results of the three-phase induction motor using LPC (25 coefficients),

and Neural Network V01, V02, V03, and ResNet-50

0,
Condition of the Er [%0]
motor ResNet- Neural Network Neural Network Neural Network
50 V01 V02 V03
Er1, healthy (H) 100 100 100 97.6

11
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Erz, (1BRB) 100 100 100 100
Ers, (2BRB) 100 100 100 100
Ers, (3BRB) 100 100 100 100

Confusion matrices for neural networks are presented in Figs. 9-11.
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Fig. 10. Visualization of the confusion matrix for Neural Network V03 (196 LPC coefficients)
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Fig. 11. Visualization of the confusion matrix for Neural Network V03 (25 LPC coefficients)

The results of the acoustic analysis are presented in Tables 1 anc=2"The proposed LPC-based
approach, combined with neural networks, offered an effectivesi&alt diagnosis for three-phase
induction motors. This methodology shows potential for diaginogirig other motor types and fault
conditions when combined with LPC and neural networ techniques.

6. Discussion

The developed approach has high reaaanition efficiency (Er = 100%) for detecting faults of
the induction motor. Computed ressltyare competitive with those in the literature [1]. Several
diagnostic approaches exist for induation motor condition monitoring: acoustic-based, vibration-
based, electrical signal andiysiy, Arthermography. Acoustic-based methods utilize sound wave
analysis to detect various faults, including bearing defects, air gap irregularities, and certain
electrical faults. Advantagep~of acoustic-based methods are non-invasive measurement and
potential for early fault detection. However, disadvantages are particularly susceptible to
environmental noise and signal distortions [2]. Vibration-based methods use accelerometers.
These methods are efficient for detecting mechanical faults in induction motors, such as
misalignment and bearing wear. However, they are less effective for electrical faults. Electrical
signal analysis, particularly motor current signature analysis (MCSA), effectively detects stator
and rotor faults by monitoring current signatures [26]. Electrical signal analysis is particularly
effective for identifying rotor and stator winding defects, air gap eccentricity, and supply voltage
imbalances. Thermal analysis serves as a valuable diagnostic tool for identifying thermal
anomalies in induction motors, including broken rotor bar faults, winding insulation degradation,
and bearing lubrication failures [27]. The advantage of thermal analysis is that it is a non-invasive
measurement. The next advantage is visual fault representation through thermal maps and
detecting developing faults before failure. However, a dirty motor can be difficult to diagnose.
Thermal analysis can be difficult for changes in thermal radiation from the environment, e.g.,
100 electric motors in the same room. While each method has strengths, combining acoustics,

13
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vibrations, and electrical analysis provides the most comprehensive fault coverage. Thermal
analysis can serve as a supplementary tool for thermal monitoring.

7. Conclusions

The abnormal noise detection method for a three-phase induction motor is presented in the
paper. The following motor conditions were analyzed: healthy motor, motor with one broken
rotor bar, motor with two broken rotor bars, and motor with three broken rotor bars. Four similar
three-phase induction motors were analyzed. The authors used linear predictive coding for
feature extraction. Three original neural networks were proposed and implemented: Neural
Network V01, V02, and VV03. The ResNet-50 neural network was also used for acoustic analysis.

The proposed approach correctly identified all faults. Broken metor rotor bars can be detected
using the proposed approach. Acoustic fault diagnosis has potenual applications in various
industries, such as mining, oil, robotics, aviation, and autosawmtive sectors. Implementing fault
diagnosis for industrial motors could lead to significant cast&avings.

Future research will focus on developing new_dicancostic methods that utilize multiple
signals, including acoustic and electric data. The,praposed fault diagnosis techniques are
expected to benefit both society and industry.
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