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Abstract: The overlapping part between the overhead conductor rail (OCR) anchor seg-

ments is called the anchor joint, which is a key component that constrains the dynamic 

performance of the OCR. When the train passes through the anchor joint, the contact force 

fluctuates significantly, degrading the current collection quality. This paper carries out the 

multi-objective optimization of the dynamic performance at the OCR anchor segments by 

combining the Non-dominated Sorting Genetic Algorithm II (NSGA-II) with the Response 

Surface Method (RSM), in order to alleviate the severe fluctuations in contact force, thus 

making a trade-off between the two inconsistent objectives of contact force standard devi-

ation (Fδ) and range (Fr). Firstly, the Box-Behnken experimental design method was em-

ployed, with the elevation of the first suspension point, cantilever span, anchor joint, and 

standard span as design variables, and Fδ and Fr as objective functions, to conduct numeri-

cal simulation studies on them. Secondly, to enhance the dynamic performance of OCR 

anchor segments, the NSGA-II was used to optimize the objective functions Fδ and Fr Fi-

nally, simulations using the geometric parameters corresponding to the Pareto optimal so-

lutions obtained by the NSGA-II showed that, compared to the original design, Fδ was in-

creased by 11.18%, and Fr was raised by 35.04%. 
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1. Introduction 

 

In electrified railways, stable current collection from the pantograph and overhead conductor 

rail (POCR) is one of the key factors to ensure the stable operation of trains. During train 

operation, the complex vibration conditions of the pantograph and overhead conductor rail 

system (POCRS) cause the contact force to fluctuate continuously and complexly. Excessive or 

insufficient contact force can significantly affect the quality of current collection for the train. 

Especially at the anchor joint of the OCR, as shown in Fig. 1, the contact force fluctuates 

significantly, and its structure has an important impact on Fδ and Fr between the POCR. 

Excessive contact force here can lead to wear and disconnection between the POCRS, causing 

arcing and affecting the stable current collection for the train. 

 

      

Fig. 1. The anchor section of OCR in the tunnel (left) and its local structure (right) 

 

In recent years, most studies have focused on modeling the OCR and assessing how its 

parameters affect the dynamics of the POCRS. Because the OCR is structurally and functionally 

similar to the soft catenary[1], modeling approaches developed for the latter, especially the finite 

element method (FEM), which are readily transferable [2, 3]. For example, [4] developed an 

OCR FEM in ANSYS with a new conductor rail profile. [5] used the absolute nodal coordinate 

formulation (ANCF) to model the OCR and investigate pantograph catenary coupled dynamics, 

and [6] examined the influence of support stiffness on current collection quality. Reference [7] 

identified OCR irregularities caused by long-term undulating wear of the sliding surface and 

installation errors, as a major source of degradation. Structurally, early busbar forms are 

documented in [8], while modern OCR typically adopt hollow π-shaped sections for enhanced 
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performance [9]. In addition, [10, 11] conducted systematic studies of pantograph catenary 

dynamics in the overlap region of soft catenaries, and [12] analyzed the effects of OCR 

parameters on POCRS dynamics. Overall, these studies are largely single-factor or classical 

experimental designs and do not account for multi-parameter coupling. 

Given the pronounced coupling and synergy among OCR parameters, single-factor analyses 

are both inefficient and inadequate for accurate optimization. Although multi-objective swarm 

intelligence algorithms are still uncommon in the POCRS domain, they have been rigorously 

validated in related engineering fields, for instance, the breeder genetic algorithm (BGA) for 

multi-scenario DG siting and sizing to minimize distribution-network power loss [13], the salp 

swarm algorithm (SSA) for constrained optimization of outer-rotor BLDC motors with superior 

efficiency and solution quality [14], and an improved grey wolf optimizer (GWO) for 

transformer fault warning and classification with strengthened global search [15]. These results 

provide strong evidence for the applicability and reliability of such methods to POCRS problems. 

This study targets the dynamic optimization of the OCR anchor segment. Using the elevation 

of the first suspension point, cantilever span, anchor joint parameter, and standard span as design 

variables, and Fδ and Fr as performance objectives, we conduct Box–Behnken design [16] based 

simulations of the POCRS contact force at the anchor joint and build a RSM surrogate that 

explicitly captures factor interactions. Based on this surrogate, the NSGA-II is employed to solve 

a strongly coupled, nonconvex, and constrained multi-objective problem, yielding the Pareto 

front of dynamic performance at the anchor joint and an optimal parameter set that suppresses 

contact force fluctuation, reduces separation risk, and enhances current collection stability. 

 

 

2. Model description and computational method 

 

2.1. The anchor segment geometric model of overhead conductor rail   

The anchor joint of the OCR is divided into breakaway-type anchor joints and through-type 

anchor joints. This paper analyzes the breakaway-type anchor joint. It is realized by utilizing the 

geometric arrangement of two overlapping OCR segments, where the overlapping area has an 

equal high point in space, and the end of the anchor segment is elevated. The OCR anchor 

segment consists of the elevation of the first suspension point, cantilever span, the first span, and 

the second span. The arrangement of the anchor joint is shown in Figs. 2(a) and (b). In this paper, 

the elevation of the first suspension point x1 is 4 mm, the cantilever span x2 is 1.2 m, the first 

span L1 is 2 m, the second span L2 is 6 m, the transition span L3 is 7 m, the anchor joint x3 is 

5.4 m, and the standard span x4 is 10 m. Due to the large span of the first span, only the first 

suspension point is elevated. 
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Fig. 2. The anchor segment model of overhead conductor rail under the action of the pantograph: (a) 

represents the actual model; (b) this lumped mass model can represent the actual model 

 

2.2. Mathematical model and computational method 

In this paper, the mathematical model involves two types of models: the pantograph and the 

overhead conductor rail. The pantograph model uses a three-mass model, while the OCR is 

regarded as a simply supported beam model. Table 1 [11] shows the parameters of the 

pantograph model. By coupling the two models via a penalty function [11], establish the 

equations of motion for the POCR coupled system, and on this basis construct Objective 

Functions Fδ [17] and Fr [18]. The analysis focuses on Fδ and Fr between the POCRS at the 

anchor segment under the influence of the pantograph. The POCRS at the anchor joint is 

illustrated in Fig. 2(a). 

Fδ is mainly derived from the industry standard [17]; according to the standards, the 

requirement is δ ≤ 0.3Fm, therefore, we define 

 𝐹𝛿 = 0.3𝐹𝑚 − 𝛿. (1) 

In the equation, Fₘ represents the average contact force, and δ represents the standard 

deviation of the contact force. 

 𝛿 = √
1

𝑛
∑ (𝐹𝑐 − 𝐹𝑚)

2𝑛
𝑖=1 , (2) 

where n represents the number of contact force data points and Fc denotes the contact force 

between the POCRS at the anchor segment. 

Fr is also derived from the industry standard for assessing disconnection and wear between 

the pantograph and the overhead conductor rail [18]. 

 𝐹𝑟 = 300 − (𝐹max − 𝐹min), (3) 

where Fmax represents the maximum contact force, and Fmin represents the minimum contact 

force. 
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Table 1.  Parameters of pantograph model 

Dof m (kg) c (N·s/m) k (N/m) 

1 6.1 10 10400 

2 10.1 0 10600 

3 10.3 120 0 

 

The contact force between the POCRS at the anchor segment is 

 𝐹𝑐 = 𝛼 ⋅ 𝑘𝑠(𝑦1 − 𝑦𝑐1) + 𝛽 ⋅ 𝑘𝑠(𝑦1− 𝑦𝑐2). (4) 

In the formula, ks represents the contact stiffness between the POCRS, y1 represents the 

displacement of the pantograph head, and ycj represents the displacement of the j-th contact wire, 

α is the weighting coefficient of the first contact wire, and β is the weighting coefficient of the 

second contact wire. Their expressions are as follows: 

 𝑦1 =
𝐹𝑡

𝐾𝑡
, (5) 

 𝑦𝑐𝑗 = ∑ 𝑞𝑖
𝑁
𝑖=1 ⋅ sin (

𝑖𝜋𝑣𝑡

𝑥3
) − 𝑥1 ⋅ cos (

𝜋𝑥3𝑡

2𝑣
), (6) 

where: Ft represents the payload vector, Kt represents the payload matrix, N denotes the mode 

number of the overhead conductor rail vibration, qi is the generalized vibration mode coordinate 

of the OCR, v is the train operating speed, t is the running time, x1 is the elevation of the first 

suspension point, x3 is the length of the anchor joint, and the anchor joint x3 is composed of the 

cantilever span x2, the first span L1, and the second span L2. 

The contact force Fc between the POCRS is derived from the coupled motion differential 

equations of the overhead conductor rail and the pantograph, using the simply supported beam 

mechanical model shown in Fig. 2. Under the action of the pantograph, the motion differential 

equation of the overhead conductor rail is [19] 

 𝐸𝐼
𝜕4𝑦

𝜕𝑥4
+ 𝜌

𝜕2𝑦

𝜕𝑡2
+ 𝑐

𝜕𝑦

𝜕𝑡
= 𝛿(𝑥 − 𝑉𝑡){𝐾𝑠[𝑦1− 𝑦(𝑥, 𝑡)]}. (7) 

Using the modal decomposition method, substitute 𝑦(𝑥, 𝑡) = ∑ 𝑞𝑖(𝑡)
∞
𝑖=1 𝜙𝑖(𝑥) into the above 

equation, multiply each term by the n mode-shape function 𝜙𝑛(𝑥), integrate over the entire 

length of the OCR, and, accounting for the orthogonality of the mode shapes, simplify to obtain 
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 𝐸𝐼𝑞𝑛(𝑡) ∫ 𝜙𝑛
𝐿

0
(𝑥)

d4𝜙𝑛(𝑥)

d𝑥4
d𝑥 + 𝜌

𝑑2𝑞𝑛(𝑡)

𝑑𝑡2
∫ 𝜙𝑛

2𝐿

0
(𝑥)d𝑥 + 𝑐

d𝑞𝑛(𝑡)

d𝑡
∫ 𝜙𝑛

2𝐿

0
(𝑥)d𝑥 

= ∫ 𝛿
𝑡

0
(𝑋 − 𝑉𝑡)[𝐾𝑠𝑦1 −𝐾𝑠 ∑ 𝑞𝑖

∞
𝑖=1 (𝑡)𝜙𝑖(𝑥)]𝜙𝑛(𝑥)d𝑥. (8) 

For a conductor rail with a uniform cross-section, we can likewise assume 𝜙𝑛(𝑥) = sin
𝑛𝜋𝑥

𝐿
, 

with x = vt; substituting these into above equation, we get 

𝑞̈𝑛(𝑡) + 2𝜉𝑛𝑤𝑛𝑞̇𝑛(𝑡) + 𝑤𝑛
2𝑞𝑛(𝑡) +

2

𝜌𝐿
𝑘𝑠 ∑ 𝑞𝑖

∞
𝑖=1 (𝑡) sin (

𝑖𝜋𝑣𝑡

𝐿
) sin (

𝑛𝜋𝑣𝑡

𝐿
) −

2

𝜌𝐿
𝑘𝑠𝑦1 sin (

𝑛𝜋𝑣𝑡

𝐿
) = 0. (9) 

In this equation, qi(t) represents the generalized vibration mode coordinates of the beam, 

which is a function of time t; 𝑤𝑛 =
𝑛2𝜋2

𝐿2
√
𝐸𝐼

𝜌
 is the n-th order frequency of the busbar, 𝑐 = 2𝜉𝑛𝑤𝑛 

is the damping of the n-th mode, EI is the flexural rigidity, p is the linear density, and L is the 

length of the entire OCR anchor segment.  

Here n = 1−∞, the above equation has an infinite number of variables, and they are not 

independent of each other. When the displacement series is taken to N terms, the degrees of 

freedom can be simplified from an infinite number to N. The motion equation of the OCR can 

be represented in an N-th order matrix form. 

 [𝑴]{𝒒̈} + [𝑪]{𝒒̇} + [𝑲]{𝒒} = 𝑭𝒄. (10) 

Among them, M, C and K are the generalized mass, damping and stiffness matrices, 

respectively, Fc denotes the POCRS contact force and is the generalized displacement vector of 

overhead conductor rail, and {q} = [q1, q2,…, qN]. 

The differential equation of motion for the pantograph is 

 {
𝑚1𝑦̈1 − 𝑐1(𝑦̇2 − 𝑦̇1) − 𝑘1(𝑦2− 𝑦1) = −𝐹𝑐                                                   
𝑚2𝑦̈2 + (𝑐1 + 𝑐2)𝑦̇2 − 𝑐1𝑦̇1 − 𝑐2𝑦̇3 + (𝑘1 + 𝑘2)𝑦2− 𝑘1𝑦1− 𝑘2𝑦3 = 0

𝑚3𝑦̈3 + (𝑐2 + 𝑐3)𝑦̇3 − 𝑐2𝑦̇2 + (𝑘2 + 𝑘3)𝑦3 − 𝑘2𝑦2 = 𝐹0                         
. (11) 

In the equation, 𝑦1̈, 𝑦2̈, and 𝑦3̈ represent the accelerations of the pantograph head, upper 

frame, and lower frame, respectively. 𝑦1̇, 𝑦2̇, and 𝑦3̇ denote the velocities of the pantograph head, 

upper frame, and lower frame, respectively.  𝑦1 ,  𝑦2 , and  𝑦3 are the displacements of the 

pantograph head, upper frame, and lower frame, respectively, and their schematic diagram is 

shown in Fig. 2(b). F0 is the static lifting force applied to the lower frame of the pantograph. 

 

2.3. Verification of model simulation 

To demonstrate the effectiveness of the model, EN50367 [17] is primarily used as a reference, 

but the current standard does not provide a reference model for the coupling of the POCRS. In 

this paper, measurement data obtained from Lanzhou–Xinjiang Railway are used to verify the 
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accuracy of the model. The parameters of the POCRS are shown in Tables 1 and 2, respectively, 

and the model of the OCR is established based on the aforementioned methods. 

Figure 3(a)presents a comparison of the distance-contact force between simulated data and 

measured data. Figure 3(b) shows the maximum (Max), minimum (Min), average (Ave), and 

standard deviation (Std) of the contact force. 

 

    

(a)                                                                         (b) 

Fig. 3. (a) Contact force of numerical simulation and measurement; (b) statistical comparison between 

measurement and simulation data 

 

Table 2.  Parameters of the OCR model 

Span number Span length (m) 
Support stiffness 

(N/m) 

Tensile stiffness 

(N/m) 

Bending stiffness 

(N·m2) 

27 10 6.7 × 107 2.1 × 108 1.7 × 105 

 

It is observed that the absolute relative errors (ARE) of the maximum, average, and standard 

deviation of the contact force are all within 6% of the measured data. All metrics are well below 

the 20% threshold specified in EN 50367, thereby verifying the reliability of the aforementioned 

model. 

 

2.4. Influence of head lateral characteristics on POCRS dynamics 

Considering lateral inclination, the equations of motion of the pantograph are 

 

{
 

 
𝐽𝜑𝜑̈ + 𝑐𝜑𝜑̇ + 𝑘𝜑𝜑 = 𝑀𝑐                                                                                   

𝑚1𝑦̈1 − 𝑐1(𝑦̇2 − 𝑦̇1) − 𝑘1(𝑦2 − 𝑦1) = −𝐹𝑐                                                   
𝑚2𝑦̈2 + (𝑐1 + 𝑐2)𝑦̇2 − 𝑐1𝑦̇1 − 𝑐2𝑦̇3+ (𝑘1 + 𝑘2)𝑦2 − 𝑘1𝑦1 − 𝑘2𝑦3 = 0

𝑚3𝑦̈3 + (𝑐2 + 𝑐3)𝑦̇3 − 𝑐2𝑦̇2 + (𝑘2 + 𝑘3)𝑦3 − 𝑘2𝑦2 = 𝐹0                         

. (12) 
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Among them, 𝜑, 𝜑̇, and 𝜑̈ illustrate the pantograph head lateral inclination angle, angular 

velocity, and angular acceleration. 𝐽𝜑 , 𝑐𝜑 , 𝑘𝜑  indicate the moment of inertia about the 

lateral-inclination axis, rotational damping, and rotational stiffness. Furthermore, it is coupled 

with Eq. (9) of the OCR equations of motion via the penalty function to perform numerical 

simulations and obtain the results, as shown in Fig. 4. 

 

   
(a)                                                                           (b) 

Fig. 4. (a) Contact force without tilt and with tilt; (b) statistical comparison between without tilt 

 and with tilt 

 

From Fig. 4(a), the contact force waveforms with and without lateral inclination of the 

pantograph head nearly coincide, demonstrating that the lateral inclination has a negligible effect 

on the POCRS contact force. As shown by the statistics in Fig. 4(b), the average (AVE) contact 

force is almost identical in the two cases, the maximum absolute relative error (ARE) is 2.97%, 

and all absolute relative errors of the “with inclination” case relative to the “without inclination” 

case are within 3%. This further confirms that the model without pantograph head lateral 

inclination is also reasonably accurate. Therefore, the effect of the pantograph head’s lateral tilt 

angle is not considered in the subsequent analyses of this paper. 

Additionally, regarding the horizontal distance, we assume that the horizontal spacing 

between the two OCR at the overlap joint is d, within our point-contact framework, as previously 

indicated, the contact force Fc is given by Eq. (4). The contact force Fc is only related to the 

vertical displacement of the pantograph and the OCR, and has nothing to do with the horizontal 

distance d. This observation is consistent with flexible-catenary results on stagger, the 

contact-force waveforms overlap for different stagger values (see section 5.2 of the reference 

[20]), and mapping this to OCR implies that the overlap spacing d has a negligible effect on Fc. 
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3. Multi-objective optimization for dynamic performance of anchor joint 

 

3.1. The process of multi-objective optimization 

Figure 5 shows the process of multi-objective optimization. First, the design variables and 

objective functions are determined. 

 

 

Fig. 5. Multi-objective optimization process 

 

Different parameterized settings are applied to the anchor joint based on the design variables, 

and the values of the objective functions are calculated. Then, the Box-Behnken Design (BBD) 

is utilized to conduct a response surface analysis on the design variables. Subsequently, a 

response surface regression model is constructed based on the data obtained from the Box-

Behnken Design. Then, variance analysis is employed to examine the reliability of the 

constructed response surface regression model [21]. Concurrently, the interactions between each 

pair of design variables are analyzed through response surface methodology [22]. Finally, the 

Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used to derive the Pareto optimal 

solutions located on the Pareto front, in order to determine the optimal parameters under the 

given constraints. 
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3.2. Design variables and objective functions 

According to previous research by scholars, the length at the anchor point, the bending radius, 

the cantilever span, and the anchor joint significantly affect the contact force between the POCRS 

at the anchor joint. Based on the research in reference[11], the standard span of the OCR (x4) 

also influences the dynamic performance of the POCRS at the anchor joint. Figure 2 shows a 

schematic diagram that includes the standard span of the OCR. Single-factor analysis revealed 

that x1, x2, x3, and x4 exert the greatest influence on the objective function. Therefore, these four 

parameters were selected as the design variables and the contact force standard deviation Fδ and 

the range Fr are chosen as the objective functions. The design variable parameters are shown in 

Table 3, where –1, 0, and 1 represent the low, medium, and high levels of the design variable 

parameters, respectively. 

 

3.3. Response surface method 

 

Table 3.  Design variable parameter 

Parameter –1 0 1 

x1/(mm) 3 5 7 

x2/(m) 1.2 1.8 2.4 

x3/(m) 5.4 6.6 7.8 

x4/(m) 6 8 10 

 

The response surface method (RSM) is a statistical-based experimental design and data 

analysis approach used to study the relationships between multiple independent and dependent 

variables, and to optimize these factors to achieve the best response effect. It mainly includes 

mathematical and statistical theories such as regression analysis, experimental design, model 

fitting, and variance analysis [23]. The core of the RSM is to construct a mathematical model to 

describe the relationship between independent and dependent variables, thereby enabling the 

input of design variables under constraints to predict the target output of the entire system. The 

experimental design significantly affects the fitting of the response surface, and variance analysis 

is used to assess the accuracy of the model. In this paper, response surface analysis with the Box-

Behnken experimental design is adopted to analyze whether different design variables have a 

significant impact on the corresponding responses. 

On this basis, Table 3 lists the Box-Behnken experimental design matrix, as shown in Table 4. 

The numerical simulation and calculation were performed according to the parameters 

corresponding to this design scheme using the calculation method of the above model, and the 

results in Table 4 were obtained. 
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Table 4.  Results of BBD design 

Run x1/(mm) x2/(m) x3/(m) x4/(m) Fδ /(N) Fr /(N) 

1 5 1.8 7.8 6 15.936 145.368 

2 5 1.2 5.4 8 18.229 141.149 

3 5 2.4 7.8 8 18.364 169.185 

4 5 2.4 6.6 10 17.862 158.577 

5 3 2.4 6.6 8 21.973 206.864 

6 7 1.2 6.6 8 14.243 131.19 

7 7 1.8 6.6 6 11.199 107.191 

8 5 1.8 6.6 8 18.894 167.917 

9 3 1.8 7.8 8 22.455 205.52 

10 5 1.8 6.6 8 18.79 168.12 

11 5 2.4 6.6 6 15.458 140.968 

12 7 1.8 7.8 8 14.5 125.767 

13 5 1.8 6.6 8 18.972 166.255 

14 7 1.8 6.6 10 13.024 106.012 

15 7 2.4 6.6 8 14.209 127.5 

16 3 1.8 6.6 6 20.402 186.771 

17 5 1.2 6.6 6 16.166 154.149 

18 5 2.4 5.4 8 18.029 142.596 

19 5 1.8 7.8 10 17.197 144.213 

20 5 1.2 6.6 10 16.932 141.81 

21 5 1.8 5.4 10 17.02 123.356 

22 3 1.8 5.4 8 22.25 182.905 

23 3 1.2 6.6 8 22.01 210.309 

24 7 1.8 5.4 8 14.373 103.152 

25 3 1.8 6.6 10 21.04 186.012 

26 5 1.8 5.4 6 15.729 125.199 

27 5 1.2 7.8 8 18.396 162.817 
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4. Results and discussion 

 

4.1. Response surface regression model 

Drawing on the outcomes of the Box-Behnken experimental design, a quadratic regression 

model was employed to fit the response surface models between the objective functions Fδ and 

Fr and the design variables x1, x2, x3, and x4, as shown in Eqs. (13) and (14). 

Here, x1, x2, x3, and x4 correspond to the elevation of the first suspension point, the cantilever 

span, the anchor joint, and the standard span, respectively, while x1, x2 and x1
2 represent the cross 

terms and quadratic terms of the respective parameters. 

 

 

 

 𝐹𝛿 = −12.5561 − 1.66𝑥1 + 0.2502𝑥2 + 2.4476𝑥3 + 7.6813𝑥4 + 0.0006𝑥1𝑥2 

−0.0081𝑥1𝑥3 + 0.0742𝑥1𝑥4 + 0.0583𝑥2𝑥3 + 0.3413𝑥2𝑥4 − 0.0031𝑥3𝑥4 − 0.0905𝑥1
2 

−0.9388𝑥2
2 − 0.182𝑥3

2 − 0.5191𝑥4
2. (13) 

Here,  x1,  x2 , x3, and x4 correspond to the elevation of the first suspension point, the cantilever 

span, the anchor joint, and the standard span, respectively, while x1, x2 and x1
2 represent the cross 

terms and quadratic terms of the respective parameters.  

 𝐹𝑟 = −416.8584 − 18.9713𝑥1 − 67.7421𝑥2 + 131.6968𝑥3 + 69.226𝑥4 

−0.051𝑥1𝑥2 + 0𝑥1𝑥3 − 0.0263𝑥1𝑥4 + 1.7087𝑥2𝑥3+ 6.2392𝑥2𝑥4 

 +0.0717𝑥3𝑥4 − 0.0626𝑥1
2 + 2.0533𝑥2

2 − 9.5458𝑥3
2 − 5.049𝑥4

2. (14) 

The obtained response surface regression model can predict the maximum values of Fδ and 

Fr. Figure 6 describes the actual values, predicted values, and contour lines of Fδ and Fr in the 

fitted model. Figure 6. also includes two asymptotes, y = 0.95x and y = 1.05x, and it can be seen 

that all fitted models fall between these two asymptotes, and the greatest discrepancy between 

the actual and predicted values of Fδ is 2.78%, and the greatest discrepancy between the actual 

and predicted values of Fr is 2.42%. The results indicate that the predicted values are close to 

the actual values, suggesting that the established regression model has a high degree of accuracy. 

Meanwhile, the R2 values of the two subplots in Fig. 6 are 0.9969 and 0.9976, respectively, 

both of which are very close to 1, indicating that the prediction model has a very high prediction 

accuracy for Fδ and Fr. Using the asymptotes y = 1.05x and y = 0.95x as reference lines, it can 

be seen that all prediction points fall between these two lines, which also indicates that the 

deviation between the predicted values and the actual values is small. 
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Fig. 6. Comparison of actual and predicted values in fitted model 

 

4.2. Response surface analysis 

To verify whether the established response surface model can be used for subsequent 

optimization design, its accuracy needs to be tested. Therefore, this paper conducts a variance 

analysis on the fitted models for Fδ and Fr. 

The coefficient of determination R2 is used to assess the overall goodness-of-fit of the 

regression model; the closer its value is to 1, the better the model fits the data. R2(Predicted) and 

R2(Adjusted) represent the predictive coefficient of determination and the adjusted coefficient of 

determination, respectively. A discrepancy of less than 0.2 between the two indicates that the 

quadratic polynomial model possesses a high level of fitting precision. The greater the F-value 

and the lower the P-value, the more significant the impact of the parameter factor. If the P-value 

is less than 0.05, then the model term has practical reference value. 

The variance analysis results for Fδ and Fr are shown in Tables 5 and 6, respectively. 

According to the data in Table 5, the response surface model for Fδ is valid, and the parameters 

x1, x4, x14, x24, x1
2,x2

2, x3
2 and x4

2 in the model are all significant factors affecting the response of 

Fδ.  

 

Table 5.  Variance analysis of Fδ 

Size Quadratic sum Mean difference F-value P-value 

Model 228.11 16.29 277.49 < 0.0001 

x1 196.68 196.68 3 349.68 < 0.0001 

x2 0.0005 0.0005 0.0093 0.9247 

x3 0.1236 0.1236 2.11 0.1724 
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x4 5.58 5.58 95.08 < 0.0001 

x1x2 2.25E-06 2.25E-06 0 0.9952 

x1x3 0.0015 0.0015 0.0259 0.8748 

x1x4 0.3522 0.3522 6 0.0306 

x2x3 0.0071 0.0071 0.1202 0.7349 

x2x4 0.6708 0.6708 11.42 0.0055 

x3x4 0.0002 0.0002 0.0038 0.9517 

x1
2 0.6992 0.6992 11.91 0.0048 

x2
2 0.6092 0.6092 10.37 0.0073 

x3
2 0.3633 0.3633 6.24 0.028 

x4
2 22.99 22.99 391.54 < 0.0001 

 

Table 6.  Variance analysis of Fr 

Size Quadratic sum Mean difference F-value P-value 

Model 24 033.27 1 716.66 354.76 < 0.0001 

x1 19 006.01 19 006.01 39 27.73 < 0.0001 

x2 1.52 1.52 0.3134 0.5859 

x3 1 507.81 1 507.81 311.6 < 0.0001 

x4 0.0093 0.0093 0.0019 0.9658 

x1x2 0.015 0.015 0.0031 0.9565 

x1x3 0 0 0 1 

x1x4 0.0441 0.0441 0.0091 0.9255 

x2x3 6.05 6.05 1.25 0.2852 

x2x4 224.22 224.22 46.34 < 0.0001 

x3x4 0.1183 0.1183 0.0245 0.8783 

x1
2 0.3339 0.3339 0.069 0.7973 

x2
2 2.92 2.92 0.6034 0.4523 

x3
2 1 007.74 1 007.74 208.26 < 0.0001 

x4
2 2 175.37 2 175.37 449.56 < 0.0001 
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From Table 6, it can be observed that the response surface model for Fr is also valid, and the 

parameters x1, x3, x2, x4, x3
2 and x4

2 in the model are all significant factors affecting the response 

of Fr. 

Table 7 presents the correlation coefficients of the fitted models, where the correlation 

coefficients R2 for Fδ and Fr are 99.69% and 99.76%, respectively. Additionally, the differences 

between R2(Predicted) and R2(Adjusted) for Fδ and Fr are 0.011 and 0.0087, respectively, both 

of which are significantly less than 0.2. These results indicate that the fitted quadratic regression 

model has a high degree of correlation and is capable of effectively accommodating overall 

variations. 

Figure 7 and Fig. 8 use response surfaces to illustrate the variations of Fδ and Fr with different 

design variables. Each figure includes the interactions between pairs of design variables on Fδ 

and Fr. This helps to evaluate the effects of design variables and interaction terms on the response 

variables. 

Figures 7(a)–(c) illustrate the interaction effects of the elevation of the first suspension point 

with other design variables on Fδ. As x1 increases, Fδ significantly decreases. However, the 

variation of x2 and x3 has a minimal effect on Fδ. When x4 increases, Fδ first increases and then 

decreases. When x1 is 3.02 mm and x3 is 6.95 m, Fδ reaches its maximum value of approximately 

22.6 N. Obviously, the main reason why Fδ decreases with the increase in x1 is that the excessive 

elevation of the suspension point changes the geometric relationship between the POCR, leading 

to unstable contact with the POCR, and thus decreasing Fδ. Figures 7(d)–(f) illustrate the 

interaction effects of the cantilever span with the anchor joint span and the standard span on Fδ. 

It can be observed that as x3 increases, Fδ also increases. Meanwhile, as x4 increases, Fδ exhibits 

an initial rise followed by a subsequent decline. When x3 is 6.75 m and x4 is 8.18 m, Fδ reaches 

its maximum value of approximately 18.96 N. 
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Fig. 7. Response surface of interaction parameter for Fδ 

 

Figures 8(a)–(c) show the interaction effects of the elevation of the first suspension point 

with other design variables on Fr. When x1 increases, Fr greatly plunges. The variation of x2 has 

almost no effect on Fr. The effects of x3 and x4 on Fr are the same, both initially increasing and 

then decreasing. When x1 is 3 mm and x3 is 6.92 m, Fr reaches its maximum value of 

approximately 210 N, indicating that the risk of POCR disengagement is low at this point. 

Figures 8(d)–(f) illustrate the interaction effects of the cantilever span with the anchor joint and 

the standard span on Fr. It can be seen that the raise of x2 and x3 exhibits a trend for Fr, first 

increasing and then decreasing. When x2 is 2.05 m and x3 is 7.06 m, Fr reaches its maximum 

value of approximately 171.9 N. In addition, as x3 increases from 5.4 m to 7.15 m, Fr increases 

from 142.59 N to 167.91 N.  
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Fig. 8. Response surface of interaction parameter for Fr 

 

Table 7.  The correlation coefficient of the fitted model 

Fitted model Fδ Fr 

R2 0.9969 0.9976 

R2 (Predicted) 0.9823 0.9861 

R2 (Adjusted) 0.9933 0.9948 

 

4.3. NSGA-II optimization 

To derive the mutual influence patterns of x1, x2, x3, and x4 on Fδ and Fr, the response surface 

regression mathematical model established above is used, and the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) is adopted as the optimization algorithm for Fδ and Fr.  

NSGA-II employs a fast non-dominated sorting algorithm, and introduces the concept of 

crowding distance. Its advantages lie in effectively reducing computational complexity, 

preventing the loss of superior solutions during the selection process, and ensuring a uniform 

distribution of the solution set in the objective space.  

Figure 9. depicts the process diagram of the NSGA-II, and the basic procedure of the NSGA-

II algorithm is as follows: 

Step 1: First, initialize the population and set the generation number Gen to 1. 
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Step 2: Calculate the quadratic regression function obtained from the response surface, 

perform non-dominated sorting and crowding distance calculation, and then generate the 

offspring population through crossover and mutation. 

Step 3: Combine the parent and offspring populations for non-dominated sorting and 

calculate the crowding distance of individuals in the non-dominated layers. 

Step 4: Generate a new offspring population through crossover and mutation. 

Step 5: Based on the new individuals in the population, use the genetic algorithm to obtain a 

new population and continue generating until the maximum number of iterations is reached. 

 

 

 

Fig. 9. NSGA-II algorithm flowchart 

 

In the mathematical model for multi-objective optimization, Fδ and Fr are both determined 

by the aforementioned response surface regression model. In the NSGA-II, the maximum 

number of iterations is set to 150, the population size is 50, the crossover probability is 0.7, the 

mutation probability is 0.4, and the mutation rate is 0.02. The iterations are performed in 

MATLAB to obtain the Pareto optimal front distribution. Figure 10. shows the variation of the 
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Pareto optimal front distribution. It is readily apparent that as Fδ increases, Fr decreases, 

indicating a conflicting relationship between the two; to maximize them simultaneously, an 

optimal balance point must be sought. From Figs. 10(a) and (b), it can be seen that when the 

number of iterations is 5 and 20, respectively, the population distribution is chaotic and sparse, 

and the optimal solution has not been reached. In Figs. 10(c) and (d), when the number of 

iterations reaches 50, the Pareto front has already formed a set of curve solutions; by 80 iterations, 

the NSGA-II algorithm continuously optimizes the crowding of the objective functions, making 

the Pareto front distribution more uniform. Compared to the aforementioned iterative situations, 

after 150 iterations (Fig. 10(e)), the Pareto front distribution becomes more uniform, indicating 

that the NSGA-II has converged. The change intervals for Fδ and Fr under the satisfaction of 

constraints are 22.3 N ≤ Fδ ≤ 22.65 N and 209 N ≤ Fr ≤ 212.5 N. 

 

{
 
 
 

 
 
 
Maximize: 𝐹𝛿(𝑥1, 𝑥2, 𝑥3, 𝑥4)
Maximize: 𝐹𝑟(𝑥1, 𝑥2, 𝑥3, 𝑥4)
Where: 𝐹𝛿 ≥ 11.199 N

𝐹𝑟 ≥ 103.152 N
3 mm ≤ 𝑥1 ≤ 7 mm
1.2 m ≤ 𝑥2 ≤ 2.4 m
5.4 m ≤ 𝑥3 ≤ 7.8 m
6 m ≤ 𝑥4 ≤ 10 m

. (15) 

 

 

Fig. 10. Evolution of the Pareto front during the iterative process 
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From Fig. 10(e), it can be seen that the maximum Fr of 212.17 N and the maximum Fδ of 

22.61 N correspond to points A and G, respectively. Compared with the pre-optimization state, 

for the optimization points B, C, D, E, and F, at least one of the two objective functions Fδ and 

Fr is better than before optimization. After Pareto optimization, the optimal values of Fδ and Fr 

and their corresponding structural parameter variables are shown in Table 8. Figure 11 shows 

the contact force curves of the POCR at points A, B, C, D, E, F and G before and after 

optimization at the anchor joint. As can be seen from Fig. 11, the contact force fluctuation 

between the POCR at the anchor joint for optimization point D is smaller than that of the other 

six optimization points, which means that Fδ and Fr have reached their optimal balance point. 

Therefore, this paper selects the Pareto solution at point D as the final result of the multi-

objective optimization. 

 

 

Fig. 11. The contact force curves of each optimization point at the anchor segment joint 

 

Table 8.  The structural parameters of each optimization point 

Optimization point x1/(mm) x2/(m) x3/(m) x4/(m) Fδ /(N) Fr /(N) 

A 3.24 2.4 7.13 8.36 22.33 212.17 
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B 3.15 2.31 7.11 8.29 22.41 211.63 

C 3.06 2.2 7.08 8.24 22.49 211.03 

D 3 2.06 7.09 8.23 22.56 210.42 

E 3.05 1.97 7.02 8.21 22.59 210.02 

F 3.11 1.87 6.95 8.2 22.6 209.53 

G 3.18 1.84 6.87 8.18 22.61 209.36 

 

4.4. Numerical optimization results analysis 

To validate the effectiveness of the NSGA-II–derived Pareto-optimal solution (point D), we 

benchmarked it against three methods: the pre-optimization baseline (Original), the optimum 

from the Box–Behnken design, and the optimum from the Non-Dominated Sorting Dung Beetle 

Optimization (NSDBO) algorithm. Parameter comparisons between point D and the two method 

optima are given in Table 9, while Fig. 12(a) contrasts their simulated responses; Fig. 12(b) 

reports contact force statistics across all four scenarios. Overall, the NSGA-II solution delivers 

the most balanced and effective trade-off, outperforming both Box–Behnken and NSDBO on 

key evaluation criteria and yielding more stable contact forces than the baseline (Original). The 

maximum discrepancy between the NSGA-II Pareto solution and the numerical results is 16.55% 

(within 20%), confirming the reliability of the NSGA-II outcome. 

 

Table 9.  Comparison of anchor segment joint parameters before and after optimization 

Scheme x1/(mm) x2/(m) x3/(m) x4/(m) Fδ /(N) Fr /(N) 

Original 4 1.2 5.4 10 20.29 155.81 

Box-
Behnken 

3.4 1.81 7.01 8.12 21.54 196.74 

NSGA-II 3 2.06 7.09 8.23 22.56 210.42 

NSDBO 3.2 2.11 7.05 8.21 21.98 194.96 

 

In Fig. 12(a), it can be seen that the fluctuation range of the POCR contact force 

corresponding to the anchor joint parameters obtained through the NSGA-II is significantly 

reduced compared with those obtained through the Box-Behnken experimental design and 

Original. Fmax decreases from 180.49 N to 151.31 N, while Fmin increases from 36.3 N to 64.04 N. 

Fδ is raised by 11.18%, and Fr is increased by 35.04% compared with Original. Meanwhile, 

compared with the NSDBO algorithm, Fδ is increased by 2.64% and Fr is raised by 7.35%. This 

further demonstrates the effectiveness of the NSGA-II algorithm. 
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Fig. 12. (a) Comparison of the contact force with four methods; (b) the statistics of contact force  

 

The dynamic simulation results of four different methods are shown in Fig. 12(b), and the 

statistical values are presented in Table 10. It can be observed that the maximum values and 

standard deviations of the contact force obtained by the NSGA-II and NSDBO algorithms have 

significantly decreased, with the maximum values reduced by 16.17% and 14.26%, respectively, 

and the standard deviations reduced by 26.48% and 21.81%, respectively, leading to noticeable 

improvements in Fδ and Fr. The minimum values of the contact force obtained by the NSGA-II 

algorithm and the Box-Behnken experimental design have significantly increased, with the 

minimum values increased by 76.41% and 75.09%, respectively, effectively reducing the 

occurrence of pantograph-catenary separation. The average contact force has hardly changed at 

all. In summary, the NSGA-II is superior to other methods. 

 

Table 10.  Statistical characteristic values 

Method Ave (N) Std (N) Max (N) Min (N) 

Original 112.59 13.48 180.49 36.3 

Box-Behnken 112.52 11.01 165.16 63.56 

NSDBO 112.41 10.54 154.74 52.01 

NSGA-II 112.24 9.91 151.31 64.04 

 

 

5. Conclusion 

 

This paper establishes an RSM-NSGA-II optimization model for the anchor joint, which is 

used for multi-objective optimization of the dynamic performance at the anchor joint. The design 
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variables include x1, x2, x3, and x4, while the optimization variables are Fδ and Fr. A regression 

model for the optimization variables was established based on the RSM. The Pareto front was 

obtained using the NSGA-II, and seven balanced points on the Pareto front were selected for 

numerical simulation and comparison. The optimal point was then chosen from these points. The 

following conclusions were drawn: 

1) A mathematical model between the anchor joint parameters and the objective functions 

was established using the Box-Behnken response surface experimental design. The 

model was validated by using the coefficients of R2, R2 (Predicted), and R2 (Adjusted), 

which are close to 1, and by conducting an analysis of variance (ANOVA) test. The 

established regression model was proven to have high precision and the ability to well 

adapt to the overall trend of changes. 

2) The effects of x1, x2, x3, and x4 on the dynamic performance at the anchor joint were 

investigated. As x1 increases, Fδ significantly decreases, while their effect on Fr is 

similar. When x1 increases from 3 mm to 7 mm, Fδ decreases from 22.6 N to 11.4 N. 

The variation of x2 and x3 has a minimal effect on Fδ. When x4 = 8.23 m, the maximum 

Fδ is 22.46 N. When x2 increases from 1.2 m to 2.4 m, Fr hardly changes. When x3 is 

7.1, Fδ is 20.46% higher than when x3 is 5.4. When x4 = 8.21 m, the maximum Fr is 

206.31 N. The results indicate that x1 has the greatest impact on Fδ, while x1 and x4 has 

the significant influence on Fr. 

3) The multi-objective optimization of the established response surface regression model 

was performed using the NSGA-II algorithm. Fδ and Fr are two conflicting functions, 

and there are different trade-offs between them. When Fδ increases, Fr decreases, and 

vice versa, thus forming a Pareto optimal solution set. 

4) Based on the multi-objective optimization Pareto front, seven balanced points on the 

Pareto front were selected for numerical simulation and comparison, point D was 

determined to be the optimal solution. Additionally, to further demonstrate the 

effectiveness of the NSGA-II algorithm, the Box-Behnken experimental design and the 

NSDBO algorithm were introduced for comparison. Compared to these two methods, 

the NSGA-II algorithm increased Fδ by 4.73% and 2.64%, respectively, and increased 

Fr by 6.95% and 7.93%, respectively. The dynamic performance at the anchor joint is 

optimal when x1 is 3 mm, x2 is 2.06 m, x3 is 7.09 m, and x4 is 8.23 m. Compared with 

the original design, the optimized Fδ increased by 11.18%, and Fr was raised by 35.04%. 
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