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Abstract: This study explores the implementation of a novel Maximusa/Power Point Track-
ing (MPPT) algorithm, referred to as the Tribal Intelligerys Evolutionary Optimization
(TIEO) algorithm, for concurrent MPPT in both photovoltaic (PV) systems, subject to irra-
diance and temperature variations, and wind energy systems, affected by variation in wind
speed. The principal objective is to maximize the&rergystxtraction from each renewable
source under dynamically changing enviranmentza',coriditions, thereby enhancing overall
system performance and energy efficiency. \IexLIEO algorithm was subsequently imple-
mented and simulated within the MATLAB/Simulink environment for a stand-alone hybrid
PV/Wind system incorporating a storage battpry. Analysis of the simulation results indi-
cates that the TIEO-based MPPT strategy exhibits high effectiveness, strong adaptability to
variable operating conditions, ard supei.or tracking accuracy. Consequently, it presents a
promising and robust solution for tris,.confrol and energy management of hybrid renewable
energy systems
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1. Introduction

The rising global energy demand and the diminishing reserves of carbon-based fuels have
driven significant research into the development and integration of sustainable and renewable
energy technologies. Among the diverse renewable resources, solar and wind energy have
garnered particular attention due to their abundance, long-term sustainability, and minimal
environmental impact. Photovoltaic (PV) systems are widely accessible, environmentally
friendly, require little maintenance, and have continually dropping balance-of-system costs, they
have become a top contender for the production of clean energy. The expansion of solar
installations has been greatly aided by ongoing technological advancements and the falling cost
of PV modules, especially in small-scale residential applications and low-voltage (LV)
distribution networks. In a similar vein, wind energy has become a very competitive and
profitable clean energy option. The majority of Wind Energy Conversion Systems (WECSS) in
use today use wind turbines with variable speeds, including systems employing an AC generator
as a Permanent Magnet Synchronous Generator (PMSG) and a Doubly-fed Induction Generator
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(DFIG) [1-5]. These configurations are increasingly being adopted in hybrid renewable systems
to improve energy reliability and system resilience under constantly changing environmental
conditions. Nevertheless, both photovoltaic and wind systems are inherently limited by the
stochastic nature of their respective primary energy sources. This inherent intermittency poses
major challenges for their operational stability, efficiency, and integration within existing
electrical infrastructures. Therefore, to ensure optimal energy harvesting, various techniques
have been developed to enable renewable energy systems to operate at their Maximum Power
Points (MPPs). MPPT algorithms can generally be classified into two main categories:
conventional and intelligent approaches. Conventional techniques are relatively simple and cost-
effective; however, they often suffer from limitations such as low tracking efficiency, slow
convergence speed, and significant oscillations around the MPP. To overcome these drawbacks,
recent research has increasingly focused on intelligent algorithms, including various
metaheuristic optimization methods. These Al approaches provide*more adaptive, robust, and
efficient MPPT performance. For instance, ANNs are capabie of ‘modeling the complex,
nonlinear relationships between system inputs and outputsssnabling accurate prediction and
tracking of the MPP. In contrast, a fuzzy logic controlles, Fé C/is particularly advantageous in
scenarios where deriving an exact mathematical model s challenging, and it has gained broad
acceptance in microcontroller-based MPPT systems, enhancing tracking precision as well as
dynamic responsiveness. Numerous studies havesheen presented over the years to accomplish
optimal power extraction in solar photovoltaic (FV) setups, ranging from traditional approaches
(e.g., the perturb-and-observe method) té smard control strategies such as fuzzy logic-based
regulation and neural network inadeiswiand, more recently, to advanced metaheuristic
optimization techniques. Buildina®orsthis/foundation, the present study introduces a new
metaheuristic method, called the<Trigal Intelligent Evolutionary Optimization (TIEQO) algorithm,
inspired by the sociocultdral, dyrianiics of tribal evolution.

The authors in [6-27¥4ave, contributed significantly to the literature on MPPT techniques.
Some of these works provide comparative analyses of conventional MPPT methods, highlighting
their key differences, while others offer comprehensive reviews of the various MPPT approaches
proposed in the field.

A similar trend is observed for MPPT in wind turbine systems, where numerous studies have
appeared in academic research addressing various methods for Maximum Power Point Tracking
(MPPT) in wind energy conversion. Moreover, a growing body of research has focused on hybrid
wind/PV energy systems, which integrate both technologies to improve energy reliability and
system efficiency. Over the two past years (2023-2025), most recent studies have focused on
developing an advanced Maximum Power Point Tracking (MPPT) technique, predominantly
focused on photovoltaic (PV) systems in various configurations, including grid-connected and
stand-alone, with limited consideration of hybrid PV-wind-battery integration [28]. For
instance, [29] introduced a Deep Q-Network (DQN)-based Global Maximum Power Point
Tracking (GMPPT) for PV systems and conducted real-time experiments on a PV array
supplying a DC load. Similarly, Yilmaz and Corapsiz [30] developed a smart MPPT controller
designed for PV installations operating under partial shading conditions. Their approach
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combines optimizable Gaussian Process Regression (GPR) with High-Order Sliding Mode
Control (HOSMC), constituting a novel hybrid control strategy. In addition, Koshkarbay et al.
[31] focused on improving the performance of the Social Spider Optimization (SSO) algorithm
to enhance MPPT accuracy and convergence in PV systems. In contrast, several investigations
into energy management of grid-connected hybrid PV/wind/battery microgrids [32] have
incorporated MPPT mechanisms; however, these are primarily based on conventional artificial
intelligence (Al) methods such as neural networks (NNs). Furthermore, the study presented in
[33] aims to model and simulate a hybrid PV-wind system using MATLAB/Simulink to evaluate
its performance and efficiency under varying environmental conditions, where the reported Total
Harmonic Distortion (THD) is 3.5%. Overall, the development of advanced MPPT algorithms
remains largely confined to PV-only systems. In this study, the proposed TIEO-MPPT algorithm
is investigated as an MPPT strategy for hybrid PV—wind/Battery configurations.

2. Power system mods!

The proposed work presents a Hybrid Energy Svetem! (HES) configuration tailored and
designed for standalone applications serving remo:e and off-grid communities, as shown in
Fig. 1. The system combines two renewable eleigsz sources, a photovoltaic (PV) generator and
a wind energy (WE) system driven by a Permenent Magnet Synchronous Generator (PMSG),
which together act as the primary supplieis for the alternating current (AC) electrical load. To
guarantee continuous and dependac'e”pSwiar delivery, especially during periods of low solar
irradiance and reduced wind availdvility the design incorporates a Nickel-metal Hydride (Ni-
MH) battery Energy Storage Systers-(ESS) is incorporated. This storage unit functions as a
supplementary resource4o miti¢ate energy deficits and maintain supply-demand balance. The
architecture also includesiéeveral power electronic interfaces, such as a unidirectional DC/DC
converter for PV, a dual-directional DC/DC power converter for battery integration, also a three-
phase DC/AC converter for load interfacing.

Solar energy is typically harvested during daylight hours, whereas wind energy may be
available throughout the day and night, with higher intensities often observed during nocturnal
periods depending on local climatic conditions. This temporal complementarity between solar
and wind resources enhances the stability and availability of renewable generation. However,
the inherently variable and intermittent nature of both energy sources, driven by fluctuating
meteorological factors such as irradiance and wind speed, poses a significant challenge for
consistent power generation. By combining these two sources within a coordinated HES
framework, the system achieves improved energy reliability and sustainability while also
enabling a reduction in the required battery storage capacity. The primary goal of the proposed
paper is to enhance the overall energy efficiency and dynamic performance of the hybrid system
through three strategic innovations. First, a TIEO-MPPT diagram is presented, employing two
intelligent machine learning-based algorithms founded on the Tribal Intelligent Evolutionary
Optimization (TIEO) technique to maximize energy harvesting from both the photovoltaic and
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wind systems. Then, advanced control of power flow is realized through a sophisticated battery
regulation approach to ensure optimal energy distribution. Third, the integration of appropriate
power electronic converters guarantees efficient and reliable energy delivery to the load under
various operating conditions.
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3. Model description of the PV/wind module

3.1. Photovoltaic system
The ideal case is presented via a parallel connection of a current source and a diode; the real
case of a PV cell is represented by the insertion of the resistances Rse and Rpa as shown in Eq. (1)

V+I*Rse>
V+I*R
I=1Ly—1, oan) _q| - vriRee
Rpa

M)

Vin is the thermal voltage, V is the PV cell output voltage (V), Rs is the cell series resistance
(©), Rpa is the cell parallel resistance (€2)), a is the diode quality factor and o is the diode
saturation current (A).

Current-voltage and power-voltage characteristics of the photovoltaic module are illustrated
in Fig. 2(b) with temperature and irradiance variation configured with 9 series-connected panels
and 9 parallel strings, as implemented in our Hybrid Energy System (HES). It also depicts the
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synoptic diagram of the PV subsystem, where the photovoltaic generator is interfaced with a
dc-dc converter (boost) regulated by a proposed MPPT algorithm. In this configuration,
PV-MPPT controller receives the current of photovoltaic (lp), voltage (Vpy) as input variables,
and generates the optimized duty cycle (D) as its output to regulate power extraction, which is
applied to the boost converter via a PWM modulator.

9 series modules; 9 parallel strings
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Fig. 2. (a) Synoptic diagram of the PV source 'ntegra €d with a boost converter; (b) photovoltaic
module characteristc(i-V and P-V curves)
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3.2. Wind power generation model

Figure 3 shows the wind turbiiia's pcwel characteristic curve at a fixed pitch angle (8 = 0°),
showing how wind speed and tirbine output power are related. Wind energy conversion system's
schematic diagram, whith shiows'a wind turbine mechanically connected to a Permanent Magnet
Synchronous Generator (Pi1S%), is also included in the figure. A diode bridge rectifier is used
to correct the produced three-phase AC power before it is supplied to a DC-DC boost converter.
This converter is regulated by an MPPT algorithm based on the Tribal Intelligent Evolutionary
Optimization (TIEO) technique. It receives the generator-side current and voltage as inputs and
produces the optimal duty cycle (D), which is applied to the boost converter via a PWM
modulator to ensure maximum energy harvesting from the wind power. The following (as shown
in Eq. (2)) is an expression for the mechanical power that the turbine extracts [34].

1
Peurbine = Py Cp (A' ﬁp) pA Vv?/ind' (2)

Prurines 05 Cp, A, 1, and Vwing are, respectively, the wind speed, air density, power coefficient,
swept area (A = rr2), turbine output power and turbine blade radius. The tip-speed ratio and pitch
angle (), () determine the power coefficient which is written as in Eq. (3)

c (/1 ﬁp) (o) ( —c3fp — 04) e_’l_si + cgA. 3)

In the d-q reference frame, these PMSG formulas are expressed as in Eq. (4).
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di Rss . Lsq . 1

e lsqg + weﬂlsq +—Ve,

dt Lsq Lsa Lsa (4)
disq _ _ Rss . Lsa 2o\
&t = Lo lsq + W (qu Isq + Ing Yy, Ing Vsa.

The rotor's electromagnetic torque can be displayed as in Eq. (5).
2P . PR
T, = 3 [l/)plsq + isqisa (Lsd - qu)]' (5)

Here, the currents and voltages of the stator in the d-axis and g-axis are denoted as isq, isq, Vsd,
and Vg, respectively. The fundamental electrical angular frequency of the generator is indicated
by the value we. Ly and Lq indicate the stator inductance. P stands for the number of poles, Rss
for the stator resistance, and v, for the permanent magnet flux linkage.
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4. Proposed MPPT-TIEO algorithm

In our study, two independent boost converters are typically employed, one for the
photovoltaic (PV) array and the other for the wind energy subsystem. Each source is equipped
with a dedicated MPPT controller that calculates the ideal duty ratio to regulate the switching of
its respective boost chopper, thereby ensuring efficient power transfer. In the present, we propose
TIEO metaheuristic approach introduced by Ye Yao et al. in 2025 [35].

The algorithm is inspired by the historical dynamics of tribes dividing and reuniting over
time. Within the algorithm, individuals are grouped into tribes using a clustering approach on
the basis of the correspondence of their candidate solutions. The best-performing individual in
each tribe is appointed as the tribal leader. In each iteration, tribes adopt one of three strategic
decision-making modes, autonomy, diplomacy, or war guided by a Q-learning mechanism [36].
This reinforcement learning component enables adaptive learnirig and intelligent decision-
making based on accumulated historical experiences. The operational urinciple of the proposed
metaheuristic approach is presented below and is further illusgated.in Fig. 4.

4.1. Perform autonomy operation

Autonomy denotes the self-driven evolution of, governance strategies among individuals
within a tribe, guided by their leader’s influence. Ssthis mode, each tribe independently explores
its own local solution space as shown in Eg. (6):
(t+1) _ yft) das rand() * (Xeripe — xl.(t)), (6)

X

where: xi(t) is the position of individualj~at<, Xuine iS the current leader of the tribe, and « is the
autonomy learning rate (exnloratan),

4.2. Perform diplomacy toeration

Diplomacy involves the sharing of decision-making strategies between two groups (tribes),
in which the leadership approach from one group influences the individuals of the other to
varying degrees. This interaction enables tribes to communicate and learn from each other
without engaging in conflict as shown in Eq. (7).

xi(f“) = xi(t) + B *rand() * (Xoeher — xi(t))' 0

The different tribe leader with better fitness is presenting by Xower, 2 is the diplomacy factor
(moderate learning from others) and rand () is the random value.

4.3. Perform war operation

War refers to the competitive confrontation between tribes, where a stronger tribe can plunder
resources from a weaker one. As the conflict escalates, the population of the weaker tribe
diminishes, and if it drops to zero, the tribe is eliminated. This process reflects a tribe's attempt
to dominate or replace another through competitive pressure as shown in Eq. (8).
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'(t+1) = xi(t) + Yy * rand() * (xwin - xlose)7 (8)

xl

where: xwin IS the best global leader, Xiose is the worst-performing individual in the competing
tribe, yis the war intensity factor (high exploitation) and rand () is the random value.
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Fig. 4. Flowchart of the proposed TIEO-MPPT algorithm
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4.4. Update Q-learning table
Each tribe maintains a Q-table (Qi(s, a)) to learn which strategy works best in each state as
shown in Eq. (9).
Q(s,@) « Q(s,a) +n[r +{ max Q(s, &) — Q(s, @)]. ©

a
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The agent observes the current state s; = [Vyy, Ipy] in the case of the PV system and s; = [V, lw]
in the case of the wind system, based on this state, the agent selects an action a: (that mean a
perturbation to the duty cycle Dyy or Dy). ris the reward (r:= P(t)-P(t-1)), n7is the learning rate,
and ¢ is the discount factor. To select an action, we use e-greedy policy, this strategy maintains
a balance between exploring new actions and exploiting the most promising known actions.

Meaning of the Epsilon-Greedy Action Selection

— Explore: the agent ignores the Q-table (it chooses a random action, avoid getting stuck)

— Exploit: the agent chooses the action with the highest Q-value for current state (pick the

best action according to what it has leaned so far)

5. Energy Storage System (ESS) model

As shown in Fig. 1, the system architecture integrates miitiple coordinated controllers,
including the hybrid MPPT controllers, the DC-link voltage gentroller, and the load-side inverter
controller, and is supported by the Energy Storage System (5S€), which plays a critical role in
maintaining system stability and ensuring reliable operetion/under varying generation and load
conditions. The DC link voltage is intended to be regulatizd at 640 V using the suggested battery
control approach, starting from an initial batteryssharge level of 60% State of Charge (SOC).
The control combines Pl-based voltage reguiation, hysteresis current tracking, and SOC
supervision. Specifically, the error sighal obtained by comparing the reference voltage
(Vac = 640 V) and the actual DC voitageseiorocessed by a Pl controller to generate a dynamic
reference for battery current (los LA Mhysterasis comparator then compares this reference with
the actual battery current (lyar)A8dewrrmine whether charging should occur, enabling charging
(S1=1) only when the £Lurient (is/velow the desired value by a safe margin. Discharging is
permitted (S; = 1) only wién charging is inactive and the SOC remains below a specified upper
limit (e.g., 80%), to prevent uver-discharge and maintain battery integrity (Fig. 5(b)).

________________

Fig. 5. () The schematic diagram of dump load controller; (b) SE-DC-link voltage controller via (c)
DC-DC bidirectional converter

Following this, control signals S; and S; are then used to regulate the switches of the
bidirectional dc-dc converter (Fig. 5(c)), allowing power to flow in or out of the battery
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accordingly. This intelligent coordination ensures stable power flow in the system (Fig. 6),
protects the battery, and keep the DC voltage near to its rated value.

In parallel with battery control, a dump load controller is implemented to safely absorb excess
energy when renewable generation surpasses the load requirement and the battery is unable to
store additional power (Fig. 5(a)).

On the load side, the Phase-Locked Loop is a widely used DC-AC controller that generates
internal sine and cosine references to establish a stable rotating reference frame

Calculate V,,

Excess power in DC bus DC [nié neds support
Yes 7
S0C< 80% <) soc> so%
>~
The HES will The dump load receives The battery discharges
charge the battery the surplus energ; 0 meet the load demand

Return

Fig. 6. Floyehart bt energy management based on battery bank’s SOC limits

6. Results and discussion

To validate the effectiveness of the proposed system, it is first tested on a configuration
composed of five photovoltaic (PV) panels connected to a resistive DC load under strong partial
shading conditions. Since the proposed technique combines a metaheuristic optimization
strategy with reinforcement learning, this study compares the performance of the proposed TIEO
algorithm with three MPPT approaches: the recently developed metaheuristic algorithm known
as the Football Training Team Algorithm (FTTA), the reinforcement learning-based Deep Q-
Network (DQN), and the classical Perturb and Observe (P&O) method. As shown in Fig. 7, it
can be seen that the P&O algorithm struggle to escape local optimum points, whereas the DQN,
FTTA and the proposed TIEO approaches successfully converge to the global optimum point.
However, both the DQN and FTTA require more time to reach the GMPP compared to TIEO.

10
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Fig. 7. Power and duty cycle responses of TIEO compared to DQN, FTTA and P&O

Expanding upon recent developments, the presented table (Table 1) extends the analysis by
benchmarking the proposed algorithm (TIEQ) against several MPRT=achniques reported in the
literature, as summarized in Table 1; the period during which easiwmiethod was first applied to
PV MPPT is also included. The comparison considers tracking etficiency, convergence time,
and adaptability under DC and AC loads. Particle Swarm Qpumization (PSO), the DQN, and
TIEO perform well overall, but TIEO stands out witii fas&r convergence and 98.6% tracking
efficiency, demonstrating superior effectiveneas.and vahUstness.

Table 1. Summary comparison of existing MPPT algorithms and the proposed TIEO approach

TracKing C(?nver—d A
efficiency | gerie spee coura Oscillations Speed
(oA (‘ec) cy
MPPT- Firstappliedto —~
ALG MPPT-PV PSC with load
Irradiation variation with DC load
DC AC
P&O (1980) ‘ 100 0.022 High Low Fast Poor Poor
CLASSIC .
ALALG INC (2000) 100 0.020 High Low Fast Poor Poor
37
[37] HC (1990) 98 0.015 Mod Low Fast Poor Poor
FLC (1990) 99.4 0.010 High Low Fast Mod Mod
=
o
3 ANN (1990) 99.7 0.005 High Low Fast Mod Poor
|
:: ANFIS (2000) 99.6 0.010 High Low Low Mod Mod
z
w [=2]
Q & DQN 100 0.240 High Low Fast | High | High
- @ N
0 o9 ’
= ® o> SVR 100 0.010 High Low Fast Mod | Poor
z £g
= <
E S | som 952 0015 Mod Low Fast | Mod | Mod
fE o q PSO (2000) 100 Slow High Low Mod High High
D=
w'goEd
= IT99 FPA (2015) 94,00 Slow Mod Low Mod High | High
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CSA (2013) 99.9 Slow High Low Mod High | High
ABC (2012) 93 Slow Mod Low Mod High High
GA (1993) 95.5 Slow Mod Mod Mod High | Mod
FTTA (2024) 99.8 0.75 High Mod Mod High | Poor
PROPO- . . .
SED ALG TIEO (2025) 98.6 0.05 High Low Fast High High

HC: Hill Climbing, SVR: Support Vector Regression (supervised learning), SOM

: Self-Organized Map (unsupervised learning), DQN

(reinforcement learning), PSO: Particle Swarm Optimization, FPA: Flower Pollination Algorithm, CSA: Cuckoo Search Algorithm, ABC:
Artificial Bee Colony, GA: Genetic Algorithm, Mod: Moderate, Slow: convergence speed (more than 0.75sec), PSC with Load: DC
(resistance load), AC Load (pumping system)

Table 2. Overview of MPPT algorithms: features, learning and convergence

. Learning Algorithmic Convergence ‘ - I
MPPT-algorithms mechanism features behavior Aaaitages Limitation
Periodically perturbs . . Moderate: Cirme Poor under PSC,
CLA:E IGCAL (igéco)) duty cycle and ::t:;zg\f;eg:r'éﬁ oscillates neaf ;:’;Le‘irlr?v‘l’éﬁ?:;’t It struggles to escape
observes AP MEP asy P from LMPP
META- Simulates training, Team-based Strong balance Loss of population
HEURISTIC FTTA selection, and cooperative learning Slow But stable between local and diversity,
ALG (2024) [adaptation of football for GMPRP global search; High computational
players optimizatiun avoids stagnation cost
MACHINE DON Reinforcement Action-rewar Slow but Learns Requires training time
LEARNING (2013) learning via Q-value exploration fol adative dynamically under andqcom utationgl load
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Figure 8 shows duty wCle end power response under extreme battery SOC conditions (5%
and 99%) for the same weatl 2t variations in irradiance, temperature, and wind speed. In the low-
SOC case, excess energy is sent to the dump load, while in the high-SOC case, it charges the

battery.

12



This paper has been accepted for publication in the AEE journal. This is the version, which has not been
fully edited and content may change prior to final publication.
Citation information: DOI 10.24425/aee.2026.156807

a) Test under Battery SOC extremes (set intial SOC=100%) and Constant Load 15kW. | | b) Test under Battery SOC extremes (set intial SOC=5%) and Constant Load 15kW
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Fig. 8. Power and DC voltage response under weather vaiiion and battery SOC extremes

Figures 9 and 11 show the transient response of thedev2loped hybrid energy system under
varying environmental conditions. The PV and windboost converter duty cycles remain around
0.5 with minor fluctuations, indicating stable apepation and efficient MPPT near each source’s
optimal power point.
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Fig. 9. Dynamic responses of the hybrid PV-Wind-Battery System under constant
load demand (20 kW)

Figure 9 shows sinusoidal load voltage and current, with the DC bus voltage held at 640 V.
The system remains stable under environmental disturbances, and the wind turbine torque varies
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linearly with wind speed, reflecting its aerodynamic behavior. Table 3 includes quantitative
metrics like tracking efficiency (%), settling time and energy harvested (kW) across scenarios of
Fig. 9.

Table 3. Performance metrics of TIEO algorithm under various operating conditions

Effi-
Scenarios Settling time (sec) Energy harvested (kW) ciency
(%)
Time Weather variation PV [Wind |Battery Load PV |Wind (Battery Demand Dump Load Demand
Load Load
0-1 Wind speed Temp = 25°
(sec) 12 (misec) | I = 200 Wim? 0.05 0.2 0.02 0.2 3.1 10.9 10.8 4.8
Wind
1-15 _ Temp = 25°
(sec) sp(?:]a/(le—c;ll Irr = 200 W/m? 0.02| 0.02 005 | ----- 35 74 12 29
' .
Wind
1.5-2 _ Temp = 25°
(sec) Sp(:/i;c;u Irr = 800 W/m? 0.02| 0.02 004 | ----- 155 74 ) 29
Wind — oKe I
ééi) sp(ee;i = )10 Irr-I;eT(?OE) ﬁ/mz 002| 002] 004 | 20 | gl b5 20 21 99.9
m/sec,
3-35 (Windspeed=9 | Temp=25" | .| ool  q04 | B
(sec) (mfsec) It = 1000 W/m2 0.01| 0.05 0.04 20.3 1.2 1.4 0.1
Wind —oEe
3541 heed=12 | 1eMP=25" 1 g0l 002|004 | A3 11| 5 53
(sec) (mfsec) Irr = 1000 W/m
Wind
4-5 _ Temp =50°
(sec) sp((;(qe;is;(:;& It = 500 W/m? 0.01| --—- 0.C4 55 10.7 8 42

The irradiance profile beging at"™200 W/m? (0-1.5 sec), increases to 800 W/m? (1.5-2 sec),
peaks at 1000 W/m? (2-4 sec), jand finally drops to 500 W/m? (4-5sec). The ambient
temperature is maintaingd coastant at 25°C until 4 sec, after which it rises to 50 °C.
Concurrently, wind speed jvaries as follows: 12 m/s (0-1sec), 11 m/s (1-2sec), 10 m/s
(2—-3 sec), 9 m/sec (3—-3.5sec), and returns to 12 m/sec between 3.5-5 sec. These variations
directly affect the power that is accessible from wind and photovoltaic sources. The Energy
Sorage System (ESS) operates in discharge mode (from 0 to 2 sec), as evidenced by the
decreasing State of Charge (SOC). Between 2.5 and 4 sec, the ESS transitions to charging mode
as renewable generation exceeds the load demand. However, beyond 4 sec, the reduction in
irradiance combined with elevated temperature results in diminished PV output. Consequently,
the ESS resumes discharging to bridge the energy deficit and ensure uninterrupted load supply.

Throughout the simulation period, power contributions from the PV array, wind turbine, and
ESS dynamically adjust to maintain the constant 20 kW load. During the initial phase
(0—-1.5 sec), the low irradiance (200 W/m?) limits PV output to approximately 4 kW, while the
wind turbine delivers up to 10 kW (notably during 0-1 sec). In the second phase (2-4 sec), under
favorable irradiance and stable temperature, the PV output significantly increases, reaching
around 20 kW, and becomes the primary source. Wind power output follows the wind speed
trend, except during the 3.5-4 sec interval, where it briefly reaches ~10 kW. The surplus energy
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in this phase leads to battery charging, as indicated by negative power or battery current values
(as shown in the corresponding figure). In the final phase (4-5 sec), the PV output drops to
~5 kW due to reduced irradiance and elevated temperature, while wind power stabilizes near
10 kw.

To maintain uninterrupted power delivery, the ESS resumes discharging. Finally, the DC bus
voltage effectively tracks the reference voltage (640 V). The load voltage THD, Total Harmonic
Distortion obtained (2.14%) is lower than the standard permissible limit of 5%, thereby
validating the system’s capability to kept high power quality during transient operating
conditions (as illustrated in Fig. 10).

Fundamental (50Hz) = 313.9, THD=2.14%
T T T T T T T

Mag (% of Fundamental}

b ) 300 400 500 600 700 800 900 1000
Frequency (Hz)

Fig. 10. Exequancy spectrum of load voltage (FFT analysis)
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Fig. 11. Dynamic responses of the hybrid PV-Wind-Battery System under variable
load demand (20 kW)
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During the period from 0 to 2 sec, the Energy Storage System (ESS) is discharging, with a
noticeable decrease in the State of Charge (SOC). From 2.5 to 4 sec, the ESS begins to charge
as the renewable generation exceeds the load demand. However, after 4 sec, due to the combined
impact of reduced irradiance and elevated temperature (which decreases PV efficiency), the total
generated power becomes insufficient. Consequently, the ESS resumes discharging to
compensate for the energy deficit and ensure continuous load supply.

Throughout the simulation, the power contributions from PV, wind, and battery sources vary
dynamically to maintain the constant 20 kW load. In the first phase (0-1.5 sec), low irradiance
(200 W/m?) limits PV output to around 4 kW, while wind provides up to 10 kW (0-1 sec).
During the second phase (2—4 sec), under optimal irradiance and stable temperature, PV output
increases significantly and reaches around 20 kW, becoming the dominant source. The wind
decreases proportional with wind speed decreasing except betweer3.5-4 sec, where it briefly
supplies ~10 kW. During this period, excess energy causes the-datiery to charge (indicated by
negative power or negative battery current as shown figure). lasthe third phase (4-5 sec), reduced
irradiance and elevated temperature cause the PV output ta,afanlo ~5 kW, while wind stabilizes
near 10 kW. The battery resumes discharging to offset the rleficit and guarantee uninterrupted
load supply. the DC bus voltage response follows thi degired voltage (640 V). The load voltage
THD (2.12%) is lower than the standard value®5%). I he previous scenario confirmed stable
system operation under a constant 20 kW load, w/ith regulated DC voltage (~640 V), duty cycles
around 0.5, sinusoidal load current, and ¢ffective MPPT. In the current case, a variable load
profile (5 kW — 15 kW — 25 kW5 is employed to evaluate the system’s dynamic
performance. The DC bus voltage (feniains 2vell-regulated at approximately 640 V throughout
the load changes. Duty cycles g5theyPV and wind converters stay close to 0.5, and the PMSG
continues to exhibit consistent torgyue and speed behavior. The Energy Storage System (ESS)
responds adaptively, chairging curing times of excess generation and discharging during power
shortfalls, based on real-time variations in irradiance, temperature, wind speed, and load demand.
The load current waveform remains sinusoidal, with amplitude variations reflecting the changing
load, demonstrating that the proposed hybrid system effectively maintains power quality and
operational stability under variable conditions.

7. Hardware discussion

The proposed algorithm employs a 10 x 5 Q-table and 15 agents distributed across three
tribes, resulting in a lightweight optimization framework. The computational complexity of the
algorithm is approximately Q(15) per iteration, since each iteration updates 15 agents with
simple arithmetic and Q-learning operations, making it efficient for real-time execution. The
memory footprint is also minimal, requiring roughly 2—4 KB of RAM, primarily for storing the
Q-table, agent attributes and persistent variables. Such low computational and memory demands
make the algorithm highly suitable for real-time embedded implementation on both STM32 and
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ESP32 (for loT-connected MPPT applications), where it can operate within tight timing and
resource constraints.

8. Conclusion, limitation and future research directions

The TIEO-MPPT control strategy proposed in this study has been implemented for both PV
and wind sources within a hybrid PV-Wind-Battery System. Unlike conventional methods,
TIEO-MPPT intelligently adapts to environmental and load variations through its evolutionary
learning mechanism. Simulation results confirm that the proposed approach ensures stable DC-
bus voltage regulation (~640 V), maintains high power quality (low THD), and achieves a fast
dynamic response under varying irradiance, temperature, wind speed, and load conditions. The
Energy Storage System (ESS) effectively balances power flow and-enhances system stability,
while MPPT is achieved with minimal oscillations and high corvergence accuracy.

Despite these promising results, certain limitations sgmain’ Scalability and real-time
computational constraints may arise as system size increases, leading to higher processing and
memory demands on resource-constrained embedded platforms (e.g., ESP32, STM32).
Moreover, the algorithm assumes ideal coordination, Jwhereas practical stand-alone hybrid
systems may experience delays, noise, and measyrement inaccuracies that could affect MPPT
efficiency and stability. Future research should focus on Hardware-in-the-loop (HIL) validation
to verify real-time performance under réalistic” converter behavior in stand-alone operation.
Although this work considers a stauis Toagiwith varying demand, future studies should extend
the analysis to other load types, suii assdynamic, inductive, or motor-driven loads, to provide a
more comprehensive evaluatigimotstand-alone system behavior. Additionally, incorporating
adaptive SOC thresholgS and Geh-tuning learning parameters will further enhance storage
efficiency and overall sysiém reliability.

In this work the major coinponents used in the system as shown Fig. 1, are:

— MPPT-algorithm: TIEO is applied using Ntribe =3, Nindividual =5, «=0.3, y=0.6,
£=04, n=0.1 (learning rate), ¢=0.9 (discount factor), £=0.1 (exploration rate),
Dmin = 0.05, Dmax = 0.95 (boundaries to avoid extremes), Q-table is initialized as zeros
or small random numbers, Itermax = 5000, 15 agents, Q-table dimension = 50 Q-values;

— PV source: 81 panel of 270 W connected 9 in series and 9 in parallel, total — 20 KW,
Vmp —30.8 V/panel, Imp —8.77 A, Neents = 60, Voc=37.9V, le=9.07 A,
Rsn= 2185.1547 Ohm, Rs= 0.26166 Ohm;

— Wind source: PMSG is a 12 kW-class Permanent Synchronous Magnet Synchronous Gen-
erator, operating at torque — 67.27 N-m, speed — 1700 rpm, DC voltage output — 560 V and
the nominal mechanical output power turbine is 10 KW;

— PMSG: pre-set model — 14-76.27 Nm, 560 Vg, 1700 rpm-70.2 N.m;

— Battery: Ni-MH, 60.5 Ah capacity, initial SOC — 60% and 300 V nominal voltage;

— Inverter: 3-phase 2-level VSI, DC input — 640 V, switching frequency — 20 kHz;
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— PV _DC-DC converter: unidirectional boost converter, input voltage rate — 280-350 V,
switching frequency — 20 kHz;

— Battery DC-DC converter: bidirectional buck-boost converter, input voltage
rate — 250—350 V, switching frequency — 20 kHz;

— Wind energy converter: AC-DC rectifier + boost converter, input voltage rate — rectified
DC 480-560 V, switching frequency — 20 kHz;

— Grid: three phase static load (first scenario: 20 kW, second scenario: variable load values);

— Simulation settings: sampling time: 10e®s, solver type — ode23t (mod.stiff/trapezaoidal).
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