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Abstract: Hand gesture recognition based on surface electromyographic (sEMG) signals 
plays a critical role in modern human–computer interaction systems, particularly in upper-
limb prosthetic applications. This study presents a method for classifying six selected hand 
gestures using sEMG signals acquired from three forearm muscles. The recorded signals 
were digitally filtered, and an automatic segmentation algorithm was developed to isolate 
individual gestures from the continuous muscle activity recordings. These segments were 
transformed into spectrograms using the short-time Fourier transform (STFT), which 
served as input data for various convolutional neural network (CNN) architectures. The 

study compares two approaches to data processing: one in which signals from each channel 
were analyzed separately, and another in which spectrograms from all three channels were 
fused into a single three-channel input. The primary objective was to investigate which 
method better captures the inter-relationships between the activity patterns of different mus-
cles. The models were trained and evaluated using cross-validation. The best-performing 
architecture achieved an accuracy of 99%. The results indicate that fusing spectrograms 
from multiple channels into a single input can enhance the classification performance of 
complex muscle activity patterns, particularly when the amount of available training data 

is limited. 

Key words: classification, convolutional neural network (CNN), electromyographic 
(EMG) signals, hand gesture recognition, spectrogram fusion 

 

 

1. Introduction 

 

The classification of electromyographic (EMG) signals has become a central focus in 

biomedical and engineering studies, particularly in applications involving prosthetic control 

and human–computer interfaces (HCI) [1]. EMG signals contain valuable information about 

neuromuscular activity, making them a widely used tool for analyzing muscle function in both 

clinical and engineering applications [2] and making them well-suited for recognizing hand 
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gestures that can be used to control assistive technologies. Beyond prosthetic and HCI 

applications, hand gesture recognition also plays a critical role in sign language interpretation 

systems [3] and other bio-signal interfaces aimed at restoring or enhancing motor function [4]. 

People with upper limb amputations face numerous challenges in daily life, including the loss of 

fine motor control and independence in daily tasks. Advanced prosthetic devices capable of 

interpreting EMG signals offer the potential to restore lost functionality by accurately 

detecting user intentions through gesture recognition. However, current commercially available 

prostheses often suffer from several limitations such as mechanical complexity, insufficient 

robustness, signal noise sensitivity, and difficulty in achieving intuitive control. These challenges 

are further compounded by variability in EMG signals between users, differences in skin 

impedance, and difficulties with consistent sensor placement. To address these issues, robust and 

adaptive signal acquisition and classification techniques are required. A key consideration in 

EMG-based gesture recognition is the selection of appropriate muscle groups for signal 

acquisition. The forearm is frequently targeted due to its high concentration of muscles involved 

in wrist and finger movements. Even in cases of transradial amputation, viable EMG signals can 

often be recorded from residual muscles in the stump, allowing control interfaces to be 

implemented even after limb loss [5]. Over the past few decades, various methods have been 

developed to tackle the EMG signal classification problem. Traditional approaches rely on 

manually engineered features derived from the time, frequency, or time-frequency domains. 

Common time-domain features include mean absolute value (MAV), root mean square (RMS), 

variance, and waveform length. In the frequency domain, features are often computed using the 

fast Fourier transform (FFT), short-time Fourier transform (STFT), or wavelet transforms, 

allowing the extraction of metrics such as median frequency (MDF), mean frequency (MNF), 

and power spectral density (PSD) [6]. Early signal analysis approaches relied heavily on these 

handcrafted features to classify muscle activity. Reaz et al. [7] provided a comprehensive survey 

of such traditional methods, highlighting their computational simplicity but also their limited 

ability to generalize across users or adapt to the nonlinear and nonstationary nature of EMG 

signals. Although these handcrafted features are computationally efficient and suitable for real-

time systems, they often exhibit poor generalization across users or sessions and a limited ability 

to capture nonlinear patterns. Moreover, the assumption of stationarity required by many spectral 

methods does not always hold for EMG, which is inherently nonstationary and stochastic in 

nature. To improve recognition stability and robustness, filtering techniques such as variational 

mode decomposition have been introduced. Ma et al. [8] demonstrated that effective signal 

denoising prior to classification could significantly enhance accuracy, particularly in the 

presence of noise or during dynamic movement conditions. In response to these limitations, deep 

learning methods, widely applied across various areas of bioengineering [9–13], have gained 

significant traction in the field of gesture recognition [14]. These approaches automatically 

extract hierarchical and abstract representations (referred to as deep features) directly from raw 

or minimally processed data. Convolutional neural networks (CNNs), in particular, have 

demonstrated strong performance in EMG-based gesture recognition tasks. By converting 

EMG signals into 2D spectrograms using STFT, CNNs are able to effectively model spatial 
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and temporal signal patterns, bypassing the need for manual feature engineering [15]. Several 

studies have demonstrated the effectiveness of CNNs and other deep learning techniques for this 

task. CNNs were used to recognize basic hand gestures, and their superiority over classical 

machine learning approaches was confirmed in [16]. Further improvements were shown by [17], 

where CNNs with varied input dimensions achieved highly accurate results. Yamanoi et al. [5] 

showed that CNNs can outperform conventional classifiers in distinguishing hand postures. 

Cote-Allard et al. [18] extended this work by applying transfer learning strategies to reduce 

model training time and improve robustness across users. More advanced architectures have also 

been proposed to improve practical usability. Zhai et al. [19] introduced a self-adaptive model 

capable of recalibrating without the need for manual intervention, improving long-term stability. 

To further capture temporal dependencies in EMG signals, Sun et al. [20] employed dilated 

LSTM networks to model the dynamics of gesture transitions. Hybrid deep learning frameworks 

that combine spatial and temporal modeling have also emerged; Hu et al. Paper [21] proposed 

an attention-enhanced CNN-RNN architecture, improving both classification performance and 

model interpretability in sequential EMG data. The role of hyperparameter tuning in building 

robust and stable classification models was explored in the study [22]. Recurrent architectures 

have also gained attention. For example, investigation [23] proposed using sequences of EMG 

windows for gesture prediction. Hybrid models, which combine handcrafted features and deep 

learning, have also shown promise. One such approach in [24] merged both types of features 

into a single classifier. Additionally, study [25] explored integrating CNNs with long short-term 

memory (LSTM) layers to incorporate temporal dependencies into the model's decision-making 

process. Recent studies have further advanced these architectures by focusing on real-time 

deployment, robustness, and application-specific adaptability. For instance, CNN-based models 

trained on EMG-derived frequency features have shown strong performance in guiding robotic 

arms with high precision [26]. Other approaches have leveraged feed-forward neural networks 

for real-time EMG pattern recognition in embedded systems [27]. In addition, fully embedded 

systems leveraging high-density sEMG data and deep learning classifiers have demonstrated 

adaptive, low-latency performance suitable for wearable control interfaces [28]. Similar efforts 

to deploy robust CNN models on multicore IoT platforms have enabled efficient gesture 

recognition in power-constrained environments [29]. Comparative analyses with traditional 

artificial neural network (ANN)-based systems further confirm the superiority of deep learning 

approaches under variable signal conditions [30]. Moreover, multi-sensor systems and ensemble 

strategies have been explored to improve classification reliability using minimal EMG 

channels [31]. Collectively, these contributions demonstrate a clear trend toward integrating 

adaptive, deep learning-based EMG interfaces into real-time assistive technologies. Efficient 

implementation of such systems on edge devices, has also become an important focus in recent 

studies [32–37]. A variety of machine learning algorithms has also been used in other important 

applications [38–43]. Previous studies, such as Geng et al. [44] and Tepe et al. [45], used similar 

single-subject setups and achieved high accuracy with CNN and support vector machine (SVM) 

models, respectively. However, these works did not explore how combining spectrograms 

from multiple EMG channels could improve feature representation or capture inter-muscle 
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relationships. In this study, we compare early and late spectrogram fusion strategies to evaluate 

their impact on classification performance. 

In the current paper, we present a complete pipeline for hand gesture classification based on 

EMG signals and deep learning techniques. EMG data were collected from three superficial 

forearm muscles while subjects performed six distinct hand gestures. A custom segmentation 

algorithm based on amplitude thresholding was applied to extract active gesture segments from 

continuous recordings. Each segment was transformed into a spectrogram using the STFT, 

yielding a three-channel 3×129×64 tensor for each instance. To evaluate model performance, 

five CNN architectures were implemented. The first four models used a single-branch structure 

that processes the entire three-channel spectrogram as a unified input. This early fusion strategy 

enables the network to convolve over all channels simultaneously, similar to processing an RGB 

image, and allows the model to learn joint spatial and temporal patterns across multiple muscles. 

By capturing inter-muscle coordination and shared activation patterns, this approach supports the 

extraction of richer, more informative features, which can be especially useful for distinguishing 

complex or subtle gestures. Additionally, a fifth architecture was introduced using a three-branch 

CNN model that processes each spectrogram channel independently before merging the 

extracted features. This late fusion strategy allows the network to specialize in channel-specific 

patterns while still learning complementary information during the fusion stage. Such modular 

representation can be advantageous when signal variability across channels is significant or when 

muscle-specific distinctions are critical to accurate gesture classification. The results highlight 

the potential of early and late fusion strategies in deep learning models for EMG-based gesture 

recognition and support their integration into responsive, intelligent human–machine interaction 

systems. 

 

 

2. Materials and methods 

 

Electrical signals generated by muscle contractions are characterized by their low amplitude 

and nonrepeatability. Surface electromyography (sEMG) measurements can vary significantly 

between individuals due to differences in skin condition, preparation of the measurement site, 

and electrode placement. Additionally, surface EMG is highly dependent on individual 

anatomical features, making consistent electrode placement across subjects challenging. 

Achieving accurate and repeatable measurements often requires a personalized approach tailored 

to each subject. Readings from surface electrodes represent a composite EMG signal, reflecting 

the activity of multiple muscles located beneath the skin at the electrode site. As a result, the 

recorded signal may include noise or irrelevant information from surrounding muscles, which 

can affect the accuracy of the data. To mitigate these effects, the gestures selected for 

classification were chosen to involve distinct muscle activation patterns and to be performed by 

superficial muscles. The selected gestures are illustrated in Fig. 1.  
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Fig. 1. Gestures chosen for classification: (a) finger flexion; (b) pointing; (c) three-finger pinch; (d) finger 
abduction; (e) wrist extension; (f) wrist flexion 

 

All EMG signals were acquired using the Biomonitor ME6000. In every recording signals 

from three channels were captured, each channel consisting of two measuring electrodes and one 

reference electrode. Every channel was used to acquire signals from one of three muscles: flexor 

carpi radialis, flexor carpi ulnaris and extensor digitorum communis. Silver/silver chloride 

(Ag/AgCl) electrodes were adhered to shaved and cleaned skin above the chosen muscles. 

The planned electrode placement is illustrated in Fig. 2, while a close-up photograph showing 

the electrodes adhered and wired during one of the recording sessions is presented in Fig. 3. 

In support of electrode placement and skin preparation protocols, we follow established 

guidelines [46], ensuring consistent capture from the flexor and extensor forearm muscles.  

The signals were captured with a sampling frequency of 1000 Hz. Signal acquisition took 

the form of recordings in which the participant performed 20 repetitions of a chosen gesture. 

Each recording started with a 2-second-long period of no muscular activity. After that, the 

participant performed 2-second-long gestures alternately with 3-second-long resting periods. 

Collected recordings for each gesture corresponded to 140 repetitions of that gesture, which 

altogether summed up to three-channel EMG signals of 840 gesture repetitions. Recorded signals 

were segmented using a sliding window algorithm. All recordings were collected with the 

cooperation of a single participant. This approach was intentional and aligned with the single-

subject study design. 
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Fig. 2. Planned electrode placement based on the three chosen muscles responsible for hand movements 

 

 
(a) 

 
(b) 

Fig. 3. Measurements of hand EMG signals: (a) Biomonitor ME6000; (b) wired measuring channels 
placed at selected muscles (flexor carpi radialis, flexor carpi ulnaris) 

 

The presented algorithm windows all three channels of a single signal recording 

simultaneously with an overlap of O = 75 samples using a sliding window with a fixed length of 

L = 350 samples. As emphasized in paper [47], segmenting nonstationary EMG into time 

windows reduces stochastic noise and improves classification robustness.  
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Let xc [n] denote the raw EMG signal from channel c ∈ {1,2,3}. Each signal was first rectified 

to obtain the discrete time series representing the rectified signal: 

 𝑟𝑐[𝑛] = |𝑥𝑐[𝑛]|. (1) 

For every window 

 𝑤𝑖 = {𝑟𝑐[𝑛𝑖], 𝑟𝑐[𝑛𝑖 + 1], … , 𝑟𝑐[𝑛𝑖 + 𝐿 − 1]}, (2) 

the mean rectified amplitude (MRA) was computed as: 

 𝐴𝑐,𝑖 =
1

𝐿
∑ 𝑟𝑐[𝑛𝑖 + 1]𝐿−1

𝑘=0 , (3) 

where L is the window length, ni is the index of the first sample of the window. 

A baseline amplitude 𝐴̅c,0 was estimated from the first N0 = 1 000 rectified samples of each 

channel as: 

 𝐴̄𝑐,0 =
1

𝑁0
∑ 𝑟𝑐[𝑘]

𝑁0−1
𝑘=0 . (4) 

The activation threshold for each channel was defined as: 

 𝑇𝑐 = 1.3𝐴̄𝑐,0. (5) 

Gesture onset and offset points were determined by threshold crossings of the mean rectified 

amplitude. A gesture onset was detected when the amplitude in any of the three channels 

exceeded its corresponding threshold: 

 𝐴𝑐,𝑖−1 < 𝑇𝑐    and   𝐴𝑐,𝑖 ≥ 𝑇𝑐 , (6) 

and a gesture offset was detected when the amplitudes from all of the three channels fell below 

their corresponding thresholds: 

 𝐴𝑐,𝑖−1 ≥ 𝑇𝑐    and   𝐴𝑐,𝑖 < 𝑇𝑐 . (7) 

The index corresponding to the start of window 𝑤𝑖was marked as the onset or offset point, 

respectively. To ensure reliable segmentation and prevent false detections due to transient 

fluctuations, a minimum separation constraint of Dmin = 250 samples was imposed between 

gesture onset and offset, as well as between consecutive gesture segments. Using criteria 

presented by above Eqs. (1)–(7), gesture segments were reliably extracted from the original 

EMG signals. The automatic segmentation algorithm, which uses a 75-sample overlap and 

threshold-based amplitude detection, follows methodologies outlined in studies [48] and [49]. 

These sources demonstrate how overlapping sliding windows and envelope-based thresholds 

effectively extract gesture segments from continuous EMG data. The segmented portions of 

acquired data were then combined to form the dataset used for further analysis and classification. 

An example result of automatic segmentation can be seen in Fig. 4. 
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Fig. 4. Plot representing the results of applying the segmentation algorithm on the rectified signal 

recording. The plot represents an example segmentation of the signal recorded from 
the extensor digitorum communis while performing wrist extension 

 

2.1. Signal pre-processing 

For signal pre-processing, three main procedures were carried out. Firstly, the obtained 

segmented signals were cropped and then padded to fit the same length of 4 000 samples. 

The segmented EMG signals vary in length because it is difficult for individuals to perform 

gestures that last exactly two seconds. Consistent signal length is crucial for efficient data 

handling and machine learning training and validation procedures. Cropping was chosen for this 

task so as not to change the spectral features of the signals, which may occur while using signal 

resampling. After the cropping procedure, all of the signals were filtered. The filtering was 

performed using a 5th-order Butterworth digital bandpass filter with cutoff frequencies of 20 Hz 

and 400 Hz for the lower and upper limits, respectively [50]. The filtered and cropped signals 

were used to generate spectrograms using the STFT. This time-frequency analysis technique 

allows for the examination of how the frequency content of a signal changes over time. 

It operates by dividing the signal into overlapping segments and applying the Fourier transform 

to each segment independently. This decomposition enables localized frequency analysis across 

the time axis, making STFT particularly useful for non-stationary signals such as EMG. In the 

STFT process, a sliding window function is applied to isolate short portions of the signal. Each 

windowed segment is then transformed into the frequency domain using the discrete Fourier 

transform (DFT). The result is a two-dimensional representation known as a spectrogram, where 

one axis represents time, the other refers to the frequency, and the color or intensity represents 

signal amplitude at each time-frequency coordinate. 

Mathematically, the STFT of a signal x(t) is defined as [51]:  

 STFT𝑥(𝜏, 𝑦) = ∫ 𝑥(𝑡)𝛾(𝑡 − 𝜏) 𝑒−𝑗2𝜋𝑓𝑡 d 𝑡
+∞

−∞
, (8) 

where γ(t – τ) is the window function centered at time τ, and f is the frequency.  
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To compute the STFT in practice, discrete parameters are selected. In this study, a sampling 

frequency of 1 kHz was used, with each signal segment consisting of 129 samples and an overlap 

of 68 samples between segments. The FFT length was set to 256 points. These parameters were 

chosen to balance frequency resolution with computational efficiency. After transformation, 

each EMG signal is represented as a 3D matrix with dimensions 3×129×64 corresponding to the 

number of channels and the size of the spectrogram. An exemplary input of three spectrograms, 

with amplitude presented using color mapping, can be seen in Fig. 5.  

 

 
Fig. 5. Spectrograms generated from signals acquired from one-gesture repetitions 

 

The spectrograms shown above are particularly suitable for implementing into CNNs, as they 

effectively convert the EMG signal into an image-like format, enhancing the model's ability 

to learn spatial and frequency-related features for classification tasks.  

 

2.2. Models and training 

In recent literature, convolutional neural networks (CNNs) have become the most 

prevalent deep learning approach for EMG signal classification, often utilizing image-based 

representations of time-frequency features. Following this trend, the present work applies 

a CNN-based architecture for classifying EMG spectrograms generated using the short-time 

Fourier transform (STFT). Each input instance is represented as a 3×129×64 matrix, 

corresponding to spectrograms derived from three distinct EMG channels located on the forearm. 

To facilitate effective training and generalization, 5-fold cross-validation was employed on the 

dataset, which comprised 769 manually validated EMG recordings. This approach ensures that 

each sample is used for both training and evaluation, allowing for a robust and independent 

assessment of the model's performance on unseen data. The composition of the collected dataset 
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can be seen in Fig. 6. The dataset is well-balanced across gesture classes, which is essential for 

ensuring unbiased training [52]. The proposed single-branch CNN models vary in architectural 

complexity, consisting of one to four convolutional blocks, each composed of a convolutional 

layer, a normalization layer, and a ReLU activation. As the number of blocks increases, so does 

the model’s capacity to extract higher-order spatial and temporal features from the spectrograms. 

A global average pooling layer and a fully connected output layer finalize the classification 

process across six predefined gesture classes.  

 

 
Fig. 6. Composition of the obtained dataset 

 

Figure 7 represents the structure of the most complex model of the four implemented single-

branch models. The presented model consists of 98 694 trainable parameters. The single-branch 

models take the full three-channel spectrogram tensor as input and perform convolution over the 

entire tensor, effectively fusing information from spectrograms of signals recorded from 

different muscles, similar to how a three-channel RGB image is processed in standard CNNs. 

This early fusion strategy allows the model to jointly learn spatial and temporal patterns across 

all muscle signals, potentially capturing inter-muscle correlations and coordinated activation 

patterns that might be overlooked in separate processing [53]. As a result, the model can exploit 

richer feature representations, which can improve classification performance, especially in tasks 

involving complex or subtle gesture distinctions. Additionally, a three-branch architecture was 

implemented to investigate whether processing each spectrogram channel independently, prior 

to fusion, could yield improved classification performance. 

In this setup, each branch is dedicated to one muscle signal and extracts features from its 

corresponding spectrogram, independently, allowing the model to specialize in capturing 

channel-specific patterns. The extracted features are then combined at a later stage, enabling the 

model to learn both individual and complementary information across channels. This late fusion 

approach provides a more modular representation of muscle activity and may be particularly 

advantageous when inter-channel variability is high or when subtle distinctions in signal 

characteristics are critical for accurate gesture recognition. 
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Figure 8 presents the proposed three-branch model structure consisting of 295 206 trainable 

parameters. During training, a cross-entropy loss function was used to compare predicted class 

distributions to ground truth labels. Optimization was performed using the Adam algorithm with 

a learning rate of 0.003 over 50 epochs for each fold. All spectrogram inputs were normalized 

using min-max scaling to improve convergence stability and overall training efficiency [54]. 

Each model's learning dynamics were monitored through loss function curves across epochs, and 

the results demonstrated effective convergence without signs of overfitting. These trends were 

consistent for both training and validation datasets, suggesting robust generalization capabilities. 

All the CNN models were implemented and trained using the PyTorch library [55]. 

 

 

3. Results and discussion 

 

As demonstrated in the studies by Naik et al. [56], Gandolla et al. [57], as well as Yaman 

and Subasi [58], evaluation metrics such as accuracy, recall, specificity, precision, negative 

predictive value (NPV), area under the receiver operating characteristic curve (AUROC), 

and F1‑score are effective for assessing the performance of an EMG classifier. To evaluate 

the performance of the trained CNN models, classification metrics were computed on both the 

training and test datasets. While the training set performance was assessed primarily through 

the generation of confusion matrices, the test set was used for a more comprehensive evaluation. 

All results were generated using Python, with the Seaborn library utilized to create the 

confusion matrices for visual inspection of prediction accuracy per class. Model evaluation on 

the test dataset was conducted using the four performance metrics: precision, recall (sensitivity), 

F1-score, and accuracy. These metrics provide insight not only into the overall performance of 

the classifier but also into its behavior across individual gesture classes. The definitions of the 

metrics are as follows [20, 46]: 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, (9) 

 Recall(Sensitivity) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, (10) 

 𝐹1 = 2
Precision × Recall

Precision +Recall
. (11) 
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 Accurancy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, (12) 

where TP, FP, FN, and TN refer to the true positives, false positives, false negatives, and true 

negatives, respectively.  

Parameters, defined by above Eqs. (9)–(12), are derived from the confusion matrix, which 

compares actual labels to predicted labels for each class. Precision reflects the proportion of 

correctly predicted samples among all predictions for a given class. Recall indicates the model’s 

ability to correctly identify all instances of a particular class. The F1-score balances precision 

and recall, serving as a robust metric especially in imbalanced datasets. Accuracy provides 

a general measure of the percentage of correctly classified samples across the entire test set. 

Figure 9 presents the confusion matrices evaluating the performance of implemented models 

including spectrogram fusion model with one, two, three and four convolution layers as well as 

the three-branch model. Detailed results are summarized in Table 1. The presented results 

demonstrate a clear and consistent progression in classification performance, with accuracy 

steadily improving from Model 1 (81%) to Model 4 (99%). This upward trend reflects 

the benefits of increasing model complexity and refining feature extraction strategies. As deeper 

architectures and more sophisticated processing were introduced, the models became better at 

capturing subtle patterns in EMG signals, resulting in higher accuracy and more consistent class-

wise performance. Three-branch model results did not stand out much from early fusion models 

and were weaker in comparison to smaller models using the early fusion. While the three-branch 

model performed reliably, it did not outperform the early fusion models and was slightly weaker 

than some of the simpler early fusion models. This indicates that its added complexity did 

not lead to better results for this task. To place these findings in context, Table 2 compares the 

performance of our models with results from related studies involving similar subject groups. 

The confusion matrices provided qualitative insights into model behavior, revealing which 

gestures were most reliably recognized and where misclassifications tended to occur. 

In particular, misclassifications between similar or adjacent gestures often suggest overlapping 

representations in the learned feature space, especially in earlier, less complex models. While 

overall performance improved significantly with each architectural refinement, gesture-specific 

challenges remained evident. Wrist extension was consistently the most accurately classified 

gesture, while more complex or subtle gestures, such as hand open, pinch, and pointing were 

more prone to confusion, particularly in simpler models. These discrepancies can be explained 

by considering the anatomical and physiological characteristics of the underlying musculature. 

 
Table 1.  Summary of evaluation results for all analyzed models 

Analyzed model Average precision Average recall Average F1-score Accuracy 

Model 1 0.82 0.81 0.81 0.81 

Model 2 0.98 0.98 0.98 0.98 

Model 3 0.97 0.97 0.97 0.97 

Model 4 0.99 0.99 0.99 0.99 
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Three-branch model  0.96 0.95 0.95 0.96 

 

(a) 
 

(b) 

 
(c) 

 
(d) 
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(e) 

Fig. 9. Confusion matrices evaluating 
the performance of implemented 

models on the test set: (a) spectrogram 
fusion model with one convolution 

layer; (b) with two; (c) three; (d) four 
convolution layers; as well as 

(e) three-branch model 

 
Table 2.  Comparison the results from related studies involving similar subject groups 

with current research 

Study Subjects 
Number of 

gestures 
Channels Classifier Accuracy 

Benalcazar et al. (2018) 
[22] 

1 5 2 ANN 0.978 

Zhang et al. (2019) [30] 1 6 2 ANN 0.987 

Geng et al. (2016) [44] 1 8 N/A CNN 0.990 

Tepe et al. (2022) [45] 1 5–7 8 C-SVM 0.991 

Current work  1 6 3 CNN 0.990 

 

EMG signals were collected from two muscles primarily responsible for wrist movements 

and only one associated with finger movements. Wrist gestures engage larger, more superficial 

muscles that generate stronger and more distinct EMG signals, which are easier to detect and 

classify. In contrast, finger gestures depend on smaller, deeper, and more complex muscle groups 

that produce weaker and more variable signals, which are more likely to overlap and result in 

classification errors. This disparity in signal quality and separability accounts for the consistent 

advantage seen in wrist gesture recognition. Overall, the findings confirm that with appropriate 

feature engineering and parameter tuning, even classical classifiers using handcrafted features 

can achieve high levels of accuracy comparable to deep learning models when applied to EMG-

based gesture recognition involving a limited set of six gestures. This is particularly 

advantageous in applications where computational efficiency, simplicity, or limited training data 

are critical constraints. However, several limitations must be acknowledged. The dataset lacked 

participant diversity, reducing confidence in generalizability across users. The system was 

evaluated offline, without real-time testing, and its performance under varying conditions, such 
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as electrode displacement, inter-session variability, or signal noise, was not systematically 

analyzed. Furthermore, the gesture vocabulary was limited, which may constrain the 

applicability of the system in more complex, real-world scenarios. Future work should aim to 

address these issues by testing the system in dynamic, multi-user environments, incorporating 

adaptive learning strategies, and expanding the gesture set to better support practical deployment. 

Additionally, EMG channels focused on finger-specific muscles may also help improve 

performance for more intricate gestures, enhancing the robustness and versatility of EMG-based 

interfaces. 

 

 

4. Conclusions 

 

This study presented a complete deep learning-based pipeline for classifying hand gestures 

using surface electromyographic (EMG) signals recorded from three superficial forearm 

muscles. By converting segmented EMG data into short-time Fourier transform (STFT) 

spectrograms and leveraging convolutional neural networks (CNNs), we demonstrated the 

feasibility and effectiveness of automatic gesture recognition without the need for handcrafted 

features. The proposed models achieved high classification accuracy across six predefined 

gestures, confirming the strength of CNNs in capturing complex spatiotemporal patterns inherent 

in EMG signals. Among the five tested CNN architectures, deeper models with more 

convolutional blocks exhibited superior performance, with the most complex model reaching 

99% accuracy on the test set. However, Model 3 offered a compelling trade-off between 

classification performance and architectural complexity, making it suitable for practical 

deployment in resource-constrained environments. Furthermore, the comparison between early 

fusion (single-branch) and late fusion (multi-branch) strategies underscored the benefits of 

learning both joint and channel-specific features, especially when muscle coordination and inter-

channel variability play significant roles in gesture discrimination. Despite these promising 

results, the system's generalization capability requires further validation through testing with a 

larger and more diverse user group, including individuals with limb loss. Moreover, real-time 

integration remains an important direction for future development. Expanding the number of 

recognizable gestures, incorporating adaptive learning techniques to address inter-user 

variability, and exploring alternative network architectures, such as CNN-RNN hybrids may 

further improve system responsiveness and robustness. Ultimately, this work contributes toward 

the advancement of intuitive, non-invasive control systems for prosthetics and human-machine 

interfaces, leveraging the power of deep learning to interpret EMG signals with high precision 

and adaptability. 
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