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Abstract: The paper presents an abnormal noise detection method for a three-phase induc-
tion motor. The following motor conditions were analyzed: healthy (H), motor with one 
broken rotor bar (1BRB), motor with two broken rotor bars (2BRB), and motor with three 
broken rotor bars (3BRB). The dataset was split into 48 training samples (12 per class) and 
168 test samples (42 per class) for the training and evaluation of the neural networks. Linear 
predictive coding (LPC) was used for feature extraction. The next three original neural net-

works were proposed for classification: Neural Network V01, V02, and V03. The authors 
of the paper also used ResNet-50. The proposed approach achieved a recognition efficiency 
of 100%. 
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1. Introduction 

 

Electric motor diagnostics are essential for safety and cost efficiency in industrial 

applications. Detection of electric motor faults, such as bearing wear, winding defects, 

misalignment, shorted rotor coils, and broken bars, can prevent costly breakdowns, extend motor 

lifespan, and reduce repair expenses. The fault diagnosis technique minimizes unplanned 
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downtimes, keeping production lines running and avoiding financial losses. The fault diagnosis 

technique also reduces the risk of fires and equipment damage caused by motor failures. Fault 

diagnosis techniques provide financial savings, higher safety standards, and uninterrupted 

production.  

 

 

2. Literature review on acoustic fault diagnosis 

 

Existing literature includes numerous studies on acoustic-based fault diagnosis for electric 

motors [1–12]. Article [1] presented a fault diagnosis technique for three-phase induction motors 

using acoustic analysis. Acoustic signals for three conditions of the motors were analyzed: 

healthy, motor with two broken bars, and motor with a faulty ring of the squirrel cage. The 

models were trained on 60 one-second samples (20 per class) and tested on 180 (60 per class). 

The microphone was positioned parallel to the induction motor. The authors introduced an 

innovative feature extraction method called MoD-7 (maxima of differences between conditions). 

neural networks, GoogLeNet, and ResNet-50 were used for classification. The computed results 

were very high, achieving a diagnostic accuracy of 100% across all three conditions.  

Article [2] presented a method for diagnosing faults in commutator motors using acoustic 

data and a transfer learning approach. The method called high contrast frequency maps with 

lowpass filter (HCFMwLF) was proposed. The author of the paper analyzed the following states 

of the commutator motor: healthy, broken gear, broken gear tooth, broken fan, short-circuit in 

stator winding, and four drilled holes in the front bearing. The models were trained on 814 

training samples and tested on 111. The K669B microphone was used. The study evaluated three 

deep learning architectures: GoogLeNet, ResNet-50, and VGG-19, achieving 100% efficiency 

of fault classification. 

The next article proposed a novel approach to address the issue of mill fault diagnosis under 

limited datasets [3]. The proposed approach leveraged vibration and acoustic signal analysis to 

enhance diagnostic accuracy. Two experimental datasets were used, and the computed results 

showed high diagnostic performance despite data constraints. The models were trained on 146 

samples and evaluated on 1314 samples. 

A novel rolling bearing fault diagnosis method based on feature extraction and a word bag 

model was presented [4]. The experimental evaluation was conducted using 400 test samples. It 

used the adaptive extended bag-of-words model (AEBW). The approach showed high 

effectiveness, achieving a classification accuracy of 98.2% for five distinct fault types. This 

methodology presents a viable solution for mechanical equipment condition monitoring. 

The next paper presented fan fault diagnosis using acoustic emission [5]. The original dataset 

of 120 samples was expanded to 840 through data augmentation. Three different microphone 

positions were analyzed. The authors used a spectrogram and a convolutional neural network. 

The following conditions were analyzed: no-fault and fault. The accuracy of the proposed 

technique was equal to 0.95. 
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In another study, an acoustic fault diagnosis technique for rolling bearing faults was presented 

[6]. The proposed approach was based on Squeeze and Excitation ResNet (SE-ResNet). The 

computed accuracy for rolling bearing faults and SE-ResNet was equal to 99.02%. 

The following paper proposed the use of the artificial fish swarm algorithm (AFSA) for 

rolling bearing fault diagnosis [7]. The method was based on the analysis of acoustic signals, and 

the results showed that it can effectively diagnose bearing faults. 

The following article proposed a few-shot learning-based graph neural network model for 

the acoustic analysis of planetary gears in a wind turbine gearbox [8]. The dataset of 120 images 

(24 categories) was split into training (70 images, 14 categories), test (25 images, 5 categories), 

and validation (25 images, 5 categories) sets. The authors used the short-time Fourier transform 

(STFT) to preprocess the acoustic data. The proposed method achieved an accuracy of 98.69%. 

The next method is based on analyzing the features of vibration and acoustic signals from an 

induction motor using a multi-input convolutional neural network [9]. Six operating conditions 

were analyzed for the bearing and gear. The accuracy of the proposed method was in the range 

of 93% to 100%. 

A fault diagnosis technique for milling machines using acoustic signals was presented in [10]. 

A total of 400 samples were recorded, with 100 samples per investigated class. The following 

conditions were analyzed: bearing fault, gear fault, healthy state, and tool fault. A deep learning 

model optimized using a genetic algorithm was used for the analysis. The accuracy of the 

proposed methods was in the range of 91% to 100%. 

The study introduces an acoustic-based framework for compound fault diagnosis. The 

proposed framework is based on an LP-LSGAN – a latent space-controlled generative 

adversarial network with a local perception mechanism [11]. The proposed method achieved a 

diagnostic accuracy of 93.49%. 

A rolling bearing fault diagnosis method using vibro-acoustic data fusion is introduced [12]. 

The authors of the study used fast Fourier transform (FFT) and a convolutional neural network 

(CNN). The accuracy of the proposed method reaches 99.98%. 

 

 

3. Acoustic measurements 

 

Four similar three-phase induction motors (500 W) were analyzed. The following motor 

conditions were analyzed: healthy motor, motor with one broken rotor bar, motor with two 

broken rotor bars, and motor with three broken rotor bars (Fig. 1). The motors were mounted to 

the ground. The motors were arranged as shown in Figs 1 and 2. The room was 7 meters by 5 

meters. A Redmi Note 9 smartphone with a microphone, positioned 0.25 meters from each 

motor, captured the sound in AAC (advanced audio coding) format at a 48 kHz sampling rate, 

later converted to WAV (waveform audio file) format at 44.1 kHz for analysis. The use of a 

smartphone for measurements is justified by its ubiquity, cost-effectiveness, and sufficient 

technical capability for acoustic measurement. Smartphones are equipped with high-quality 
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microphones and processing power for capturing and storing acoustic signals. A smartphone can 

perform rapid and low-cost diagnostics. 

The acoustic recording of the motor was performed in the room. The following tasks were 

taken to minimize ambient noise, such as closing windows and having no mechanical ventilation. 

Under these conditions, the sources of interference were reduced to reverberations and sound 

reflections from the walls. The detection method achieved a 100% recognition efficiency. It 

indicates that ambient factors were at an amplitude level sufficiently low not to overlap with the 

essential harmonic components of the motor acoustic signals. 

 

 

Fig. 1. Four similar three-phase induction motors (500 W) 

 

 

Fig. 2. Measurements of acoustic signals of three-phase induction motors 

 

Acoustic signals of three-phase induction motors are presented in Fig. 3. 
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(a) (b) 

 

 
(c)                                                                             (d) 

Fig. 3. Acoustic signals of three-phase induction motors: (a) healthy; (b) motor with one broken rotor 
bar; (c) motor with two broken rotor bars; (d) motor with three broken rotor bars 

 

 

4. Acoustic fault diagnosis method 

 

The authors proposed an innovative diagnostic technique based on linear predictive coding 

(LPC) and neural networks V01, V02, and V03 (Fig. 4). First, the acoustic signal is recorded 

using a smartphone and saved in AAC format at a 48 kHz sampling rate. The signal is then 

converted into WAV (waveform audio file format) at 44.1 kHz for further processing. The 

recorded acoustic data are segmented into 1-second samples. 196 and 25 LPC coefficients are 

computed. Next, LPC coefficients are subsequently reshaped into acoustic images with 

dimensions of 224 × 224 × 3. Three original neural networks are proposed and implemented: 

Neural Network V01, V02, and V03. The ResNet-50 neural network is also used for acoustic 

analysis. 
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Fig. 4. Diagnostic technique based on linear predictive coding (LPC)  
and Neural Networks V01, V02, and V03 

 

4.1. Linear predictive coding 

Linear predictive coding (LPC) is a method for compressing signals, speech, using modeling 

audio signals in the time domain. LPC assumes that the vocal tract can be represented by a filter. 

LPC is widely used in speech compression, speech synthesis, speech recognition, speaker 

identification, and speech signal analysis. LPC assumes that the current sample of a signal y(n) 

can be approximated as a linear combination of its previous samples. The current sample y(n) 

can be expressed as (1): 

 𝑦(𝑛) = ∑ 𝑎𝑘 ∙ 𝑦(𝑛 − 𝑘)
𝑝
𝑘=1 , (1) 

where, y(n) is the current sample, ak is the LPC coefficient with the k-index, p is the prediction 

order. 

The linear predictive coding determines the LPC coefficients that minimize the error between 

the actual sample and the predicted sample. The LPC coefficients can be achieved using methods 

such as the autocorrelation method or the covariance method. The advantages of LPC are its 

simplicity and good approximation of the vocal tract. The limitation of LPC is its sensitivity to 

background noise. A comprehensive discussion of LPC can be found in [13–15]. 
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4.2. Acoustic images 

The proposed neural networks require images with a resolution of 224 × 224 × 3. The 

acoustic signals of an induction motor are first converted into LPC coefficients (196 coefficients 

in total, derived from the original 197 coefficients minus the first coefficient, and 25 coefficients, 

derived from the original 26 minus the first coefficient). These coefficients are then transformed 

into a 14 × 14 matrix and a 5 × 5 matrix. Next, the computed matrices are reshaped into the 

acoustic image with a target resolution of 224 × 224 × 3. The computed 14 × 14 acoustic 

images are shown in Fig. 5. 

 

 
     a)                                b)                                 c)                               d) 

Fig. 5. Acoustic images of an induction motor (14 × 14 matrix representing 196 LPC coefficients): 
(a) healthy (H); b) motor with one broken rotor bar (1BRB); (c) motor with two broken rotor bars 

(2BRB); (d) motor with three broken rotor bars (3BRB) 

 

We can see that the LPC coefficients are different for the four acoustic signals of the 

induction motor. These computed acoustic images serve as inputs for the proposed Neural 

Networks (V01, V02, and V03). There are also other types of neural networks described in the 

literature [16, 17, 18]. 

 

4.3. Neural Network V01 

Neural Network V01 is a small neural network designed for image recognition. The required 

input images must have a resolution of 224 × 224 × 3. The Neural Network V01 consists of 8 

blocks and is illustrated in Fig. 6. 
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Fig. 6. Structure of Neural Network V01 

 

4.4. Neural Network V02 

Neural Network V02 is also a neural network designed for image recognition. The input 

images must have a resolution of 224 × 224 × 3. It is similar to Neural Network V01. The 

Neural Network V02 is presented in Fig. 7. Additional layers have been added, including: 

Convolution2D Layer (3 × 3, 32), Batch Normalization Layer, ReLU Layer, MaxPooling2D 

Layer, and FullyConnected Layer (32). The layers in Neural Network V02 are connected 

sequentially. 
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Fig. 7. Structure of Neural Network V02 

 

4.5. Neural Network V03 

Neural Network V03 is a neural network designed for image recognition. Its image input 

layer requires images in 224 × 224 × 3 format. The Neural Network V03 is shown in Fig. 8. 

The architecture of Neural Network V03 is illustrated in Fig. 8 and includes the following 

additional layers: Convolution2D Layer (1 × 1, 16), Convolution2D Layer (3 × 3, 32), 

FullyConnected Layer (64), Batch Normalization Layer, and DepthConcatenation Layer. The 

layers in the V03 Neural Network are connected in parallel, enabling more complex feature 

processing. 
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Fig. 8. Structure of Neural Network V03 

 

4.6. ResNet-50 

ResNet-50 is a convolutional neural network. It was introduced in 2015 to solve the vanishing 

gradient problem using residual blocks. It allows gradients to flow directly by adding input to 

deeper layers. It enables stable training. ResNet-50 also uses bottleneck blocks (1 × 1, 3 × 3, 

1 × 1 convolutions) to reduce computational complexity. It achieved very good results for object 

detection. It is an efficient neural network using residual blocks. Further details can be found in 

the literature [19–25]. 
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5. Acoustic analysis of the three-phase induction motor 

 

Acoustic analysis was performed on four induction motors with the following conditions: 

healthy (H), motor with one broken rotor bar (1BRB), motor with two broken rotor bars (2BRB), 

and motor with three broken rotor bars (3BRB). The authors used 48 training samples (12 

training samples per class) to train the neural networks. The authors used 168 test samples (42 

test samples per class) to test the neural networks. K-fold cross-validation was applied in the 

acoustic analysis. Recognition efficiency (ER) was computed as follows (2): 

 𝐸𝑅  = 100% * (RecognizedTestSamples / OneClassTestSamples), (2) 

where: RecognizedTestSamples – correctly identified test samples, OneClassTestSamples – test 

samples per class (42 test samples in the study). 

Table 1 presents the acoustic analysis results of the three-phase induction motor using LPC 

(196 coefficients), and the following neural networks: Neural Network V01, V02, V03, and 

ResNet-50. 

 
Table 1.  Acoustic analysis results of the three-phase induction motor using LPC (196 coefficients), 

and Neural Network V01, V02, V03, and ResNet-50 

Condition of the 

motor 

ER [%] 

ResNet-50 
Neural Network 

V01 

Neural Network 

V02 

Neural Network 

V03 

ER1, healthy (H) 100 100 100 100 

ER2, (1BRB) 100 100 100 100 

ER3, (2BRB) 100 100 100 100 

ER4, (3BRB) 100 100 100 100 

 

Table 2 presents the acoustic analysis results of the three-phase induction motor using LPC 

(25 coefficients), and the following neural networks: Neural Network V01, V02, V03, and 

ResNet-50. 

 

 
Table 2.  Acoustic analysis results of the three-phase induction motor using LPC (25 coefficients), 

and Neural Network V01, V02, V03, and ResNet-50 

Condition of the 

motor 

ER [%] 

ResNet-

50 

Neural Network 

V01 

Neural Network 

V02 

Neural Network 

V03 

ER1, healthy (H) 100 100 100 97.6 
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ER2, (1BRB) 100 100 100 100 

ER3, (2BRB) 100 100 100 100 

ER4, (3BRB) 100 100 100 100 

 

Confusion matrices for neural networks are presented in Figs. 9–11. 

 

 

Fig. 9. Visualization of the confusion matrix for the V01, V02, ResNet-50 Neural Networks (196 and 
25 LPC coefficients) 

 

 

Fig. 10. Visualization of the confusion matrix for Neural Network V03 (196 LPC coefficients) 
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Fig. 11. Visualization of the confusion matrix for Neural Network V03 (25 LPC coefficients) 

 

The results of the acoustic analysis are presented in Tables 1 and 2. The proposed LPC-based 

approach, combined with neural networks, offered an effective fault diagnosis for three-phase 

induction motors. This methodology shows potential for diagnosing other motor types and fault 

conditions when combined with LPC and neural network techniques. 

 

 

6. Discussion 

 

The developed approach has high recognition efficiency (ER = 100%) for detecting faults of 

the induction motor. Computed results are competitive with those in the literature [1]. Several 

diagnostic approaches exist for induction motor condition monitoring: acoustic-based, vibration-

based, electrical signal analysis, and thermography. Acoustic-based methods utilize sound wave 

analysis to detect various faults, including bearing defects, air gap irregularities, and certain 

electrical faults. Advantages of acoustic-based methods are non-invasive measurement and 

potential for early fault detection. However, disadvantages are particularly susceptible to 

environmental noise and signal distortions [2]. Vibration-based methods use accelerometers. 

These methods are efficient for detecting mechanical faults in induction motors, such as 

misalignment and bearing wear. However, they are less effective for electrical faults. Electrical 

signal analysis, particularly motor current signature analysis (MCSA), effectively detects stator 

and rotor faults by monitoring current signatures [26]. Electrical signal analysis is particularly 

effective for identifying rotor and stator winding defects, air gap eccentricity, and supply voltage 

imbalances. Thermal analysis serves as a valuable diagnostic tool for identifying thermal 

anomalies in induction motors, including broken rotor bar faults, winding insulation degradation, 

and bearing lubrication failures [27]. The advantage of thermal analysis is that it is a non-invasive 

measurement. The next advantage is visual fault representation through thermal maps and 

detecting developing faults before failure. However, a dirty motor can be difficult to diagnose. 

Thermal analysis can be difficult for changes in thermal radiation from the environment, e.g., 

100 electric motors in the same room. While each method has strengths, combining acoustics, 
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vibrations, and electrical analysis provides the most comprehensive fault coverage. Thermal 

analysis can serve as a supplementary tool for thermal monitoring. 

 

 

7. Conclusions 

 

The abnormal noise detection method for a three-phase induction motor is presented in the 

paper. The following motor conditions were analyzed: healthy motor, motor with one broken 

rotor bar, motor with two broken rotor bars, and motor with three broken rotor bars. Four similar 

three-phase induction motors were analyzed. The authors used linear predictive coding for 

feature extraction. Three original neural networks were proposed and implemented: Neural 

Network V01, V02, and V03. The ResNet-50 neural network was also used for acoustic analysis. 

The proposed approach correctly identified all faults. Broken motor rotor bars can be detected 

using the proposed approach. Acoustic fault diagnosis has potential applications in various 

industries, such as mining, oil, robotics, aviation, and automotive sectors. Implementing fault 

diagnosis for industrial motors could lead to significant cost savings. 

Future research will focus on developing new diagnostic methods that utilize multiple 

signals, including acoustic and electric data. The proposed fault diagnosis techniques are 

expected to benefit both society and industry. 

 

 

Acknowledgements 

The research was financed by a research subsidy from the Ministry of Education and Science 

of the Republic of Poland for the AGH University of Krakow. 

 

 

References 
[1] Glowacz A., Sulowicz M., Kozik J., Piech K., Glowacz W., Li Z.X., Brumercik F., Gutten M., 

Korenciak D., Kumar A., Lucas G.B., Irfan M., Caesarendra W., Liu H., Fault diagnosis of electrical 
faults of three-phase induction motors using acoustic analysis, Bulletin of the Polish Academy of 
Sciences Technical Sciences, vol. 72, no. 1 (2024), DOI: 10.24425/bpasts.2024.148440. 

[2] Zastepa M., Commutator motor fault diagnosis using acoustic data with a transfer learning 
approach, Przeglad Elektrotechniczny, vol. 100, no. 12, pp. 173–180 (2024), DOI: 

10.15199/48.2024.12.40. 
[3] He J.J., Shi P.M., Xu X.F., Han D.Y., Rolling mill fault diagnosis under limited datasets, Knowledge-

Based Systems, vol. 291 (2024), DOI: 10.1016/j.knosys.2024.111579. 
[4] Guo X.W., Fault Diagnosis of Rolling Bearings Based on Acoustics and Vibration Engineering, 

IEEE Access, vol. 12, pp. 139632–139648 (2024), DOI: 10.1109/ACCESS.2024.3466154. 
[5] Ciaburro G., Padmanabhan S., Maleh Y., Puyana-Romero V., Fan Fault Diagnosis Using Acoustic 

Emission and Deep Learning Methods, Informatics-Basel, vol. 10, no. 1 (2023), DOI: 
10.3390/informatics10010024. 

[6] Gu X.J., Tian Y., Li C., Wei Y.H., Li D.S., Improved SE-ResNet Acoustic-Vibration Fusion for 

Rolling Bearing Composite Fault Diagnosis, Applied Sciences-Basel, vol. 14, no. 5 (2024), DOI: 
10.3390/app14052182. 

Earl
y A

cce
ss

https://doi.org/10.24425/bpasts.2024.148440
https://doi.org/10.15199/48.2024.12.40
https://doi.org/10.1016/j.knosys.2024.111579
https://doi.org/10.1109/ACCESS.2024.3466154
https://doi.org/10.3390/informatics10010024
https://doi.org/10.3390/app14052182


This paper has been accepted for publication in the AEE journal. This is the version, which has not been 
fully edited and content may change prior to final publication.  

Citation information: DOI 10.24425/aee.2026.156804 
 

15 

 

[7] Yan J., Zhou F.B., Zhu X., Zhang D.P., AFSA-FastICA-CEEMD Rolling Bearing Fault Diagnosis 
Method Based on Acoustic Signals, Mathematics, vol. 13, no. 5 (2025), DOI: 
10.3390/math13050884. 

[8] Yang S., Xu H.F., Wang Y., Chen J.H., Li C., Fault diagnosis of wind turbine with few-shot learning 
based on acoustic signal, Engineering Research Express, vol. 7, no. 1 (2025), DOI: 10.1088/2631-

8695/ada5ac. 
[9] Choudhary A., Mishra R.K., Fatima S., Panigrahi B.K., Multi-input CNN based vibro-acoustic fusion 

for accurate fault diagnosis of induction motor, Engineering Applications of Artificial Intelligence, 
vol. 120 (2023), DOI: 10.1016/j.engappai.2023.105872. 

[10] Umar M., Siddique M.F., Ullah N., Kim J.M., Milling Machine Fault Diagnosis Using Acoustic 
Emission and Hybrid Deep Learning with Feature Optimization, Applied Sciences-Basel, vol. 14, 
no. 22 (2024), DOI: 10.3390/app142210404. 

[11] Tu F.M., Zhang T.L., Liu T., Zhang D.C., Yang S.X., A Novel Acoustic-Based Framework for 

Compound Fault Diagnosis in Rotating Machinery with Limited Samples, IEEE Transactions on 
Instrumentation and Measurement, vol. 74 (2025), DOI: 10.1109/TIM.2025.3551919. 

[12] Fang X., Zheng J.B., Jiang B., A rolling bearing fault diagnosis method based on vibro-acoustic data 
fusion and fast Fourier transform (FFT), International Journal of Data Science and Analytics (2024), 
DOI: 10.1007/s41060-024-00609-7. 

[13] Mohammad M., Ibryaeva O., Sinitsin V., Eremeeva V., A Computationally Efficient Method for the 
Diagnosis of Defects in Rolling Bearings Based on Linear Predictive Coding, Algorithms, vol. 18, 
no. 2 (2025), DOI: 10.3390/a18020058. 

[14] Ashraf F.F., Mobeen S., Khan H.Z.I., Haydar M.F., Riaz J., Detection of Oscillatory Failures in 

Hydraulic Actuators of Aircraft using Linear Predictive Coding and Signal Spectrum Analysis, IFAC 
PapersOnLine, vol. 56, no. 2, pp. 360–365 (2023), DOI: 10.1016/j.ifacol.2023.10.1594. 

[15] Gong C.S.A., Su C.H.S., Liu Y.E., Guu D.Y., Chen Y.H., Deep Learning with LPC and Wavelet 
Algorithms for Driving Fault Diagnosis, Sensors, vol. 22, no. 18 (2022), DOI:10.3390/s22187072. 

[16] Kirda A.W., Majewski P., Bursy G., Bartoszuk M., Yassin H., Królczyk G., Akbar N.A., Caesarendra 
W., Integrating YOLOv5, Jetson nano microprocessor, and Mitsubishi robot manipulator for real-
time machine vision application in manufacturing: A lab experimental study, Advances in Science 
and Technology Research Journal, vol. 19, no. 5, pp. 248–270 (2025), DOI: 

10.12913/22998624/201366. 
[17] Gajewski J., Valis D., Verification of the technical equipment degradation method using a hybrid 

reinforcement learning trees-artificial neural network system, Tribology International, vol. 153 
(2021), DOI: 10.1016/j.triboint.2020.106618. 

[18] Jiang K.S., Zhang C.S., Wei B.L., Li Z.X., Kochan O., Fault diagnosis of RV reducer based on 
denoising time-frequency attention neural network, Expert Systems with Applications, vol. 238 
(2024), DOI: 10.1016/j.eswa.2023.121762. 

[19] Zhang L.Y., Bian Y.C., Jiang P., Zhang F.Y., A Transfer Residual Neural Network Based on ResNet-

50 for Detection of Steel Surface Defects, Applied Sciences-Basel, vol. 13, no. 9 (2023), DOI: 
10.3390/app13095260. 

[20] Wen L., Xiao Z.K., Xu X.T., Liu B., Disaster Recognition and Classification Based on Improved 
ResNet-50 Neural Network, Applied Sciences-Basel, vol. 15, no. 9 (2025), DOI: 
10.3390/app15095143. 

[21] Jeong M., Yang M., Jeong J., Hybrid-DC: A Hybrid Framework Using ResNet-50 and Vision 
Transformer for Steel Surface Defect Classification in the Rolling Process, Electronics, vol. 13, 
no. 22 (2024), DOI: 10.3390/electronics13224467. 

[22] Wu D.H., Ying Y.B., Zhou M.C., Pan J.M., Cui D., Improved ResNet-50 deep learning algorithm 
for identifying chicken gender, Computers and Electronics in Agriculture, vol. 205 (2023), DOI: 
10.1016/j.compag.2023.107622. 

[23] Sahin M.E., Ulutas H., Yuce E., Erkoc M.F., Detection and classification of COVID-19 by using 
faster R-CNN and mask R-CNN on CT images, Neural Computing & Applications, vol. 35, no. 18, 
pp. 13597–13611 (2023), DOI: 10.1007/s00521-023-08450-y. 

Earl
y A

cce
ss

https://doi.org/10.3390/math13050884
https://doi.org/10.1088/2631-8695/ada5ac
https://doi.org/10.1088/2631-8695/ada5ac
https://doi.org/10.1016/j.engappai.2023.105872
https://doi.org/10.3390/app142210404
https://doi.org/10.1109/TIM.2025.3551919
https://doi.org/10.1007/s41060-024-00609-7
https://doi.org/10.3390/a18020058
https://doi.org/10.1016/j.ifacol.2023.10.1594
https://doi.org/10.3390/s22187072
https://doi.org/10.12913/22998624/201366
https://doi.org/10.1016/j.triboint.2020.106618
https://doi.org/10.1016/j.eswa.2023.121762
https://doi.org/10.3390/app13095260
https://doi.org/10.3390/app15095143
https://doi.org/10.3390/electronics13224467
https://doi.org/10.1016/j.compag.2023.107622
https://doi.org/10.1007/s00521-023-08450-y


This paper has been accepted for publication in the AEE journal. This is the version, which has not been 
fully edited and content may change prior to final publication.  

Citation information: DOI 10.24425/aee.2026.156804 
 

16 

 

[24] Patil R.A., Dixit V.V., Detection and classification of mammogram using ResNet-50, Multimedia 
Tools and Application (2025), DOI: 10.1007/s11042-025-20679-4. 

[25] Panda M.K., Subudhi B.N., Thangaraj V., Jakhetiya V., Two streams ResNet-50 network for infrared 
and visible image fusion, Multimedia Tools and Application (2025), DOI: 10.1007/s11042-025-
20869-0. 

[26] Bessous N., Sbaa S., Megherbi A.C., Mechanical fault detection in rotating electrical machines using 
MCSA-FFT and MCSA-DWT techniques, Bulletin of the Polish Academy of Sciences Technical 
Sciences, vol. 67, no. 3, pp. 571–582 (2019), DOI: 10.24425/bpasts.2019.129655. 

[27] Sasithradevi A., Persiya J., Roomi S.M.M., Perumal D.A., Prakash P., Vijayalakshmi M., Ebenezer 
LB., Advanced thermal vision techniques for enhanced fault diagnosis in electrical equipment: a 
review, International Journal of System Assurance Engineering and Management, vol. 16, no. 5, 
pp. 1914–1932 (2025), DOI: 10.1007/s13198-025-02782-9. 
 

Earl
y A

cce
ss

https://doi.org/10.1007/s11042-025-20679-4
https://doi.org/10.1007/s11042-025-20869-0
https://doi.org/10.1007/s11042-025-20869-0
https://doi.org/10.24425/bpasts.2019.129655
https://doi.org/10.1007/s13198-025-02782-9



