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Abstract: This study explores the implementation of a novel Maximum Power Point Track-
ing (MPPT) algorithm, referred to as the Tribal Intelligent Evolutionary Optimization 
(TIEO) algorithm, for concurrent MPPT in both photovoltaic (PV) systems, subject to irra-
diance and temperature variations, and wind energy systems, affected by variation in wind 
speed. The principal objective is to maximize the energy extraction from each renewable 

source under dynamically changing environmental conditions, thereby enhancing overall 
system performance and energy efficiency. The TIEO algorithm was subsequently imple-
mented and simulated within the MATLAB/Simulink environment for a stand-alone hybrid 
PV/Wind system incorporating a storage battery. Analysis of the simulation results indi-
cates that the TIEO-based MPPT strategy exhibits high effectiveness, strong adaptability to 
variable operating conditions, and superior tracking accuracy. Consequently, it presents a 
promising and robust solution for the control and energy management of hybrid renewable 
energy systems 
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1. Introduction 

 

The rising global energy demand and the diminishing reserves of carbon-based fuels have 

driven significant research into the development and integration of sustainable and renewable 

energy technologies. Among the diverse renewable resources, solar and wind energy have 

garnered particular attention due to their abundance, long-term sustainability, and minimal 

environmental impact. Photovoltaic (PV) systems are widely accessible, environmentally 

friendly, require little maintenance, and have continually dropping balance-of-system costs, they 

have become a top contender for the production of clean energy. The expansion of solar 

installations has been greatly aided by ongoing technological advancements and the falling cost 

of PV modules, especially in small-scale residential applications and low-voltage (LV) 

distribution networks. In a similar vein, wind energy has become a very competitive and 

profitable clean energy option. The majority of Wind Energy Conversion Systems (WECSs) in 

use today use wind turbines with variable speeds, including systems employing an AC generator 

as a Permanent Magnet Synchronous Generator (PMSG) and a Doubly-fed Induction Generator 
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(DFIG) [1–5]. These configurations are increasingly being adopted in hybrid renewable systems 

to improve energy reliability and system resilience under constantly changing environmental 

conditions. Nevertheless, both photovoltaic and wind systems are inherently limited by the 

stochastic nature of their respective primary energy sources. This inherent intermittency poses 

major challenges for their operational stability, efficiency, and integration within existing 

electrical infrastructures. Therefore, to ensure optimal energy harvesting, various techniques 

have been developed to enable renewable energy systems to operate at their Maximum Power 

Points (MPPs). MPPT algorithms can generally be classified into two main categories: 

conventional and intelligent approaches. Conventional techniques are relatively simple and cost-

effective; however, they often suffer from limitations such as low tracking efficiency, slow 

convergence speed, and significant oscillations around the MPP. To overcome these drawbacks, 

recent research has increasingly focused on intelligent algorithms, including various 

metaheuristic optimization methods. These AI approaches provide more adaptive, robust, and 

efficient MPPT performance. For instance, ANNs are capable of modeling the complex, 

nonlinear relationships between system inputs and outputs, enabling accurate prediction and 

tracking of the MPP. In contrast, a fuzzy logic controller FLC is particularly advantageous in 

scenarios where deriving an exact mathematical model is challenging, and it has gained broad 

acceptance in microcontroller-based MPPT systems, enhancing tracking precision as well as 

dynamic responsiveness. Numerous studies have been presented over the years to accomplish 

optimal power extraction in solar photovoltaic (PV) setups, ranging from traditional approaches 

(e.g., the perturb-and-observe method) to smart control strategies such as fuzzy logic-based 

regulation and neural network models, and, more recently, to advanced metaheuristic 

optimization techniques. Building on this foundation, the present study introduces a new 

metaheuristic method, called the Tribal Intelligent Evolutionary Optimization (TIEO) algorithm, 

inspired by the sociocultural dynamics of tribal evolution. 

The authors in [6–27] have contributed significantly to the literature on MPPT techniques. 

Some of these works provide comparative analyses of conventional MPPT methods, highlighting 

their key differences, while others offer comprehensive reviews of the various MPPT approaches 

proposed in the field. 

A similar trend is observed for MPPT in wind turbine systems, where numerous studies have 

appeared in academic research addressing various methods for Maximum Power Point Tracking 

(MPPT) in wind energy conversion. Moreover, a growing body of research has focused on hybrid 

wind/PV energy systems, which integrate both technologies to improve energy reliability and 

system efficiency. Over the two past years (2023–2025), most recent studies have focused on 

developing an advanced Maximum Power Point Tracking (MPPT) technique, predominantly 

focused on photovoltaic (PV) systems in various configurations, including grid-connected and 

stand-alone, with limited consideration of hybrid PV–wind–battery integration [28]. For 

instance, [29] introduced a Deep Q-Network (DQN)-based Global Maximum Power Point 

Tracking (GMPPT) for PV systems and conducted real-time experiments on a PV array 

supplying a DC load. Similarly, Yılmaz and Çorapsız [30] developed a smart MPPT controller 

designed for PV installations operating under partial shading conditions. Their approach 
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combines optimizable Gaussian Process Regression (GPR) with High-Order Sliding Mode 

Control (HOSMC), constituting a novel hybrid control strategy. In addition, Koshkarbay et al. 

[31] focused on improving the performance of the Social Spider Optimization (SSO) algorithm 

to enhance MPPT accuracy and convergence in PV systems. In contrast, several investigations 

into energy management of grid-connected hybrid PV/wind/battery microgrids [32] have 

incorporated MPPT mechanisms; however, these are primarily based on conventional artificial 

intelligence (AI) methods such as neural networks (NNs). Furthermore, the study presented in 

[33] aims to model and simulate a hybrid PV–wind system using MATLAB/Simulink to evaluate 

its performance and efficiency under varying environmental conditions, where the reported Total 

Harmonic Distortion (THD) is 3.5%. Overall, the development of advanced MPPT algorithms 

remains largely confined to PV-only systems. In this study, the proposed TIEO-MPPT algorithm 

is investigated as an MPPT strategy for hybrid PV–wind/Battery configurations. 

 

 

2. Power system model 

 

The proposed work presents a Hybrid Energy System (HES) configuration tailored and 

designed for standalone applications serving remote and off-grid communities, as shown in 

Fig. 1. The system combines two renewable energy sources, a photovoltaic (PV) generator and 

a wind energy (WE) system driven by a Permanent Magnet Synchronous Generator (PMSG), 

which together act as the primary suppliers for the alternating current (AC) electrical load. To 

guarantee continuous and dependable power delivery, especially during periods of low solar 

irradiance and reduced wind availability, the design incorporates a Nickel–metal Hydride (Ni-

MH) battery Energy Storage System (ESS) is incorporated. This storage unit functions as a 

supplementary resource to mitigate energy deficits and maintain supply-demand balance. The 

architecture also includes several power electronic interfaces, such as a unidirectional DC/DC 

converter for PV, a dual-directional DC/DC power converter for battery integration, also a three-

phase DC/AC converter for load interfacing. 

Solar energy is typically harvested during daylight hours, whereas wind energy may be 

available throughout the day and night, with higher intensities often observed during nocturnal 

periods depending on local climatic conditions. This temporal complementarity between solar 

and wind resources enhances the stability and availability of renewable generation. However, 

the inherently variable and intermittent nature of both energy sources, driven by fluctuating 

meteorological factors such as irradiance and wind speed, poses a significant challenge for 

consistent power generation. By combining these two sources within a coordinated HES 

framework, the system achieves improved energy reliability and sustainability while also 

enabling a reduction in the required battery storage capacity. The primary goal of the proposed 

paper is to enhance the overall energy efficiency and dynamic performance of the hybrid system 

through three strategic innovations. First, a TIEO-MPPT diagram is presented, employing two 

intelligent machine learning-based algorithms founded on the Tribal Intelligent Evolutionary 

Optimization (TIEO) technique to maximize energy harvesting from both the photovoltaic and 
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wind systems. Then, advanced control of power flow is realized through a sophisticated battery 

regulation approach to ensure optimal energy distribution. Third, the integration of appropriate 

power electronic converters guarantees efficient and reliable energy delivery to the load under 

various operating conditions. 

 

 

Fig. 1. Schematic of the Standalone Hybrid Power System with TIEO-based MPPT 

 

 

3. Model description of the PV/wind module 

 

3.1. Photovoltaic system 

The ideal case is presented via a parallel connection of a current source and a diode; the real 

case of a PV cell is represented by the insertion of the resistances Rse and Rpa as shown in Eq. (1) 

 𝐼 = 𝐼𝑝ℎ − 𝐼𝑜 [𝑒
(

𝑉+𝐼∗𝑅𝑠𝑒
𝑎∗𝑉𝑡ℎ

)
− 1] −

𝑉+𝐼∗𝑅𝑝𝑎

𝑅𝑝𝑎
. (1) 

Vth is the thermal voltage, V is the PV cell output voltage (V), Rse is the cell series resistance 

(), Rpa is the cell parallel resistance ()), a is the diode quality factor and I0 is the diode 

saturation current (A). 

Current-voltage and power-voltage characteristics of the photovoltaic module are illustrated 

in Fig. 2(b) with temperature and irradiance variation configured with 9 series-connected panels 

and 9 parallel strings, as implemented in our Hybrid Energy System (HES). It also depicts the 
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synoptic diagram of the PV subsystem, where the photovoltaic generator is interfaced with a 

dc‑dc converter (boost) regulated by a proposed MPPT algorithm. In this configuration, 

PV‑MPPT controller receives the current of photovoltaic (Ipv), voltage (Vpv) as input variables, 

and generates the optimized duty cycle (Dpv) as its output to regulate power extraction, which is 

applied to the boost converter via a PWM modulator. 

 

    
(a)                                                                                (b) 

Fig. 2. (a) Synoptic diagram of the PV source integrated with a boost converter; (b) photovoltaic 
module characteristic (I-V and P-V curves) 

 

 

3.2. Wind power generation model 

Figure 3 shows the wind turbine's power characteristic curve at a fixed pitch angle (β = 0°), 

showing how wind speed and turbine output power are related. Wind energy conversion system's 

schematic diagram, which shows a wind turbine mechanically connected to a Permanent Magnet 

Synchronous Generator (PMSG), is also included in the figure. A diode bridge rectifier is used 

to correct the produced three-phase AC power before it is supplied to a DC-DC boost converter. 

This converter is regulated by an MPPT algorithm based on the Tribal Intelligent Evolutionary 

Optimization (TIEO) technique. It receives the generator-side current and voltage as inputs and 

produces the optimal duty cycle (Dw), which is applied to the boost converter via a PWM 

modulator to ensure maximum energy harvesting from the wind power. The following (as shown 

in Eq. (2)) is an expression for the mechanical power that the turbine extracts [34]. 

 𝑃turbine =
1

2
 𝐶𝑝(𝜆, 𝛽𝑝) 𝜌𝐴 𝑉wind

3 . (2) 

Pturbine, 𝜌, Cp, A, r, and Vwind are, respectively, the wind speed, air density, power coefficient, 

swept area (𝐴 = 𝜋𝑟2), turbine output power and turbine blade radius. The tip-speed ratio and pitch 

angle (βp), (λ) determine the power coefficient which is written as in Eq. (3) 

 𝐶𝑝(𝜆, 𝛽𝑝) = 𝑐1 (
𝑐2

𝜆𝑖
− 𝑐3𝛽𝑝 − 𝑐4) 𝑒

−
𝑐5
𝜆𝑖 + 𝑐6𝜆. (3) 

In the d-q reference frame, these PMSG formulas are expressed as in Eq. (4). 
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d𝑖𝑠𝑑

d𝑡
= −

𝑅𝑠𝑠

𝐿𝑠𝑑
 𝑖𝑠𝑑 + 𝜔𝑒

𝐿𝑠𝑞

𝐿𝑠𝑑
𝑖𝑠𝑞 +

1

𝐿𝑠𝑑
𝑉𝑠𝑑 ,

d𝑖𝑠𝑞

d𝑡
= −

𝑅𝑠𝑠

𝐿𝑠𝑞
 𝑖𝑠𝑞 + 𝜔𝑒 (

𝐿𝑠𝑑

𝐿𝑠𝑞
𝑖𝑠𝑑 +

1

𝐿𝑠𝑞
𝜓𝑝)

1

𝐿𝑠𝑞
𝑉𝑠𝑑 .

 (4) 

The rotor's electromagnetic torque can be displayed as in Eq. (5). 

 𝑇𝑒 =
2𝑃

3
 [𝜓𝑝𝑖𝑠𝑞 + 𝑖𝑠𝑞𝑖𝑠𝑑(𝐿𝑠𝑑 − 𝐿𝑠𝑞)]. (5) 

Here, the currents and voltages of the stator in the d-axis and q-axis are denoted as isd, isq, Vsd, 

and Vsq, respectively. The fundamental electrical angular frequency of the generator is indicated 

by the value ωe. Ld and Lq indicate the stator inductance. P stands for the number of poles, Rss 

for the stator resistance, and ψp for the permanent magnet flux linkage. 

 

 
(a) 

 

 
(b) 

Fig. 3. (a) Synoptic diagram circuit of the WE conversion system; (b) turbine power characteristics 
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4. Proposed MPPT-TIEO algorithm 

 

In our study, two independent boost converters are typically employed, one for the 

photovoltaic (PV) array and the other for the wind energy subsystem. Each source is equipped 

with a dedicated MPPT controller that calculates the ideal duty ratio to regulate the switching of 

its respective boost chopper, thereby ensuring efficient power transfer. In the present, we propose 

TIEO metaheuristic approach introduced by Ye Yao et al. in 2025 [35].  

The algorithm is inspired by the historical dynamics of tribes dividing and reuniting over 

time. Within the algorithm, individuals are grouped into tribes using a clustering approach on 

the basis of the correspondence of their candidate solutions. The best-performing individual in 

each tribe is appointed as the tribal leader. In each iteration, tribes adopt one of three strategic 

decision-making modes, autonomy, diplomacy, or war guided by a Q-learning mechanism [36]. 

This reinforcement learning component enables adaptive learning and intelligent decision-

making based on accumulated historical experiences. The operational principle of the proposed 

metaheuristic approach is presented below and is further illustrated in Fig. 4. 

 

4.1. Perform autonomy operation 

Autonomy denotes the self-driven evolution of governance strategies among individuals 

within a tribe, guided by their leader’s influence. In this mode, each tribe independently explores 

its own local solution space as shown in Eq. (6).  

 𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛼 ∗ rand( ) ∗ (𝑥tribe − 𝑥𝑖
(𝑡)

), (6) 

where: xi(t) is the position of individual i at t, xtribe is the current leader of the tribe, and  is the 

autonomy learning rate (exploration). 

 

4.2. Perform diplomacy operation 

Diplomacy involves the sharing of decision-making strategies between two groups (tribes), 

in which the leadership approach from one group influences the individuals of the other to 

varying degrees. This interaction enables tribes to communicate and learn from each other 

without engaging in conflict as shown in Eq. (7).  

 𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛽 ∗ rand( ) ∗ (𝑥other − 𝑥𝑖
(𝑡)

). (7) 

The different tribe leader with better fitness is presenting by xother,  is the diplomacy factor 

(moderate learning from others) and rand () is the random value. 

 

4.3. Perform war operation 

War refers to the competitive confrontation between tribes, where a stronger tribe can plunder 

resources from a weaker one. As the conflict escalates, the population of the weaker tribe 

diminishes, and if it drops to zero, the tribe is eliminated. This process reflects a tribe's attempt 

to dominate or replace another through competitive pressure as shown in Eq. (8). 
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 𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛾 ∗ rand( ) ∗ (𝑥win − 𝑥lose), (8) 

where: xwin is the best global leader, xlose is the worst-performing individual in the competing 

tribe,  is the war intensity factor (high exploitation) and rand () is the random value. 

 

 

Fig. 4. Flowchart of the proposed TIEO-MPPT algorithm 

 

4.4. Update Q-learning table  

Each tribe maintains a Q-table (Qi(s, a)) to learn which strategy works best in each state as 

shown in Eq. (9).  

 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝜂[𝑟 + 𝜁 max⏟
𝑎́

𝑄(𝑠́, 𝑎́) − 𝑄(𝑠, 𝑎)]. (9) 

Earl
y A

cce
ss



This paper has been accepted for publication in the AEE journal. This is the version, which has not been 
fully edited and content may change prior to final publication.  

Citation information: DOI 10.24425/aee.2026.156807 
 

9 

 

The agent observes the current state st = [Vpv, Ipv] in the case of the PV system and st = [Vw, Iw] 

in the case of the wind system, based on this state, the agent selects an action at (that mean a 

perturbation to the duty cycle Dpv or Dw). r is the reward (rt = P(t)–P(t–1)),  is the learning rate, 

and  is the discount factor. To select an action, we use ε-greedy policy, this strategy maintains 

a balance between exploring new actions and exploiting the most promising known actions. 

Meaning of the Epsilon-Greedy Action Selection 

– Explore: the agent ignores the Q-table (it chooses a random action, avoid getting stuck) 

– Exploit: the agent chooses the action with the highest Q-value for current state (pick the 

best action according to what it has leaned so far) 

 

 

5. Energy Storage System (ESS) model 

 

As shown in Fig. 1, the system architecture integrates multiple coordinated controllers, 

including the hybrid MPPT controllers, the DC-link voltage controller, and the load-side inverter 

controller, and is supported by the Energy Storage System (ESS), which plays a critical role in 

maintaining system stability and ensuring reliable operation under varying generation and load 

conditions. The DC link voltage is intended to be regulated at 640 V using the suggested battery 

control approach, starting from an initial battery charge level of 60% State of Charge (SOC). 

The control combines PI-based voltage regulation, hysteresis current tracking, and SOC 

supervision. Specifically, the error signal obtained by comparing the reference voltage 

(Vdc = 640 V) and the actual DC voltage is processed by a PI controller to generate a dynamic 

reference for battery current (Ibat
*). A hysteresis comparator then compares this reference with 

the actual battery current (Ibat) to determine whether charging should occur, enabling charging 

(S1 = 1) only when the current is below the desired value by a safe margin. Discharging is 

permitted (S2 = 1) only when charging is inactive and the SOC remains below a specified upper 

limit (e.g., 80%), to prevent over-discharge and maintain battery integrity (Fig. 5(b)). 

 

     
               (a)                                                         (b)                                                          (c) 

Fig. 5. (a) The schematic diagram of dump load controller; (b) SE-DC-link voltage controller via (c) 
DC-DC bidirectional converter 

 

Following this, control signals S1 and S2 are then used to regulate the switches of the 

bidirectional dc-dc converter (Fig. 5(c)), allowing power to flow in or out of the battery 
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accordingly. This intelligent coordination ensures stable power flow in the system (Fig. 6), 

protects the battery, and keep the DC voltage near to its rated value. 

In parallel with battery control, a dump load controller is implemented to safely absorb excess 

energy when renewable generation surpasses the load requirement and the battery is unable to 

store additional power (Fig. 5(a)). 

On the load side, the Phase-Locked Loop is a widely used DC-AC controller that generates 

internal sine and cosine references to establish a stable rotating reference frame 

 

 

Fig. 6. Flowchart of energy management based on battery bank’s SOC limits 

 

 

6. Results and discussion 

 

To validate the effectiveness of the proposed system, it is first tested on a configuration 

composed of five photovoltaic (PV) panels connected to a resistive DC load under strong partial 

shading conditions. Since the proposed technique combines a metaheuristic optimization 

strategy with reinforcement learning, this study compares the performance of the proposed TIEO 

algorithm with three MPPT approaches:  the recently developed metaheuristic algorithm known 

as the Football Training Team Algorithm (FTTA), the reinforcement learning-based Deep Q-

Network (DQN), and the classical Perturb and Observe (P&O) method. As shown in Fig. 7, it 

can be seen that the P&O algorithm struggle to escape local optimum points, whereas the DQN, 

FTTA and the proposed TIEO approaches successfully converge to the global optimum point. 

However, both the DQN and FTTA require more time to reach the GMPP compared to TIEO.  

 

Earl
y A

cce
ss



This paper has been accepted for publication in the AEE journal. This is the version, which has not been 
fully edited and content may change prior to final publication.  

Citation information: DOI 10.24425/aee.2026.156807 
 

11 

 

 

Fig. 7. Power and duty cycle responses of TIEO compared to DQN, FTTA and P&O 

 

Expanding upon recent developments, the presented table (Table 1) extends the analysis by 

benchmarking the proposed algorithm (TIEO) against several MPPT techniques reported in the 

literature, as summarized in Table 1; the period during which each method was first applied to 

PV MPPT is also included. The comparison considers tracking efficiency, convergence time, 

and adaptability under DC and AC loads. Particle Swarm Optimization (PSO), the DQN, and 

TIEO perform well overall, but TIEO stands out with faster convergence and 98.6% tracking 

efficiency, demonstrating superior effectiveness and robustness. 

 
Table 1. Summary comparison of existing MPPT algorithms and the proposed TIEO approach 

 

MPPT-

ALG 

 

First applied to 

MPPT-PV 

Tracking 

efficiency 

(%) 

Conver-

gence speed 

(sec) 

 

Accura

cy 
Oscillations Speed 

Irradiation variation with DC load 

PSC with load 

DC AC 

 

CLASSIC

AL ALG 

[37] 

P&O (1980) 100 0.022 High Low Fast Poor Poor 

INC (2000) 100 0.020 High Low Fast Poor Poor 

HC (1990) 98 0.015 Mod Low Fast Poor Poor 

IN
T

E
L

L
IG

E
N

T
 A

L
G

 [
3

7
] 

FLC (1990) 99.4 0.010 High Low Fast Mod Mod 

ANN (1990) 99.7 0.005 High Low Fast Mod Poor 

ANFIS (2000) 99.6 0.010 High Low Low Mod Mod 

M
ac

h
in

e 
L

ea
rn

in
g
 

(2
0
1

8
-2

0
2

3
) DQN 100 0.240 High Low Fast High High 

SVR 100 0.010 High Low Fast Mod Poor 

SOM 95.2 0.015 Mod Low Fast Mod Mod 

M
E

T
A

-

H
E

U
R

I

S
T

IC
 

A
L

G
 

[3
7

] PSO (2000) 100 Slow High Low Mod High High 

FPA (2015) 94,00 Slow Mod Low Mod High High 
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HC: Hill Climbing, SVR: Support Vector Regression (supervised learning), SOM: Self-Organized Map (unsupervised learning), DQN 

(reinforcement learning), PSO: Particle Swarm Optimization, FPA: Flower Pollination Algorithm, CSA: Cuckoo Search Algorithm, ABC: 

Artificial Bee Colony, GA: Genetic Algorithm, Mod: Moderate, Slow: convergence speed (more than 0.75sec), PSC with Load: DC 

(resistance load), AC Load (pumping system)  

 
Table 2.  Overview of MPPT algorithms: features, learning and convergence  

MPPT-algorithms 
Learning 

mechanism 

Algorithmic 

features 

Convergence 

behavior 
Advantages Limitation 

CLASSICAL 

ALG 

P&O 

(1980) 

Periodically perturbs 

duty cycle and 

observes ΔP 

Fixed step-size 

iterative search 

Moderate; 

oscillates near 

MPP 

Simple, low-cost, 

easy to implement 

Poor under PSC, 

It struggles to escape 

from LMPP 

META-

HEURISTIC 

ALG 

FTTA 

(2024) 

Simulates training, 

selection, and 

adaptation of football 

players 

Team-based 

cooperative learning 

for GMPP 

optimization 

Slow but stable 

Strong balance 

between local and 

global search; 

avoids stagnation 

Loss of population 

diversity, 

High computational 

cost 

MACHINE 

LEARNING 

ALG 

DQN 

(2013) 

Reinforcement 

learning via Q-value 

neural estimation 

Action-reward 

exploration for 

GMPP tracking 

Slow but 

adaptive 

Learns 

dynamically under 

shading 

Requires training time 

and computational load 

PROPOSED 

ALG 

TIEO 

(2025) 

Bio-inspired adaptive 

exploration–

exploitation 

Dynamic adaptation 

using autonomy, 

diplomacy, and war 

phases 

Fast and stable 

Excellent GMPP 

performance, self-
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high computational cost 

 

Figure 8 shows duty cycle and power response under extreme battery SOC conditions (5% 

and 99%) for the same weather variations in irradiance, temperature, and wind speed. In the low-

SOC case, excess energy is sent to the dump load, while in the high-SOC case, it charges the 

battery. 

 

 

CSA (2013) 99.9 Slow High Low Mod High High 

ABC (2012) 93 Slow Mod Low Mod High High 

GA (1993) 95.5 Slow Mod Mod Mod High Mod 

FTTA (2024) 99.8 0.75 High Mod Mod High Poor 

PROPO-

SED ALG 
TIEO (2025) 98.6 0.05 High Low Fast High High 
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Fig. 8. Power and DC voltage response under weather variation and battery SOC extremes 

 

Figures 9 and 11 show the transient response of the developed hybrid energy system under 

varying environmental conditions. The PV and wind boost converter duty cycles remain around 

0.5 with minor fluctuations, indicating stable operation and efficient MPPT near each source’s 

optimal power point.  

 

 

Fig. 9. Dynamic responses of the hybrid PV-Wind-Battery System under constant 
load demand (20 kW) 

 

Figure 9 shows sinusoidal load voltage and current, with the DC bus voltage held at 640 V. 

The system remains stable under environmental disturbances, and the wind turbine torque varies 
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linearly with wind speed, reflecting its aerodynamic behavior. Table 3 includes quantitative 

metrics like tracking efficiency (%), settling time and energy harvested (kW) across scenarios of 

Fig. 9. 

 
Table 3.  Performance metrics of TIEO algorithm under various operating conditions 

Scenarios Settling time (sec) Energy harvested (kW) 
Effi-

ciency 

(%) 

Time Weather variation PV Wind Battery Load PV Wind Battery 
Demand 

Load 
Dump Load 

Demand 

Load 

0-1 

(sec) 

Wind speed 

12 (m/sec) 

Temp = 25 ° 
Irr = 200 W/m2 

0.05 0.2  0.02 0.2 3.1 10.9 10.8 

20 

4.8 

99.9 

1-1.5 

(sec) 

Wind 

speed = 11 
(m/sec) 

Temp = 25 ° 
Irr = 200 W/m2 

0.02 0.02 0.05 ----- 3.5 7.4 12 2.9 

1.5-2 

(sec) 

Wind 

speed = 11 

(m/sec) 

Temp = 25 ° 
Irr = 800 W/m2 

0.02 0.02 0.04 ----- 15.5 7.4 0 2.9 

2-3 

(sec) 

Wind 

speed = 10 
(m/sec) 

Temp = 25 ° 
Irr = 1000 W/m2 

0.02 0.02 0.04 ----- 20 4.1 –2.5 2.1 

3-3.5 

(sec) 

Wind speed = 9 

(m/sec) 

Temp = 25 ° 
Irr = 1000 W/m2 

0.01 0.05 0.04 ----- 20.3 1.2 –1.4 0.1 

3.5-4 

(sec) 

Wind 

speed = 12 

(m/sec) 

Temp = 25 ° 
Irr = 1000 W/m2 

0.02 0.02 0.04 ----- 19.3 11 –5 5.3 

4-5 

(sec) 

Wind 

speed = 12 
(m/sec) 

Temp = 50 ° 
Irr = 500 W/m2 

0.01 ----- 0.04 ---- 5.5 10.7 8 4.2 

 

The irradiance profile begins at 200 W/m² (0–1.5 sec), increases to 800 W/m² (1.5–2 sec), 

peaks at 1000 W/m² (2–4 sec), and finally drops to 500 W/m² (4–5 sec). The ambient 

temperature is maintained constant at 25 °C until 4 sec, after which it rises to 50 °C. 

Concurrently, wind speed varies as follows: 12 m/s (0–1 sec), 11 m/s (1–2 sec), 10 m/s 

(2−3 sec), 9 m/sec (3–3.5 sec), and returns to 12 m/sec between 3.5–5 sec. These variations 

directly affect the power that is accessible from wind and photovoltaic sources. The Energy 

Sorage System (ESS) operates in discharge mode (from 0 to 2 sec), as evidenced by the 

decreasing State of Charge (SOC). Between 2.5 and 4 sec, the ESS transitions to charging mode 

as renewable generation exceeds the load demand. However, beyond 4 sec, the reduction in 

irradiance combined with elevated temperature results in diminished PV output. Consequently, 

the ESS resumes discharging to bridge the energy deficit and ensure uninterrupted load supply. 

Throughout the simulation period, power contributions from the PV array, wind turbine, and 

ESS dynamically adjust to maintain the constant 20 kW load. During the initial phase 

(0−1.5 sec), the low irradiance (200 W/m²) limits PV output to approximately 4 kW, while the 

wind turbine delivers up to 10 kW (notably during 0–1 sec). In the second phase (2–4 sec), under 

favorable irradiance and stable temperature, the PV output significantly increases, reaching 

around 20 kW, and becomes the primary source. Wind power output follows the wind speed 

trend, except during the 3.5–4 sec interval, where it briefly reaches ~10 kW. The surplus energy 
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in this phase leads to battery charging, as indicated by negative power or battery current values 

(as shown in the corresponding figure). In the final phase (4–5 sec), the PV output drops to 

~5 kW due to reduced irradiance and elevated temperature, while wind power stabilizes near 

10 kW.  

To maintain uninterrupted power delivery, the ESS resumes discharging. Finally, the DC bus 

voltage effectively tracks the reference voltage (640 V). The load voltage THD, Total Harmonic 

Distortion obtained (2.14%) is lower than the standard permissible limit of 5%, thereby 

validating the system’s capability to kept high power quality during transient operating 

conditions (as illustrated in Fig. 10). 

 

 

Fig. 10. Frequency spectrum of load voltage (FFT analysis) 

 

 

Fig. 11. Dynamic responses of the hybrid PV-Wind-Battery System under variable 
load demand (20 kW) 
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During the period from 0 to 2 sec, the Energy Storage System (ESS) is discharging, with a 

noticeable decrease in the State of Charge (SOC). From 2.5 to 4 sec, the ESS begins to charge 

as the renewable generation exceeds the load demand. However, after 4 sec, due to the combined 

impact of reduced irradiance and elevated temperature (which decreases PV efficiency), the total 

generated power becomes insufficient. Consequently, the ESS resumes discharging to 

compensate for the energy deficit and ensure continuous load supply.  

Throughout the simulation, the power contributions from PV, wind, and battery sources vary 

dynamically to maintain the constant 20 kW load. In the first phase (0–1.5 sec), low irradiance 

(200 W/m2) limits PV output to around 4 kW, while wind provides up to 10 kW (0–1 sec). 

During the second phase (2–4 sec), under optimal irradiance and stable temperature, PV output 

increases significantly and reaches around 20 kW, becoming the dominant source. The wind 

decreases proportional with wind speed decreasing except between 3.5–4 sec, where it briefly 

supplies ~10 kW. During this period, excess energy causes the battery to charge (indicated by 

negative power or negative battery current as shown figure). In the third phase (4–5 sec), reduced 

irradiance and elevated temperature cause the PV output to drop to ~5 kW, while wind stabilizes 

near 10 kW. The battery resumes discharging to offset the deficit and guarantee uninterrupted 

load supply. the DC bus voltage response follows the desired voltage (640 V). The load voltage 

THD (2.12%) is lower than the standard value (5%).The previous scenario confirmed stable 

system operation under a constant 20 kW load, with regulated DC voltage (~640 V), duty cycles 

around 0.5, sinusoidal load current, and effective MPPT. In the current case, a variable load 

profile (5 kW → 15 kW → 25 kW → 5 kW) is employed to evaluate the system’s dynamic 

performance. The DC bus voltage remains well-regulated at approximately 640 V throughout 

the load changes. Duty cycles of the PV and wind converters stay close to 0.5, and the PMSG 

continues to exhibit consistent torque and speed behavior. The Energy Storage System (ESS) 

responds adaptively, charging during times of excess generation and discharging during power 

shortfalls, based on real-time variations in irradiance, temperature, wind speed, and load demand. 

The load current waveform remains sinusoidal, with amplitude variations reflecting the changing 

load, demonstrating that the proposed hybrid system effectively maintains power quality and 

operational stability under variable conditions. 

 

 

7. Hardware discussion 

 

The proposed algorithm employs a 10 × 5 Q-table and 15 agents distributed across three 

tribes, resulting in a lightweight optimization framework. The computational complexity of the 

algorithm is approximately Q(15) per iteration, since each iteration updates 15 agents with 

simple arithmetic and Q-learning operations, making it efficient for real-time execution. The 

memory footprint is also minimal, requiring roughly 2–4 KB of RAM, primarily for storing the 

Q-table, agent attributes and persistent variables. Such low computational and memory demands 

make the algorithm highly suitable for real-time embedded implementation on both STM32 and 

Earl
y A

cce
ss



This paper has been accepted for publication in the AEE journal. This is the version, which has not been 
fully edited and content may change prior to final publication.  

Citation information: DOI 10.24425/aee.2026.156807 
 

17 

 

ESP32 (for IoT-connected MPPT applications), where it can operate within tight timing and 

resource constraints. 

 

 

8. Conclusion, limitation and future research directions 

 

The TIEO-MPPT control strategy proposed in this study has been implemented for both PV 

and wind sources within a hybrid PV–Wind–Battery System. Unlike conventional methods, 

TIEO-MPPT intelligently adapts to environmental and load variations through its evolutionary 

learning mechanism. Simulation results confirm that the proposed approach ensures stable DC-

bus voltage regulation (~640 V), maintains high power quality (low THD), and achieves a fast 

dynamic response under varying irradiance, temperature, wind speed, and load conditions. The 

Energy Storage System (ESS) effectively balances power flow and enhances system stability, 

while MPPT is achieved with minimal oscillations and high convergence accuracy. 

Despite these promising results, certain limitations remain. Scalability and real-time 

computational constraints may arise as system size increases, leading to higher processing and 

memory demands on resource-constrained embedded platforms (e.g., ESP32, STM32). 

Moreover, the algorithm assumes ideal coordination, whereas practical stand-alone hybrid 

systems may experience delays, noise, and measurement inaccuracies that could affect MPPT 

efficiency and stability. Future research should focus on Hardware-in-the-loop (HIL) validation 

to verify real-time performance under realistic converter behavior in stand-alone operation. 

Although this work considers a static load with varying demand, future studies should extend 

the analysis to other load types, such as dynamic, inductive, or motor-driven loads, to provide a 

more comprehensive evaluation of stand-alone system behavior. Additionally, incorporating 

adaptive SOC thresholds and self-tuning learning parameters will further enhance storage 

efficiency and overall system reliability. 

In this work the major components used in the system as shown Fig. 1, are:  

– MPPT-algorithm: TIEO is applied using Ntribe = 3, Nindividual = 5,  = 0.3,  = 0.6, 

 = 0.4,  = 0.1 (learning rate),  = 0.9 (discount factor),  = 0.1 (exploration rate), 

Dmin = 0.05, Dmax = 0.95 (boundaries to avoid extremes), Q-table is initialized as zeros 

or small random numbers, Itermax = 5 000, 15 agents, Q-table dimension = 50 Q-values; 

– PV source: 81 panel of 270 W connected 9 in series and 9 in parallel, total – 20 KW, 

Vmp – 30.8 V/panel, Imp – 8.77 A, Ncells = 60, Voc = 37.9 V, Isc = 9.07 A, 

Rsh = 2185.1547 Ohm, Rs = 0.26166 Ohm;  

– Wind source: PMSG is a 12 kW-class Permanent Synchronous Magnet Synchronous Gen-

erator, operating at torque – 67.27 N·m, speed – 1700 rpm, DC voltage output – 560 V and 

the nominal mechanical output power turbine is 10 KW; 

– PMSG: pre-set model – 14–76.27 Nm, 560 Vdc, 1700 rpm–70.2 N.m; 

– Battery: Ni-MH, 60.5 Ah capacity, initial SOC – 60% and 300 V nominal voltage; 

– Inverter: 3-phase 2-level VSI, DC input – 640 V, switching frequency – 20 kHz; 
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– PV DC-DC converter: unidirectional boost converter, input voltage rate – 280–350 V, 

switching frequency – 20 kHz; 

– Battery DC-DC converter: bidirectional buck-boost converter, input voltage 

rate – 250−350 V, switching frequency – 20 kHz; 

– Wind energy converter: AC–DC rectifier + boost converter, input voltage rate – rectified 

DC 480−560 V, switching frequency – 20 kHz; 

– Grid: three phase static load (first scenario: 20 kW, second scenario: variable load values); 

– Simulation settings: sampling time: 10e-6 s, solver type – ode23t (mod.stiff/trapezaoidal). 
 

 

References 
[1] Yang B., Jian L., Wang L., Yao W., Wu QH., Nonlinear maximum power point tracking control and 

modal analysis of DFIG based wind turbine, International Journal of Electrical Power and Energy 
Systems, vol. 74, pp. 429–436 (2016), DOI: 10.1016/j.ijepes.2015.07.036. 

[2] Karakasis N.E., Madamlis C., High efficiency control strategy in a wind energy conversion system 
with doubly fed induction generator, Renewable Energy, vol. 125, pp. 974–984 (2018), DOI: 
10.1016/j.renene.2018.03.020. 

[3] Fantino R., Solsona J., Busada C., Nonlinear observer-based control for PMSG wind turbine, Energy, 
vol. 113, pp. 248–257 (2016), DOI: 10.1016/j.energy.2016.07.039. 

[4] Errami Y., Ouassaid M., Maaroufi M., Performance comparison of a linear control for grid 
connected PMSG wind energy conversion system, International Journal of Electrical Power and 
Energy Systems, vol. 68, pp. 180−194 (2015), DOI: 10.1016/j.ijepes.2014.12.027.  

[5] Chen J., Yao W., Zang CK., Ren Y., Jian L., Design of robust MPPT controller for grid-connected 
PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control, 
Renewable Energy, Elsevier, vol. 134, pp. 478–495 (2019), DOI: 10.1016/j.renene.2018.11.048.  

[6] Mohamed S.A., Abd El Sattar M., A comparative study of P&O and INC maximum power point 

tracking techniques for grid‑connected PV systems, SN Applied Sciences, vol. 1, no. 174, pp. 1−13 
(2019), DOI: 10.1007/s42452-018-0134-4. 

[7] Baimel D., Tapuchi S., Levron Y., Belikov J., Improved Fractional Open Circuit Voltage MPPT 
Methods for PV Systems, Electronics, vol. 8, no. 3, pp. 321–341 (2019), DOI: 
10.3390/electronics8030321. 

[8] Ahmed J., Salam Z., An improved perturb and observe (P&O) maximum power point tracking 
(MPPT) algorithm for higher efficiency, Applied Energy, vol. 150, pp. 97–108 (2015), DOI: 
10.1016/j.apenergy.2015.04.006. 

[9] Subudhi B., Pradhan R., A comparative study on maximum power point tracking techniques for 
photovoltaic power systems, IEEE Transactions on Sustainable Energy, vol. 4, no. 1, pp. 89–98 
(2013), DOI: 10.1109/TSTE.2012.2202294. 

[10] Bollipo R.B., Mikkili S., Bonthagorla P.K., Hybrid, optimization, intelligent and classical PV MPPT 
techniques: A Review, CSEE Journal of Power and Energy Systems, vol. 7, no. 1, pp. 9–33 (2021), 
DOI: 10.17775/CSEEJPES.2019.02720.  

[11] Cheikh M.A., Larbes C., Kebir G.T., Zerguerras A., Maximum power point tracking using a fuzzy 
logic control scheme, Revue des énergies Renouvelables, vol. 10, no. 3, pp. 387–395 (2007), DOI: 

10.54966/jreen.v10i3.771. 
[12] Lin W.M., Hong C.M., Chen C.H., Neural-Network-Based MPPT Control of a Stand-Alone Hybrid 

Power Generation System, IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3571−3581 
(2011), DOI: 10.1109/TPEL.2011.2161775. 

[13] Femia N., Granozio D., Petrone G., Spagnuolo G., Vitelli M., Predictive & adaptive MPPT perturb 
and observe method, IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 3, 
pp. 934–950 (2007), DOI: 10.1109/TAES.2007.4383584. 

Earl
y A

cce
ss

https://doi.org/10.1016/j.ijepes.2015.07.036
https://doi.org/10.1016/j.renene.2018.03.020
https://doi.org/10.1016/j.energy.2016.07.039
https://doi.org/10.1016/j.ijepes.2014.12.027
https://doi.org/10.1016/j.renene.2018.11.048
https://doi.org/10.1007/s42452-018-0134-4
https://doi.org/10.3390/electronics8030321
https://doi.org/10.1016/j.apenergy.2015.04.006
https://doi.org/10.1109/TSTE.2012.2202294
https://doi.org/10.17775/CSEEJPES.2019.02720
https://doi.org/10.54966/jreen.v10i3.771
https://doi.org/10.1109/TPEL.2011.2161775
http://dx.doi.org/10.1109/TAES.2007.4383584


This paper has been accepted for publication in the AEE journal. This is the version, which has not been 
fully edited and content may change prior to final publication.  

Citation information: DOI 10.24425/aee.2026.156807 
 

19 

 

[14] Salman D., Khalif Elmi Y., Mohamed Isak A., Sheikh-Muse A., Evaluation of MPPT Algorithms for 
Solar PV Systems with Machine Learning and Metaheuristic Techniques, Mathematical Modelling 
of Engineering Problems, vol. 12, no. 1, pp. 115–124 (2025), DOI: 10.18280/mmep.120113. 

[15] Katche M.L., Makokha A.B., Zachary S.O., Adaramola M.S., A Comprehensive Review of Maximum 
Power Point Tracking (MPPT) Techniques Used in Solar PV Systems, Energies, vol. 16, no. 5, 

pp. 2206–2229 (2023), DOI: 10.3390/en16052206. 
[16] Abidi H., Sidhom L., Chihi I., Systematic Literature Review and Benchmarking for Photovoltaic 

MPPT Techniques, Energies, vol. 16, no. 8, pp. 3509–3554 (2023), DOI: 10.3390/en16083509.  
[17] Boubaker O., MPPT techniques for photovoltaic systems: a systematic review in current trends and 

recent advances in artificial intelligence, Discover Energy, vol. 3, no. 9 (2023), DOI: 
10.1007/s43937-023-00024-2.  

[18] Worku M.Y., Hassan M.A., Maraaba L.S., Shafiullah M., Elkadeem M.R., Hossain M.I., 
Abido M.A., A Comprehensive Review of Recent Maximum Power Point Tracking Techniques for 

Photovoltaic Systems under Partial Shading, Sustainability, vol. 15, no. 14, pp. 11132–11160 (2023), 
DOI: 10.3390/su151411132.  

[19] Endiz M.S., Gökku G., Cosgun A.E., Demir H., A Review of Traditional and Advanced MPPT 
Approaches for PV Systems Under Uniformly Insolation and Partially Shaded Conditions, Applied 
Sciences, vol. 15, no. 3, pp. 1031–1063 (2025), DOI: 10.3390/app15031031. 

[20] Douifi N., Abbadi A., Hamidia F., Yahya K., Mohamed M., Rai N., A Novel MPPT Based Reptile 
Search Algorithm for Photovoltaic System under Various Conditions, Applied Sciences, vol. 13, 
no. 8, pp. 48664–48678 (2023), DOI: 10.3390/app13084866. 

[21] Mhanni Y., Lagmich Y., Adaptive metaheuristic strategies for optimal power point tracking in 

photovoltaic systems under fluctuating shading conditions, EPJ Photovoltaics, vol. 15, no. 31, 
pp. 1−16 (2024), DOI: 10.1051/epjpv/2024026. 

[22] Rashmi G., Linda M.M., A novel MPPT design for a wind energy conversion system using grey wolf 
optimization, Automatika, vol. 64, no. 4, pp. 798–806 (2023), DOI: 
10.1080/00051144.2023.2218168. 

[23] Hassanien R., Abdel-Raheem Y., Hossam H.H.M., Essam E.M.M., An efficient variable-step P&O 
maximum power point tracking technique for grid-connected wind energy conversion system, SN 
Applied Sciences, vol. 1, no. 1658, pp. 1–14 (2019), DOI: 10.1007/s42452-019-1716-5. 

[24] Sierra-García J.E., Santos M., Neural networks and reinforcement learning in wind turbine control. 
Revista Iberoamericana de Automatica e Informatica Industrial, vol. 18, pp. 327–335 (2021), DOI: 
10.4995/riai.2021.16111. 

[25] Vu N.T.T., Nguyen H.D., Nguyen A.T., Reinforcement Learning-Based Adaptive Optimal Fuzzy 
MPPT Control for Variable Speed Wind Turbine, IEEE Access, vol. 10, pp. 95771–95780 (2022), 
DOI: 10.1109/ACCESS.2022.3205124. 

[26] Chen J., Yao W., Zhang C-Ke., Rend Y., Jiang L., Design of robust MPPT controller for grid-
connected PMSG-based wind turbine via perturbation observation based nonlinear adaptive control, 

Renewable Energy, vol. 134, pp. 478–495 (2019), DOI: 10.1016/j.renene.2018.11.048. 
[27] Yang B., Yu T., Shu H., Han Y., Cao P., Jiang L., Adaptive fractional-order PID control of PMSG-

based wind energy conversion system for MPPT using linear observers, International Transactions 
Electrical Energy Systems, vol. 29, no. 1, pp. 2–18 (2019), DOI: 10.1002/etep.2697. 

[28] Rabah S., Zaier A., Lloret J., Dahman H., Efficiency Enhancement of a Hybrid Sustainable Energy 
Harvesting System Using HHHOPSO-MPPT for IoT Devices, Sustainability, vol. 15, no. 13, 
pp. 10252–10280 (2023), DOI: 10.3390/su151310252.  

[29] Giraldo L.F., Gaviria J.F., Torres M.I., Alonso C., Bressan M., Deep reinforcement learning using 

deep-Q-network for Global Maximum Power Point tracking: Design and experiments in real 
photovoltaic systems, Heliyon, vol. 10, e37974 (2024), DOI: 10.1016/j.heliyon.2024.e37974. 

[30] Yılmaz M., Çorapsız M.F., A robust MPPT method based on optimizable Gaussian process 
regression and high order sliding mode control for solar systems under partial shading conditions, 
Renewable Energy (2025), DOI: 10.1016/j.renene.2025.122339. 

Earl
y A

cce
ss

http://dx.doi.org/10.18280/mmep.120113
https://doi.org/10.3390/en16052206
https://doi.org/10.3390/en16083509
https://doi.org/10.1007/s43937-023-00024-2
https://doi.org/10.3390/su151411132
https://doi.org/10.3390/app15031031
https://doi.org/10.3390/app13084866
https://doi.org/10.1051/epjpv/2024026
https://doi.org/10.1080/00051144.2023.2218168
https://link.springer.com/article/10.1007/s42452-019-1716-5
https://doi.org/10.4995/riai.2021.16111
http://doi.org/10.1109/ACCESS.2022.3205124
https://doi.org/10.1016/j.renene.2018.11.048
https://doi.org/10.1002/etep.2697
https://doi.org/10.3390/su151310252
https://doi.org/10.1016/j.heliyon.2024.e37974
https://doi.org/10.1016/j.renene.2025.122339


This paper has been accepted for publication in the AEE journal. This is the version, which has not been 
fully edited and content may change prior to final publication.  

Citation information: DOI 10.24425/aee.2026.156807 
 

20 

 

[31] Koshkarbay N. et al., Improved MPPT technology for PV systems using Social Spider optimization 
(SSO): Efficient handling of partial shading and load variations, Electric Power Syst. Res. (2025). 

[32] Sharma S., Chauhan B., Kumar Saxena N., Artificial Neural Network Grid-Connected MPPT-Based 
Techniques for Hybrid PV-WIND with Battery Energy Storage System, Journal of the Institution of 
Engineers (India) Series B (2023), DOI: 10.1007/s40031-023-00922-y. 

[33] Mauludin MS., Khairudin M., Asnawi R., Optimization of a Hybrid PV-Wind Power System for 
Enhancing Efficiency and Power Quality Using MATLAB/SIMULINK Simulations, Journal Européen 
des Systèmes Automatisés, vol. 58, no. 4, pp. 823–832 (2025), DOI: 10.18280/jesa.580416.  

[34] Osama L., Salah A., Saleh S.M., Kourany M., Meta-heuristic Optimization for Wind Turbine 
Control: Evaluating Performance with PI and Fractional PI Controllers for Maximum Power 
Extraction, Journal of Electrical Systems, vol. 20, no. 3, pp. 7968–7982 (2024), DOI: 
10.52783/jes.7795. 

[35] Yao Ye, Hong Xiaoxi, Lei Xiong, Study on a new metaheuristic algorithm -Tribal intelligent 

evolution optimization and its application in optimal control of cooling plants, Applied Energy, 
Elsevier, vol. 383 (2025), DOI: 10.1016/j.apenergy.2025.125339.  

[36] Hong X., Yao Y., Wang K., Yang J., Liu W., Energy-saving Optimal Control of Secondary District 
Cooling System Based on Tribal Intelligent Evolution Optimization Algorithm, Energy, vol. 316, 
no. 1 (2025), DOI: 10.1016/j.energy.2025.134554. 

[37] Hamidia F., Abbadi Amel, Medjber A., Salhi F., Hamil A., Skender M.R., Enhanced MPPT 
Algorithms for PV panels: Review and Comparative Study, International Conference ICAIRES 
(2025), https://icaires.com/. 
 

Earl
y A

cce
ss

https://www.researchgate.net/journal/Journal-of-The-Institution-of-Engineers-India-Series-B-2250-2114?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/Journal-of-The-Institution-of-Engineers-India-Series-B-2250-2114?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://doi.org/10.1007/s40031-023-00922-y
https://doi.org/10.18280/jesa.580416
https://doi.org/10.52783/jes.7795
https://ideas.repec.org/s/eee/appene.html
https://doi.org/10.1016/j.apenergy.2025.125339
https://www.sciencedirect.com/journal/energy
https://doi.org/10.1016/j.energy.2025.134554
https://icaires.com/



