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Abstract: Hand gesture recognition based on surface glectromyographic (SEMG) signals
plays a critical role in modern human—competar interaction systems, particularly in upper-
limb prosthetic applications. This study presents ajiiethod for classifying six selected hand
gestures using SEMG signals acquired from three forearm muscles. The recorded signals
were digitally filtered, and an automatic segmentation algorithm was developed to isolate
individual gestures from the contiriudesimuscle activity recordings. These segments were
transformed into spectrogramss using the short-time Fourier transform (STFT), which
served as input data for varioes convolutional neural network (CNN) architectures. The
study compares two approAcras te'data processing: one in which signals from each channel
were analyzed sepafately, ard.another in which spectrograms from all three channels were
fused into a single Wxee-channel input. The primary objective was to investigate which
method better captures ¢ inter-relationships between the activity patterns of different mus-
cles. The models were trained and evaluated using cross-validation. The best-performing
architecture achieved an accuracy of 99%. The results indicate that fusing spectrograms
from multiple channels into a single input can enhance the classification performance of
complex muscle activity patterns, particularly when the amount of available training data
is limited.

Key words: classification, convolutional neural network (CNN), electromyographic
(EMG) signals, hand gesture recognition, spectrogram fusion

1. Introduction

The classification of electromyographic (EMG) signals has become a central focus in
biomedical and engineering studies, particularly in applications involving prosthetic control
and human—computer interfaces (HCI) [1]. EMG signals contain valuable information about
neuromuscular activity, making them a widely used tool for analyzing muscle function in both
clinical and engineering applications [2] and making them well-suited for recognizing hand
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gestures that can be used to control assistive technologies. Beyond prosthetic and HCI
applications, hand gesture recognition also plays a critical role in sign language interpretation
systems [3] and other bio-signal interfaces aimed at restoring or enhancing motor function [4].
People with upper limb amputations face numerous challenges in daily life, including the loss of
fine motor control and independence in daily tasks. Advanced prosthetic devices capable of
interpreting EMG signals offer the potential to restore lost functionality by accurately
detecting user intentions through gesture recognition. However, current commercially available
prostheses often suffer from several limitations such as mechanical complexity, insufficient
robustness, signal noise sensitivity, and difficulty in achieving intuitive control. These challenges
are further compounded by variability in EMG signals between users, differences in skin
impedance, and difficulties with consistent sensor placement. To address these issues, robust and
adaptive signal acquisition and classification techniques are required. A key consideration in
EMG-based gesture recognition is the selection of appropriate*muscle groups for signal
acquisition. The forearm is frequently targeted due to its high corieentradon of muscles involved
in wrist and finger movements. Even in cases of transradial ampuration, viable EMG signals can
often be recorded from residual muscles in the stumn, “allowing control interfaces to be
implemented even after limb loss [5]. Over the past _felv decades, various methods have been
developed to tackle the EMG signal classificatiori, prablem. Traditional approaches rely on
manually engineered features derived from tieatime, trequency, or time-frequency domains.
Common time-domain features include mean atsolute value (MAV), root mean square (RMS),
variance, and waveform length. In the fre§uency domain, features are often computed using the
fast Fourier transform (FFT), shoi-tiriesourier transform (STFT), or wavelet transforms,
allowing the extraction of metrics Suciyas riedian frequency (MDF), mean frequency (MNF),
and power spectral density (PS2) [¢) Early signal analysis approaches relied heavily on these
handcrafted features to classify muscle activity. Reaz et al. [7] provided a comprehensive survey
of such traditional methcy's, highlighting their computational simplicity but also their limited
ability to generalize across Jsers or adapt to the nonlinear and nonstationary nature of EMG
signals. Although these handcrafted features are computationally efficient and suitable for real-
time systems, they often exhibit poor generalization across users or sessions and a limited ability
to capture nonlinear patterns. Moreover, the assumption of stationarity required by many spectral
methods does not always hold for EMG, which is inherently nonstationary and stochastic in
nature. To improve recognition stability and robustness, filtering techniques such as variational
mode decomposition have been introduced. Ma et al. [8] demonstrated that effective signal
denoising prior to classification could significantly enhance accuracy, particularly in the
presence of noise or during dynamic movement conditions. In response to these limitations, deep
learning methods, widely applied across various areas of bioengineering [9-13], have gained
significant traction in the field of gesture recognition [14]. These approaches automatically
extract hierarchical and abstract representations (referred to as deep features) directly from raw
or minimally processed data. Convolutional neural networks (CNNs), in particular, have
demonstrated strong performance in EMG-based gesture recognition tasks. By converting
EMG signals into 2D spectrograms using STFT, CNNs are able to effectively model spatial
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and temporal signal patterns, bypassing the need for manual feature engineering [15]. Several
studies have demonstrated the effectiveness of CNNs and other deep learning techniques for this
task. CNNs were used to recognize basic hand gestures, and their superiority over classical
machine learning approaches was confirmed in [16]. Further improvements were shown by [17],
where CNNs with varied input dimensions achieved highly accurate results. Yamanoi et al. [5]
showed that CNNs can outperform conventional classifiers in distinguishing hand postures.
Cote-Allard et al. [18] extended this work by applying transfer learning strategies to reduce
model training time and improve robustness across users. More advanced architectures have also
been proposed to improve practical usability. Zhai et al. [19] introduced a self-adaptive model
capable of recalibrating without the need for manual intervention, improving long-term stability.
To further capture temporal dependencies in EMG signals, Sun et al. [20] employed dilated
LSTM networks to model the dynamics of gesture transitions. Hybrid deep learning frameworks
that combine spatial and temporal modeling have also emerged; Hi-et al. Paper [21] proposed
an attention-enhanced CNN-RNN architecture, improving both-elassification performance and
model interpretability in sequential EMG data. The role of syperparameter tuning in building
robust and stable classification models was explored in the'atusy [22]. Recurrent architectures
have also gained attention. For example, investigation [23] hroposed using sequences of EMG
windows for gesture prediction. Hybrid models, which ¢ombine handcrafted features and deep
learning, have also shown promise. One such\apgnroach in [24] merged both types of features
into a single classifier. Additionally, study [25] éxplored integrating CNNs with long short-term
memory (LSTM) layers to incorporate teriiporal dependencies into the model's decision-making
process. Recent studies have furtiver ‘adwanced these architectures by focusing on real-time
deployment, robustness, and application-spezific adaptability. For instance, CNN-based models
trained on EMG-derived frequency 2atures have shown strong performance in guiding robotic
arms with high precision’[26]. Qithicr approaches have leveraged feed-forward neural networks
for real-time EMG patteradrecognition in embedded systems [27]. In addition, fully embedded
systems leveraging high-dei:sity SEMG data and deep learning classifiers have demonstrated
adaptive, low-latency performance suitable for wearable control interfaces [28]. Similar efforts
to deploy robust CNN models on multicore 10T platforms have enabled efficient gesture
recognition in power-constrained environments [29]. Comparative analyses with traditional
artificial neural network (ANN)-based systems further confirm the superiority of deep learning
approaches under variable signal conditions [30]. Moreover, multi-sensor systems and ensemble
strategies have been explored to improve classification reliability using minimal EMG
channels [31]. Collectively, these contributions demonstrate a clear trend toward integrating
adaptive, deep learning-based EMG interfaces into real-time assistive technologies. Efficient
implementation of such systems on edge devices, has also become an important focus in recent
studies [32-37]. A variety of machine learning algorithms has also been used in other important
applications [38-43]. Previous studies, such as Geng et al. [44] and Tepe et al. [45], used similar
single-subject setups and achieved high accuracy with CNN and support vector machine (SVM)
models, respectively. However, these works did not explore how combining spectrograms
from multiple EMG channels could improve feature representation or capture inter-muscle
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relationships. In this study, we compare early and late spectrogram fusion strategies to evaluate
their impact on classification performance.

In the current paper, we present a complete pipeline for hand gesture classification based on
EMG signals and deep learning techniques. EMG data were collected from three superficial
forearm muscles while subjects performed six distinct hand gestures. A custom segmentation
algorithm based on amplitude thresholding was applied to extract active gesture segments from
continuous recordings. Each segment was transformed into a spectrogram using the STFT,
yielding a three-channel 3x129%64 tensor for each instance. To evaluate model performance,
five CNN architectures were implemented. The first four models used a single-branch structure
that processes the entire three-channel spectrogram as a unified input. This early fusion strategy
enables the network to convolve over all channels simultaneously, similar to processing an RGB
image, and allows the model to learn joint spatial and temporal patterns across multiple muscles.
By capturing inter-muscle coordination and shared activation patterss; this approach supports the
extraction of richer, more informative features, which can be espéciallyuseful for distinguishing
complex or subtle gestures. Additionally, a fifth architecture was introduced using a three-branch
CNN model that processes each spectrogram channel, iiderendently before merging the
extracted features. This late fusion strategy allows the natwark to specialize in channel-specific
patterns while still learning complementary information)during the fusion stage. Such modular
representation can be advantageous when signai vesiabliity across channels is significant or when
muscle-specific distinctions are critical to accuiate gesture classification. The results highlight
the potential of early and late fusion stratégies iri deep learning models for EMG-based gesture
recognition and support their integratictrint responsive, intelligent human-—machine interaction
systems.

2. Materials and methods

Electrical signals generated by muscle contractions are characterized by their low amplitude
and nonrepeatability. Surface electromyography (SEMG) measurements can vary significantly
between individuals due to differences in skin condition, preparation of the measurement site,
and electrode placement. Additionally, surface EMG is highly dependent on individual
anatomical features, making consistent electrode placement across subjects challenging.
Achieving accurate and repeatable measurements often requires a personalized approach tailored
to each subject. Readings from surface electrodes represent a composite EMG signal, reflecting
the activity of multiple muscles located beneath the skin at the electrode site. As a result, the
recorded signal may include noise or irrelevant information from surrounding muscles, which
can affect the accuracy of the data. To mitigate these effects, the gestures selected for
classification were chosen to involve distinct muscle activation patterns and to be performed by
superficial muscles. The selected gestures are illustrated in Fig. 1.
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a) b) c)

Fig. 1. Gestures chosen for classification: (a) finger floxion; (b) pointing; (c) three-finger pinch; (d) finger
abduction; (e).wrist extension; (f) wrist flexion

All EMG signals were acquires! usiing tie Biomonitor MEG000. In every recording signals
from three channels were captured, each channel consisting of two measuring electrodes and one
reference electrode. Evetv chanria¥was used to acquire signals from one of three muscles: flexor
carpi radialis, flexor carpi ularis and extensor digitorum communis. Silver/silver chloride
(Ag/AgCI) electrodes were”adhered to shaved and cleaned skin above the chosen muscles.
The planned electrode placement is illustrated in Fig. 2, while a close-up photograph showing
the electrodes adhered and wired during one of the recording sessions is presented in Fig. 3.
In support of electrode placement and skin preparation protocols, we follow established
guidelines [46], ensuring consistent capture from the flexor and extensor forearm muscles.

The signals were captured with a sampling frequency of 1000 Hz. Signal acquisition took
the form of recordings in which the participant performed 20 repetitions of a chosen gesture.
Each recording started with a 2-second-long period of no muscular activity. After that, the
participant performed 2-second-long gestures alternately with 3-second-long resting periods.
Collected recordings for each gesture corresponded to 140 repetitions of that gesture, which
altogether summed up to three-channel EMG signals of 840 gesture repetitions. Recorded signals
were segmented using a sliding window algorithm. All recordings were collected with the
cooperation of a single participant. This approach was intentional and aligned with the single-
subject study design.
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Fig. 3. Measurements of hand EMG signals: (a) Biomonitor ME6000; (b) wired measuring channels
placed at selected muscles (flexor carpi radialis, flexor carpi ulnaris)

The presented algorithm windows all three channels of a single signal recording
simultaneously with an overlap of O = 75 samples using a sliding window with a fixed length of
L =350 samples. As emphasized in paper [47], segmenting nonstationary EMG into time
windows reduces stochastic noise and improves classification robustness.
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Let xc [n] denote the raw EMG signal from channel ¢ € {1,2,3}. Each signal was first rectified
to obtain the discrete time series representing the rectified signal:

re[n] = lxc[n]l. )
For every window
w; = {r[n], e[ + 1], ., e[y + L — 1]}, (2)
the mean rectified amplitude (MRA) was computed as:
A == 2kdn[n; + 1], 3)

where L is the window length, n; is the index of the first sample of the window.
A baseline amplitude Aco was estimated from the first No = 1000 rectified samples of each
channel as:

- 1 _
Ao =1 232 relk]. @

The activation threshold for each channel was defined as:
T, = 1.34/.. (5)

Gesture onset and offset points were determinea iy threshold crossings of the mean rectified
amplitude. A gesture onset was detected whely-the amplitude in any of the three channels
exceeded its corresponding thresho!d:

Al % Td and Ag; =T, (6)

and a gesture offset was détectzd when the amplitudes from all of the three channels fell below
their corresponding thrézholus:

Ay 2T, and Ag; <T,. @)

The index corresponding to the start of window w;was marked as the onset or offset point,
respectively. To ensure reliable segmentation and prevent false detections due to transient
fluctuations, a minimum separation constraint of Dmin = 250 samples was imposed between
gesture onset and offset, as well as between consecutive gesture segments. Using criteria
presented by above Egs. (1)—(7), gesture segments were reliably extracted from the original
EMG signals. The automatic segmentation algorithm, which uses a 75-sample overlap and
threshold-based amplitude detection, follows methodologies outlined in studies [48] and [49].
These sources demonstrate how overlapping sliding windows and envelope-based thresholds
effectively extract gesture segments from continuous EMG data. The segmented portions of
acquired data were then combined to form the dataset used for further analysis and classification.
An example result of automatic segmentation can be seen in Fig. 4.
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Fig. 4. Plot representing the results of applying the segmentaticayaigorichm on the rectified signal
recording. The plot represents an example segmentatioinOf the signal recorded from
the extensor digitorum communis while pefformiiy wrist extension

2.1. Signal pre-processing

For signal pre-processing, three main proceauyzs were carried out. Firstly, the obtained
segmented signals were cropped and then paaded to fit the same length of 4000 samples.
The segmented EMG signals vary,in langth because it is difficult for individuals to perform
gestures that last exactly two secanids. Consistent signal length is crucial for efficient data
handling and machine learning traiiing and ‘validation procedures. Cropping was chosen for this
task so as not to change the-spéctralifeatures of the signals, which may occur while using signal
resampling. After the <wapping grocedure, all of the signals were filtered. The filtering was
performed using a 5th-ordenButterworth digital bandpass filter with cutoff frequencies of 20 Hz
and 400 Hz for the lower and upper limits, respectively [50]. The filtered and cropped signals
were used to generate spectrograms using the STFT. This time-frequency analysis technique
allows for the examination of how the frequency content of a signal changes over time.
It operates by dividing the signal into overlapping segments and applying the Fourier transform
to each segment independently. This decomposition enables localized frequency analysis across
the time axis, making STFT particularly useful for non-stationary signals such as EMG. In the
STFT process, a sliding window function is applied to isolate short portions of the signal. Each
windowed segment is then transformed into the frequency domain using the discrete Fourier
transform (DFT). The result is a two-dimensional representation known as a spectrogram, where
one axis represents time, the other refers to the frequency, and the color or intensity represents
signal amplitude at each time-frequency coordinate.

Mathematically, the STFT of a signal x(t) is defined as [51]:

STFT,(z,y) = [ x()y(t — 1) e /27t dt, (8)

where y(t — 7) is the window function centered at time z, and f is the frequency.



This paper has been accepted for publication in the AEE journal. This is the version, which has not been
fully edited and content may change prior to final publication.
Citation information: DOI 10.24425/aee.2026.156805

To compute the STFT in practice, discrete parameters are selected. In this study, a sampling
frequency of 1 kHz was used, with each signal segment consisting of 129 samples and an overlap
of 68 samples between segments. The FFT length was set to 256 points. These parameters were
chosen to balance frequency resolution with computational efficiency. After transformation,
each EMG signal is represented as a 3D matrix with dimensions 3x129x64 corresponding to the
number of channels and the size of the spectrogram. An exemplary input of three spectrograms,
with amplitude presented using color mapping, can be seen in Fig. 5.
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Fig. 5. Spectrog:arns génerated from signals acquired from one-gesture repetitions

The spectrograms shown above are particularly suitable for implementing into CNNs, as they
effectively convert the EMG signal into an image-like format, enhancing the model's ability
to learn spatial and frequency-related features for classification tasks.

2.2. Models and training

In recent literature, convolutional neural networks (CNNs) have become the most
prevalent deep learning approach for EMG signal classification, often utilizing image-based
representations of time-frequency features. Following this trend, the present work applies
a CNN-based architecture for classifying EMG spectrograms generated using the short-time
Fourier transform (STFT). Each input instance is represented as a 3x129x64 matrix,
corresponding to spectrograms derived from three distinct EMG channels located on the forearm.
To facilitate effective training and generalization, 5-fold cross-validation was employed on the
dataset, which comprised 769 manually validated EMG recordings. This approach ensures that
each sample is used for both training and evaluation, allowing for a robust and independent
assessment of the model's performance on unseen data. The composition of the collected dataset
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can be seen in Fig. 6. The dataset is well-balanced across gesture classes, which is essential for
ensuring unbiased training [52]. The proposed single-branch CNN models vary in architectural
complexity, consisting of one to four convolutional blocks, each composed of a convolutional
layer, a normalization layer, and a ReLU activation. As the number of blocks increases, so does
the model’s capacity to extract higher-order spatial and temporal features from the spectrograms.
A global average pooling layer and a fully connected output layer finalize the classification
process across six predefined gesture classes.

Dataset Composition

Fist Wrist Extension
136 131
Hand Open 130 132 Wrist Flexion
110 13C
Pointing Pinch

Fig. 6. Composition of the obtained dataset

Figure 7 represents the structurg®otthe mbst complex model of the four implemented single-
branch models. The presented madeiconsists of 98 694 trainable parameters. The single-branch
models take the full three“channel spectrogram tensor as input and perform convolution over the
entire tensor, effectivelyydusirlg information from spectrograms of signals recorded from
different muscles, similar tG"now a three-channel RGB image is processed in standard CNNs.
This early fusion strategy allows the model to jointly learn spatial and temporal patterns across
all muscle signals, potentially capturing inter-muscle correlations and coordinated activation
patterns that might be overlooked in separate processing [53]. As a result, the model can exploit
richer feature representations, which can improve classification performance, especially in tasks
involving complex or subtle gesture distinctions. Additionally, a three-branch architecture was
implemented to investigate whether processing each spectrogram channel independently, prior
to fusion, could yield improved classification performance.

In this setup, each branch is dedicated to one muscle signal and extracts features from its
corresponding spectrogram, independently, allowing the model to specialize in capturing
channel-specific patterns. The extracted features are then combined at a later stage, enabling the
model to learn both individual and complementary information across channels. This late fusion
approach provides a more modular representation of muscle activity and may be particularly
advantageous when inter-channel variability is high or when subtle distinctions in signal
characteristics are critical for accurate gesture recognition.

10
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Figure 8 presents the proposed three-branch model structure consisting of 295 206 trainable
parameters. During training, a cross-entropy loss function was used to compare predicted class
distributions to ground truth labels. Optimization was performed using the Adam algorithm with
a learning rate of 0.003 over 50 epochs for each fold. All spectrogram inputs were normalized
using min-max scaling to improve convergence stability and overall training efficiency [54].
Each model's learning dynamics were monitored through loss function curves across epochs, and
the results demonstrated effective convergence without signs of overfitting. These trends were
consistent for both training and validation datasets, suggesting robust generalization capabilities.
All the CNN models were implemented and trained using the PyTorch library [55].

3. Results and discussion

As demonstrated in the studies by Naik et al. [56], Gandolta-et.al’ [57], as well as Yaman
and Subasi [58], evaluation metrics such as accuracy, reca; soecificity, precision, negative
predictive value (NPV), area under the receiver operatitia _snaracteristic curve (AUROC),
and Fi-score are effective for assessing the performarize ¢f an EMG classifier. To evaluate
the performance of the trained CNN models, classificatibn metrics were computed on both the
training and test datasets. While the training Setsparformance was assessed primarily through
the generation of confusion matrices, the test setiwas used for a more comprehensive evaluation.
All results were generated using Python, witn the Seaborn library utilized to create the
confusion matrices for visual inspecsion efiorediction accuracy per class. Model evaluation on
the test dataset was conducted using thexfour/performance metrics: precision, recall (sensitivity),
Fi-score, and accuracy. These smatries provide insight not only into the overall performance of
the classifier but also int0 its benavior across individual gesture classes. The definitions of the
metrics are as follows [20,46]:

Precision =L, 9
TP+FP
TP
TP+FN

Recall(Sensitivity) = ) (10)

Precision x Recall
F, = Zrecslon X Recal (11)

Precision +Recall ’

11
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TP+TN
TP+TN+FP+FN’

Accurancy = (12)

where TP, FP, FN, and TN refer to the true positives, false positives, false negatives, and true
negatives, respectively.

Parameters, defined by above Egs. (9)—(12), are derived from the confusion matrix, which
compares actual labels to predicted labels for each class. Precision reflects the proportion of
correctly predicted samples among all predictions for a given class. Recall indicates the model’s
ability to correctly identify all instances of a particular class. The Fi-score balances precision
and recall, serving as a robust metric especially in imbalanced datasets. Accuracy provides
a general measure of the percentage of correctly classified samples across the entire test set.

Figure 9 presents the confusion matrices evaluating the performance of implemented models
including spectrogram fusion model with one, two, three and four convolution layers as well as
the three-branch model. Detailed results are summarized in Tah!e 1. The presented results
demonstrate a clear and consistent progression in classification ‘geriprmance, with accuracy
steadily improving from Model 1 (81%) to Model 4 (99%j" vhis upward trend reflects
the benefits of increasing model complexity and refining featdre 2xtraction strategies. As deeper
architectures and more sophisticated processing were iintrocduced, the models became better at
capturing subtle patterns in EMG signals, resulting ir higher accuracy and more consistent class-
wise performance. Three-branch model resultsieid not'siand out much from early fusion models
and were weaker in comparison to smaller mode!s using the early fusion. While the three-branch
model performed reliably, it did not outpexform tiie early fusion models and was slightly weaker
than some of the simpler early fusiorismadels. This indicates that its added complexity did
not lead to better results for this tagik. o place these findings in context, Table 2 compares the
performance of our models with, reaults from related studies involving similar subject groups.
The confusion matricesfrovidedpgualitative insights into model behavior, revealing which
gestures were most Tesiadly hrecognized and where misclassifications tended to occur.
In particular, misclassificativris between similar or adjacent gestures often suggest overlapping
representations in the learned feature space, especially in earlier, less complex models. While
overall performance improved significantly with each architectural refinement, gesture-specific
challenges remained evident. Wrist extension was consistently the most accurately classified
gesture, while more complex or subtle gestures, such as hand open, pinch, and pointing were
more prone to confusion, particularly in simpler models. These discrepancies can be explained
by considering the anatomical and physiological characteristics of the underlying musculature.

Table 1. Summary of evaluation results for all analyzed models

Analyzed model Average precision | Average recall | Average Fi-score | Accuracy
Model 1 0.82 0.81 0.81 0.81
Model 2 0.98 0.98 0.98 0.98
Model 3 0.97 0.97 0.97 0.97
Model 4 0.99 0.99 0.99 0.99

13
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Fig. 9. Confusion matrices evaluating
the performance of implemented
models on the test set: (a) spectrogram
fusion model with one convolution
layer; (b) with two; (c) three; (d) four
convolution layers; as well as
(e) three-branch model
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Table 2. Comparison the results from related studies fivolviry similar subject groups
with current researca

Study Subjects Nurvtber 9.' Channels | Classifier | Accuracy
gesiUT ey

Benalcazar et al. (2018)
[22] 1 5 2 ANN 0.978
Zhang et al. (2019) [30] 1 6 2 ANN 0.987
Geng et al. (2016) [44] 1 8 N/A CNN 0.990
Tepe et al. (2022) [45] "‘ ¥ 5-7 8 C-SVM 0.991
Current work 1 6 3 CNN 0.990

EMG signals were collected from two muscles primarily responsible for wrist movements
and only one associated with finger movements. Wrist gestures engage larger, more superficial
muscles that generate stronger and more distinct EMG signals, which are easier to detect and
classify. In contrast, finger gestures depend on smaller, deeper, and more complex muscle groups
that produce weaker and more variable signals, which are more likely to overlap and result in
classification errors. This disparity in signal quality and separability accounts for the consistent
advantage seen in wrist gesture recognition. Overall, the findings confirm that with appropriate
feature engineering and parameter tuning, even classical classifiers using handcrafted features
can achieve high levels of accuracy comparable to deep learning models when applied to EMG-
based gesture recognition involving a limited set of six gestures. This is particularly
advantageous in applications where computational efficiency, simplicity, or limited training data
are critical constraints. However, several limitations must be acknowledged. The dataset lacked
participant diversity, reducing confidence in generalizability across users. The system was
evaluated offline, without real-time testing, and its performance under varying conditions, such
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as electrode displacement, inter-session variability, or signal noise, was not systematically
analyzed. Furthermore, the gesture vocabulary was limited, which may constrain the
applicability of the system in more complex, real-world scenarios. Future work should aim to
address these issues by testing the system in dynamic, multi-user environments, incorporating
adaptive learning strategies, and expanding the gesture set to better support practical deployment.
Additionally, EMG channels focused on finger-specific muscles may also help improve
performance for more intricate gestures, enhancing the robustness and versatility of EMG-based
interfaces.

4. Conclusions

This study presented a complete deep learning-based pipeline f6r classifying hand gestures
using surface electromyographic (EMG) signals recorded fiom .three superficial forearm
muscles. By converting segmented EMG data into shorestime /Fourier transform (STFT)
spectrograms and leveraging convolutional neural netwoiis < CNNs), we demonstrated the
feasibility and effectiveness of automatic gesture recagition without the need for handcrafted
features. The proposed models achieved high clatsifi¢ation accuracy across six predefined
gestures, confirming the strength of CNINs in cautarina complex spatiotemporal patterns inherent
in EMG signals. Among the five tested CIN ‘architectures, deeper models with more
convolutional blocks exhibited superior garformance, with the most complex model reaching
99% accuracy on the test set. Howevew\Model 3 offered a compelling trade-off between
classification performance and afchiwctural complexity, making it suitable for practical
deployment in resource-constrained gavironments. Furthermore, the comparison between early
fusion (single-branch) and late(fiision (multi-branch) strategies underscored the benefits of
learning both joint and chaxinel s5pecific features, especially when muscle coordination and inter-
channel variability play sigaificant roles in gesture discrimination. Despite these promising
results, the system's generalization capability requires further validation through testing with a
larger and more diverse user group, including individuals with limb loss. Moreover, real-time
integration remains an important direction for future development. Expanding the number of
recognizable gestures, incorporating adaptive learning techniques to address inter-user
variability, and exploring alternative network architectures, such as CNN-RNN hybrids may
further improve system responsiveness and robustness. Ultimately, this work contributes toward
the advancement of intuitive, non-invasive control systems for prosthetics and human-machine
interfaces, leveraging the power of deep learning to interpret EMG signals with high precision
and adaptability.
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