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Intraspecific changes in genome size and chromosome number lead to divergence and species evolution. Heavy
metals disturb the cell cycle and cause mutations. Areas contaminated by heavy metals (metalliferous sites) are
places where microevolutionary processes accelerate; very often only a few generations are enough for a new
genotype to arise. This study, which continues our long-term research on Viola tricolor (Violaceae), a species
occurring on both metalliferous (Zn, Pb, Cd, Cu) and non-metalliferous soils in Western and Central Europe, is
aimed at determining the influence of environments polluted with heavy metals on genome size and karyological
variability. The genome size of V. tricolor ranged from 3.801 to 4.203 pg, but the differences between metalli-
colous and non-metallicolous populations were not statistically significant. Altered chromosome numbers were
significantly more frequent in material from the polluted sites than from the non-polluted sites (43% versus
28%). Besides the standard chromosome number (2n = 26), aneuploid cells with lower (2n = 18–25) or high-
er (2n = 27, 28) chromosome numbers were found in plants from both types of site, but polyploid (2n = 42)
cells were observed only in plants from the metalliferous locality. The lack of correlation between chromosome
variability in root meristematic cells and genome size estimated from peduncle cells can be attributed to elim-
ination of somatic mutations in generative meristem, producing chromosome-stable non-meristematic tissues
in the peduncle.
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polyploidy.
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INTRODUCTION

Genome size and chromosome number have long
been regarded as species-specific and constant fea-
tures, but many studies have reported intraspecific
and intrapopulation variability of genome size and
karyology (Greilhuber, 1998, 2005, 2008; Ohri,
1998; Małuszyńska and Siwińska, 2004; Doležel et
al., 2007). Differences in genome size within a class
of organisms, called the C-value paradox, are almost
entirely due to differences in the amount of non-pro-
tein-coding DNA. In many eukaryotes these non-cod-
ing DNA sequences are the necessary outcome 
of novel cell structures imposing selective forces,
meaning that genomes and cell structure co-evolve
(Cavalier-Smith, 2005). Due to pronounced
intraspecific variation in nuclear DNA content, plant
genomes have been referred to as 'fluid', 'dynamic',

and 'in constant flux' (Gregory, 2005). Whether an
observed intraspecific variation is real or artifactual
can only be clarified using larger sample sizes
and/or a superior measurement technique. Real
intraspecific variation could result from the differ-
ential presence of supernumerary B chromosomes,
from polymorphisms in A chromosomes, or genome
duplication via autopolyploidy (for examples and
references see Gregory, 2005). There are numerous
parallels in genome size evolution between plants
and animals, including the patterns of DNA content
variation among taxa, the cytological, morphologi-
cal, physiological and evolutionary impacts of
genome size, and the mechanisms by which
genomes change in size (Beaulieu et al., 2010).

Owing to improved flow cytometry technique,
especially nucleus staining procedure, data verifica-
tion and artifact elimination (Greilhuber, 1998;



Gregory, 2002, 2005; Murray, 2005), we now have
reliable evidence that intraspecific genome size vari-
ability can be correlated with altitude, latitude, soil
type, rainfall, and mean temperature during flower-
ing (Ohri, 1998; Turpeinen et al., 1999; Šmarda and
Bureš 2010). Examples of plant species with flexible
genomes (11–28% intraspecific variation) were given
by Ohri (1998).

Intraspecific changes in genome size, an object
of natural selection, lead to divergence and species
evolution. Sites contaminated by heavy metals (met-
alliferous sites), which are particularly detrimental
to plant growth, are places where microevolutionary
processes accelerate. Very often only a few genera-
tions are enough for a new genotype to arise (Bone
and Farres, 2001; Hendry and Kinnison, 2001;
Stockwell et al., 2003; Carroll et al., 2007; Medina
et al., 2007). Plant species colonizing metalliferous
and thus unstable and unpredictable sites have
evolved an r-life strategy with the crucial ability 
to reproduce quickly, owing to fast flowering, seed
ripening, and much greater flower and seed yields
(Wierzbicka and Rostański, 2002; Grześ, 2007).
Such a strategy is correlated with a small genome,
as confirmed recently in studies of seventy herba-
ceous dicot perennial species. Those with large
genomes were indeed at a selective disadvantage 
in extreme environmental conditions (Vidic et al.,
2009). If small genome size has adaptive value,
metallicolous populations should have smaller
genomes than non-metallicolous ones. This subject
was recently raised again in the form of the 'large
genome constraint hypothesis' put forward by
Knight and coauthors (2005), stating that species
with too-large genomes are more likely to become
extinct in stressful environments because large
genomes are inflated with unnecessary junk DNA
whose replication burdens the organism.
Investigating sixty species along a gradient of heavy
metal pollution, Temsch and coauthors (2010) sup-
ported that hypothesis, arguing that large nuclei,
especially those that are mitotically or meiotically
active, receive more hits than small ones and are
more prone to heavy DNA damage and elimination.

As heavy metals disturb the cell cycle and cause
mutations (Coulaud et al., 1999; Nkongolo et al.,
2001; Rayburn and Wetzel, 2002; Sedel'nikova and
Pimenov, 2007), they may effect changes in (1) chro-
mosome number (aneuploidy, polyploidy), (2) chro-
mosome structure and (3) ontogeny (endomitosis,
endoreduplication) (Jones, 1978; Bayliss, 1980;
D'Amato, 1991; Stace, 1991). Those are usually easy
to catch with cytological analyses (e.g., Sedel'nikova
and Pimenov, 2007) and DNA content measure-
ments (e.g., Rayburn and Wetzel, 2002). Points par-
ticularly vulnerable to chromosome breakage are
the centromere, secondary constriction and sites
with weak chromatin condensation (Jones, 1978;

Lee and Philips, 1988; Coulaud et al., 1999). Inter-
and intrapopulation (inter- and intraindividual) vari-
ability in chromosome number is a crucial step
toward speciation (Raskina et al., 2008).

In some cases, structural chromosome muta-
tions are subtle and are identified by special chro-
mosome staining techniques (e.g., C-banding, FISH).
Small chromosome fragments may exhibit different
localization even within a single species (Garrido et
al., 1994). This is clearly visible with rDNA loci;
their rearrangement is a very rapid process driven
by unequal recombination and transposon
rearrangement (Raskina et al., 2004, 2008).

This study continues our long-term work on the
pseudometallophyte pansy Viola tricolor L.
(Violaceae, sect. Melanium; 2n = 26), a species
occurring both on metalliferous (Zn, Pb, Cd, Cu)
and on non-metalliferous soils in Western and
Central Europe (Dobrzańska, 1955; Ernst et al.,
2004; Banásová et al., 2006; Hildebrandt et al.,
2006, 2007). Our previous research addressed the
influence of soils polluted with heavy metals on the
plant antioxidative system (Słomka et al., 2008),
plant morphology, reproduction and pollen viability
(Słomka et al., 2010c), mycorrhiza colonization
(Słomka et al., 2011a) and genetic variation (Słomka
et al., 2011b). We found that metallicolous popula-
tions exhibit qualitative differences from non-metal-
licolous ones at the molecular level. Metal-tolerant
populations group together in respect of ISSR mark-
ers (Słomka et al., 2011b), a pattern which does not
correlate with the great morphological variability of
this species as measured by quantitative and quali-
tative characters (Słomka et al., 2011c). Its relative-
ly high genetic polymorphism and gene diversity as
compared with other metal-tolerant plant species,
especially high in metallicolous populations, give it
an advantage in the adverse environments it occu-
pies in dense patches in southern Poland, and are
leading  to the formation of a new ecotype (Słomka
et al., 2011b). 

Here we examine the influence of environments
polluted with heavy metals on genome size and kary-
ological variability in Viola tricolor.

MATERIALS AND METHODS

PLANT MATERIAL

The plants for C-DNA content analysis originated
from five sites (two non-metallicolous, three metalli-
colous). Seeds for chromosome counting originated
from three sources (one metallicolous, two non-
metallicolous). The material was collected at the
same sites as in our previous studies on the influ-
ence of soils polluted with heavy metals on Viola tri-
color (Słomka et al., 2008, 2010, 2011a,b,c). The
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metallicolous populations (BH – Bukowno heap, SH
– Saturn heap, WH – Warpie heap) are located in the
Zn/Pb mining area in Olkusz, Poland. Soils at these
sites contain Zn at Pb at levels far exceeding safety
norms (Zn 50 ppm, Pb 1 ppm, Cd 0.05 ppm;
Greger, 2004). The site most contaminated with Zn
is BH (mean 6,725 ppm), and the most Pb-contami-
nated site is SH (mean 5,004 ppm). These soils have
similar pH (~7.0). The non-metallicolous popula-
tions (ZM – Zakopane meadow, ZP – Zakopane
park) are located in the vicinity of Zakopane on soils
with trace amounts of Zn and Pb, except for one in
Germany (BGH – Botanical Garden in Hohenheim)
from which seeds were received for chromosome
analysis. Site ZM has higher loads of the metals (Zn
793 ppm, Pb 468 ppm) than ZP (Zn 83 ppm, Pb 30
ppm), but since the amounts are low as compared
with the metallicolous sites, its material is also
taken as representing a non-metallicolous (control)
population.

C-DNA VALUE

Detailed C-DNA value analyses were preceded by
organ selection, due to the presence of mucilaginous
substances (Ajalin et al., 2002) in V. tricolor leaves
which would interfere with measurements. Among
several organs tested (leaves, petioles, stems, roots,
petals, peduncles, embryos), the most suitable were
peduncles. Peduncle fragments 2–3 cm long togeth-
er with a small piece of Fagopyrum sagittatum cv.
Kora leaf (internal standard) were chopped with 
a razor blade in nuclei extraction buffer (Doležel and
Gohde, 1995), filtered through 30 μm nylon mesh
and stained with propidium iodide using a Partec
high-resolution DNA kit according to the manufac-
turer's instructions. The internal standard,
Fagopyrum sagittatum cv. Kora (2C DNA = 2.87
pg), was calibrated based on Lycopersicon esculen-
tum cv. Stupicke (2C DNA = 1.96 pg) (Doležel et al.,
1992). The DNA content of the isolated nuclei in the
samples was analyzed with a DAKO Galaxy flow
cytometer. Altogether 50 plants (5 populations x 10
plants) were measured. Nuclei isolation, staining
and measurements were repeated for 3–5 randomly
taken plants/population.

PLANT MATERIAL FOR CHROMOSOME COUNTING

Viola tricolor seeds were germinated on filter paper
soaked with distilled water under constant light at
room temperature. We applied a treatment 
to improve their very poor germination frequency.
After 8 weeks of cooling at 4°C the seeds were steril-
ized in commercial bleach diluted with sterilized
water (1:3 v/v) for 10 min and rinsed several times
in sterilized water, then sown on 1% agar and on
moist filter paper and kept in an experimental

chamber under a 16 h photoperiod at 24°C/18°C.
This treatment gave up to 80% germination.

SAMPLE PREPARATION

Six-day-old seedlings were incubated in a saturat-
ed solution of α-bromonaphtalene for 24 h at 4°C
(for orcein staining) or in 0.02 M water solution of
8-hydroxychinoline for 4 h at room temperature
(for DAPI staining). Afterwards they were rinsed
three or four times in distilled water. Then the
material was fixed in a mixture of glacial acetic acid
and 96% ethanol (3:1 v/v) for 24 h. For chromo-
some counting the material was stained in 
2% acetic orcein for 2–3 days or in DAPI. For
mitotic stage analysis, root tips were stained with
Schiff's reagent without α-bromonaphthalene or 
8-hydroxychinoline pretreatment.

Acetic orcein staining

Fixed seedlings were rinsed in 45% acetic acid sev-
eral times, then heated to boiling over a flame three
times. For slide preparation, dissected root tips with
clearly stained ends were squashed in a drop of 45%
acetic acid with a cover slip which was then removed
with dry ice. The slides were rinsed for 2 s in 96%
ethanol, air-dried, mounted in Canada balsam and
observed with a light microscope.

DAPI staining

Fixed seedlings were rinsed in 10 mM citric acid –
sodium citrate buffer (pH 4.8) and enzymatically
digested [20% v/v pectinase (Sigma), 1% (w/v)
Calbiochem cellulase, 1% w/v Onozuka (Serva) cel-
lulase] for 2.5 h at 37°C and finally rinsed in citrate
buffer for 15 min. Preparations were made from
root tips, which were squashed in a drop of 45%
acetic acid, dry-iced and air-dried, and stained for
15 min with 1 μg DAPI diluted in 1 ml McIlvaine
buffer (pH 7.0). After rinsing in McIlvaine buffer the
preparations were mounted in Entellan and
observed and photographed with a fluorescence
microscope at 360–370 nm.

Feulgen staining

Seedlings fixed and then washed in distilled water
were hydrolyzed in 18% HCl for 0.5 h at room tem-
perature, rinsed several times in distilled water and
kept in darkness ~1 h in Schiff's reagent (based on
pararosaniline) until purple. After triple rinsing in
sulphur water (5 ml 10% Na2S2O5, 5 ml 
1 M HCl, 90 ml distilled water) the root meristems
were squashed in a drop of 45% acetic acid, dry-
iced, air-dried, mounted in Entellan, and observed
and photographed with a light microscope. 
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STATISTICS

The two statistical tests used, ANOVA for inter- and
intrapopulation variation in genome size and the
chi-square test for comparison of chromosome
number frequencies between populations,
employed STATISTICA ver. 7.0.

RESULTS

GENOME SIZE

Using peduncles for genome size analyses, we
obtained good histograms with acceptable CVs
(3.5%–5.5%), lower than from the other tested
organs. DNA 1C-value in the metallicolous and non-
metallicolous V. tricolor populations ranged from
3.801 to 4.203 pg. Intra- and interpopulation varia-
tion of genome size was not pronounced in either
type of population, and the ranges of intrapopula-
tion variation were similar: 3.845–4.203 pg (ZP) and
3.870–4.193 pg (ZM) in the two populations from
non-metalliferous sites, and 3.866–4.179 (BH),
3.912–4.197 pg (SH) and 3.801–4.152 pg (WH) in
the three from metalliferous sites. The investigated

populations did not differ in genome size. To our
knowledge the mean genome size of 4.035±0.100 pg
for V. tricolor established in this study is the first
such statistic for this species (all data Tab. 1). 

CHROMOSOME NUMBERS

Chromosome numbers were determined from 253
root meristem cells of 25 seedlings grown from
seeds collected from plants of non-metallicolous
populations (118 cells; ZM, BGH) and 27 seed-
lings germinated from seeds harvested from 
a metallicolous population (135 cells; BH) (Tab. 2).
Specimens from both sites exhibited intra- and
interindividual variability of chromosome number.
In root meristematic cells of plants from non-metal-
liferous sites (ZM, BGH), 72% had chromosome
number 2n = 26 (Tab. 2, Fig. 1a), representing the
standard chromosome number established for 
V. tricolor from other parts of its distribution area
(see, e.g., Bolkovskikh et al., 1969), whereas in indi-
viduals from the metallicolous population (BH) the
frequency of cells with the standard chromosome
number was clearly lower at 57%. Altered chromo-
some numbers were significantly more frequent in
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TABLE 1. DNA 1C-value (pg) of individuals from metallicolous (BH, SH, WH) and non-metallicolous (ZM, ZP) popula-
tions of V. tricolor

Means followed by the same letters do not differ significantly at p > 0.05 by ANOVA

TABLE 2. Frequency of standard 2n = 26 and non-standard (aneuploid, polyploid) chromosome numbers in root meris-
tem cells of V. tricolor from non-metallicolous (ZM, BGH) and metallicolous (BH) populations; percent in brackets 

*aneuploid (lower or higher than standard 2n = 26) or polyploid chromosome numbers
Means followed by different letters differ significantly at 0.01 < p < 0.02 by chi-square test



the population from the metalliferous site (BH, 43%)
than in the non-metallicolous populations (ZM and
BGH, 28%; χ2

0.05;1 = 6.2; 0.01 < P < 0.02). Due to
difficulties in obtaining well-spread metaphase
plates, not all analyzed metaphases were good
enough to count the chromosomes precisely; we
could estimate only whether the chromosome num-
ber was higher or lower than 2n = 26 in a particu-
lar cell, without giving the exact count (Tab. 2).
Detailed counts were based on 123 selected
metaphase plates (56 from ZM and 67 from BH);
besides standard chromosome numbers (2n = 26),
we found aneuploid cells with lower (2n = 18–25) or
higher (2n = 27, 28) chromosome numbers in mate-
rial from both sites (Tab. 3, Fig. 1b, c), whereas
polyploid (2n = 42) cells were found only in materi-
al from the polluted locality (Tab. 3).

Disturbances in mitotic division, observed in
material not treated with chemicals destroying the
spindle, explained the occurrence of altered chro-
mosome numbers. In metaphases (Fig. 1d) and in
telophases (Fig. 1f) we observed single vagrant chro-
mosome fragments. Additionally, ana-telophase

bridges were formed by dicentric chromosomes
(Fig. 1e). In interphases these chromosome frag-
ments formed micronuclei (Fig. 1g).

DISCUSSION

Heavy metal genotoxicity and heavy metal effects on
cell cycle duration have been investigated frequently
in plants, using pot and in vitro experiments. Via
generation of reactive oxygen species in plant cells,
heavy metals disturb mitosis, leading to the occur-
rence of anaphase bridges, chromosome stickiness,
micronuclei formation and other aberrations
(Steinkellner et al., 1998).

There are no genome size data for members of the
Violaceae except for Viola riviniana and V. anagae in
the famous C-DNA database of the Royal Botanic
Gardens at Kew (http://data.kew.org/cvalues/).
Recently it was established for the third species,
Viola hirta (Temsch et al. 2010).

In this study we measured genome size in Viola
tricolor in order to test the hypothesis (Price et al.,
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FFiigg..  11..  Chromosome numbers and disturbed mitotic divisions in root meristems of V. tricolor from non-metallicolous
(ZP; a–e) and metallicolous (f, g) populations. DAPI staining (a–c); Feuglen staining (d–g). (aa) Metaphase plate, 2n = 26,
(bb,,  cc) Aneuploid metaphase plates with lower (2n = 18, b) and higher (2n = 28, c) than standard (2n = 26) chromo-
some number, (dd) Metaphase with acentric chromosome fragment (arrow) located outside of metaphase plate, 
(ee) Telophase with chromosome bridge (arrows), (ff) Early telophase with acentric chromosome fragment (arrow) left
between two chromatid groups separated at poles, (gg) Cell with chromosome fragment (arrow) located in cytoplasm out-
side of interphase nucleus.



1981; Price, 1988) that individuals with smaller
genomes should occur in habitats with adverse envi-
ronmental conditions. We expected to find differ-
ences in genome size between plants from non-
metallicolous and metallicolous populations, but in
fact there were no statistically significant differences
between these two population types. Individuals
from all five investigated populations (two non-
metallicolous and three metallicolous) had genomes
similar in size, corresponding to results on Lotus
peregrinus (Pavlíèek et al., 2008) and Cyclamen
persicum (Gasmanová et al., 2007) but contrary to
results on Hordeum spontaneum (Kalendar et al.,
2000), all of which were growing under extremely
differing environmental conditions in Evolution
Canyon (Israel).

Chromosome number databases (see
Bolkhovskikh et al., 1969; Verlaque and Espeut,
2007; Góralski et al., 2009) indicate that Viola tri-
color is karyologically uniform, with somatic chro-
mosome number 2n = 26. Data from Krahulcová
and coauthors (1996) and Lausi and Cusma Velari
(1986) give sparse information about intraspecific
karyological variability in V. tricolor: the former
occasionally observed aneuploid cytotypes 2n = 25
and 2n = 27 in the Czech Republic; the latter found
changes in absolute chromosome size, centromeric
symmetry and relative size symmetry, but not in

chromosome number. In our study we found a wide
range of chromosome numbers (2n = 18–42) in root
meristematic cells of plants from metallicolous and
from non-metallicolous populations. Aneuploid cells
with lower or higher chromosome numbers than the
standard 2n = 26 were the result of disturbed mito-
sis (confirmed by observations of mitotic division
disturbances) and probably also structural chromo-
some mutations. The contribution of B chromo-
somes cannot be excluded, as they are difficult to
identify in the analyzed plates, because five species
in the genus Viola have 2–10 supernumerary chro-
mosomes which could give additional chromosomes
in the karyotype (Jones and Rees, 1982). The
altered chromosome numbers we counted, includ-
ing mixoploidy but also showing intra- and inter-
population karyological variability, suggest that this
species is karyologically unstable. This may be
explained by the relatively young age of sect.
Melanium (pansies) (Erben, 1996; Yockteng et al.,
2003 and lit. cited therein). Assuming the basic
chromosome number in sect. Melanium to be x = 11
(Erben, 1996), 2n = 26 in V. tricolor would be the
result of increasing dysploidy leading to an increase
from 22 to 26 chromosomes. The polyploid origin of
V. tricolor, combined with hybridization, has also
been proposed based on a lower basic chromosome
number (x = 5 or x = 7) in Viola (Yockteng et al.,
2003). Regardless of the two evolutionary pathways,
the disturbed male and female meiosis, some abnor-
malities in female and male gametophyte develop-
ment (Słomka et al., 2010, 2011c), the variability of
chromosome numbers and disturbances in mitosis
(this paper) in plants from non-metallicolous sites
suggest that this species is still in the process of sta-
bilization. In adverse environmental conditions,
plant species with a relatively unstable karyotype
may be favored by their ability to change rapidly
(Coulaud et al., 1999; Nkongolo et al., 2001;
Sedel'nikova and Pimenov, 2007). Many data sug-
gest that such unstable species are at an advantage
in adverse heterogeneous environmental condi-
tions (Degenhardt et al., 2005; Seehausen et al.,
2008). In several plant species with flexible
genomes growing in the presence of heavy metals
(e.g., Larix sibirica, Armeria maritima,
Deschampsia cespitosa) the frequency of different
aberrations (e.g., links between nonhomologous
chromosomes, vagrant chromosomes, extra con-
strictions, fragile chromosomes) was markedly
higher than in plants from non-contaminated sites
(Coulaud et al., 1999; Nkongolo et al., 2001;
Sedel'nikova and Pimenov, 2007).

The big question raised by our results is why
the great cytological variability we found in root
meristematic cells is not reflected in genome size
variability as measured in peduncle cells. There are
three possible explanations: (1) the quantitative

Słomka et al.12

TABLE 3. Chromosome numbers in root meristem cells of
V. tricolor from non-metallicolous (ZM) and metallicolous
(BH) populations; percent in brackets



changes in DNA content are relatively small, below
the detection limit of flow cytometry equipment, or
the changes are only qualitative; (2) generative
meristem cells (generative shoots), giving rise to the
flower including the peduncle, are more stable than
root meristem cells (vegetative shoots); or (3)
somatic mutations in generative meristematic cells
are eliminated. As for these possibilities, it is well
known that plants have the potential for somatic
mutations to accumulate during ontogenesis, par-
ticularly plants with longer generation times,
because they do not sequester a germ line early in
development as animals do (Klekowski et al., 1985;
Klekowski and Godfrey, 1989; Klekowski, 1998);
an increased number of somatic mutations could
influence genome size, resulting in intraindividual
and intraspecific genome size variation. However,
such genome size variation is not commonly
observed in plants (Doležel and Bartoš, 2005;
Greilhuber, 2005, 2008), suggesting that although
plants have the potential to accumulate somatic
mutations in different tissues it may not be a signif-
icant factor contributing to genome size differences.
Even if mutations in somatic tissues occur, there
are known mechanisms for removing them from
meristematic cells, as described for woody
angiosperms (e.g., Mellerowicz et al., 2001; Petit
and Hampe, 2006).

In this work, an environment polluted with
heavy metals did not influence genome size in V. tri-
color. The genome downsizing we expected to see in
plants colonizing waste heaps was not observed.
Variability of chromosome numbers occurred with
higher frequency in root meristematic cells of speci-
mens from polluted sites. The lack of correlation
between chromosome variability in root meristematic
cells and genome size estimated in peduncle cells
probably was due to elimination of somatic mutations
in generative meristem, leading to chromosome-sta-
ble non-meristematic tissues in the peduncle, or else
it can be explained by greater cytologically stability in
generative than in vegetative meristem.
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