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Abstract. The paper presents the results of numerical analyses of the structures of integrated optics in the form of planar waveguides made

of materials with high values of the refractive index n = 2.00 and with an input-output system in the form of Bragg grating couplers. The

numerical investigations were carried out by using the FDTD method (Finite Difference Time Domain method).

Key words: FDTD method, grating coupler, planar waveguide.

1. Introduction

In systems of integrated optics of much importance is the

way in which light is introduced into and out of the optical

waveguide. One of the possible solutions is the application

of the input-output system in the form of Bragg grating cou-

plers [1]. The advantage of such couplers is the possibility of

producing them as an integral part of the system of integrated

optics. In the case of waveguide structures they are obtained

in the form of periodical disturbances of the refractive index

of the planar waveguide with a period Λ [2, 3]. Periodical

disturbances are induced among others, by chemical etching

or ion etching the periods in the waveguide layer [4] and me-

chanical impressing of the diffraction pattern in the waveguide

layer [5]. Planar grating couplers are also applied in sensor

systems. An equally important matter is the choice of the

adequate numerical method for the purpose of analyzing the

integrated optics structure. In such analysis the FDTD method

has found wide application [6].

2. Theory

If a planar grating coupler can serve as an input-output ele-

ment of the energy of light for the waveguide structure, the

following condition ought to be satisfied (1) [2, 7, 8]:

βc sin(θ) = βw +
m2π

Λ
, (1)

where βc, βw – propagation constant in the environment and

in the structure, respectively; nc, nw, ns – refractive index of

the environment, the waveguide layer and the substrate; Λ –

spatial period of the grating, m – diffraction order.

Equation (1) permits to determine the input and output

angles of the light going into or coming out of the structure

as a function of the effective refractive index and the order of

diffraction. This relation is also the basis of the effectiveness

of sensor systems produced basing on grating couplers [9]

θ = arcsin
1

nc

(

Neff −
mλ

Λ

)

. (2)

The propagation geometry is presented in Fig. 1.

Fig. 1. Structure of a grating coupler and the idea of its modelling

The fundamentals of the FDTD go back to the year 1966,

when Kane Yee’s paper [7] was published, in which the au-

thor suggested the mechanism of solving Maxwell’s equations

in the form of the so-called time steps [6, 10, 11]. He also

proposed a method of discretization of the electromagnetic

field. In the case of 2D structures, two modes are considered,

viz. TE (Transverse Electric) and TM (Transverse Magnetic).

Below, the idea of the analysis of the TE mode is presented.

The geometry of propagation is to be seen in Fig. 1.
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In the FDTD method the central difference approxima-

tion [6] is used to determine the components of the electric

and magnetic fields. Assuming that the electric field Ey is cal-

culated for the entire time step, and the magnetic field (Hx,

Hz) for only a half of this, the component Ey of the field is

calculated basing on the following equation (Eq. 4) [11].
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Analogically, the remaining components of the electro-

magnetic field (light) for the polarization TE and TM are

determined. In the case of the FDTD method an adequate

magnitude of the step must be assumed, by means of which

the modelled structure can be discretisized. In the case of the

2D structure, the following conditions have been suggested in

literature [7, 10, 11]:

∆xmin ≤
λmin

10 · nmax

and ∆zmin ≤
λmin

10 · nmax

(5)

where ∆x, ∆z – magnitude of the calculation step in the

direction x and y, respectively.

The step of the mesh determines the maximum time step,

at which the calculations can be accomplished. In order to

warrant stable solutions of the FDTD method, the stabil-

ity condition CFL (the Courant-Friedrichs-Levy condition)

has been considered, which for the 2D structure takes the

form [10]:

∆t ≤
1

ν

(

1

(∆x)2
+

1

(∆z)2

)

−

1

2

, (6)

where ∆t – time step, v – velocity of light in the analysed

medium.

3. Numerical experiments

For the purpose of numerical analysis, the waveguide structure

was designed and optimized in the system of integrated optics

composed of a planar waveguide and an input-output system

in the form of planar grating coupler. In the course of the

first phase the thicknesses of the waveguide layers of mono-

and several-mode planar waveguides were determined, after

which the parameters of the grating couplers were optimized.

The modelled structures were then excited by a mode field

corresponding to the given waveguide mode TE00 and TE01

(Fig. 1 and Fig. 2). Within the range of the grating coupler

with the spatial period Λ, the optical energy is passed both

into the waveguide layer and its environment as well as into

the substrate (Fig. 1). The effect of the optical energy rating,

radiated by the structure of a grating coupler with a depth

of grid period ds was analyzed. For the purpose of numerical

modelling the following initial parameters have been assumed:

optical wavelength λ = 677 nm; refractive index of the envi-

ronment nc = 1.000; refractive index of the waveguide layer

nw = 2.000; refractive index of the substrate ns = 1.456.

The numerical modelling was accomplished making use of

the software OptiFDTD 8.0 elaborated by the firm Optiwave

Systems Inc.

a)

b)

Fig. 2. a) The effective refractive index as a function of the thickness

dw of the waveguide layer for TE00 and TE01 modes; b) Distribution

of the field Ey exciting the structures for TE00 and TE01 modes

4. Results

The characteristics of the effective refractive index of a planar

structure in the function of the thickness dg of the waveguide

layer permit to determine the number of modes which can

propagate inside it. At a thickness of the waveguide layer

amounting to dw ≤ 300 nm the planar waveguide is a single-

mode one, whereas in the case dw > 300 nm we obtain mul-

timode planar waveguides (Fig. 2a).

Below, the analysis of the Bragg gratings presented for

the thicknesses of waveguide layers: dw = 300 nm and dw =
600 nm has made it possible to optimize the effectivity of in-

troducing the light into the structure and its output as a func-

tion of the periodical depth. The results of numerical analyses

of couplers with the spatial period Λ = 1.0 µm, and the thick-

ness of waveguide layers dw = 300 nm and dw = 600 nm are

presented in Fig. 3 and Fig. 4, respectively: In the case of the

structure with the thickness dw = 300 nm and the mode TE00

the optical periodical depth is dg = 60 nm. At such a depth

ds maximum values of the optical power rating educed to the

substrate layer and the environment are attained (Fig. 3).

In the case of the structure with the thickness dw =
600 nm and the modes TE00 and TE01 the optical periodical

depths are in the range: 130 nm< dg <200 nm (Fig. 4). At

such depths the maximum optical power output to the cover-

ing layer (environment) is attained Fig. 4b. For the mode TE01

the optimal periodical depth amounts to about dg = 70 nm

(Fig. 4e).

The elaborated grating coupler has been presented in

Fig. 5. The modal characteristics of the grating coupler has

been presented in Fig. 6. The grating coupler was made by

using nanoimprint technology. The measurement setup and

manufacturing technology used in the research of the grating

coupler was described in the publication [9].
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a) b) c)

Fig. 3. Optical power rating as a function of the periodical depth dg of the grating coupler radiated to: a) the light going into environment;

b) the substrate; c) Pointing vector along the propagation of light in the grating structure

a) b) c)

d) e) f)

Fig. 4. Optical power rating radiated into the environment and substrate for: the TE00 mode a), b) and for the TEO1 mode: d), e). Pointing

vector along the propagation of light in the grating structure c), f)

Fig. 5. The AFM picture of the practically made grating coupler Fig. 6. The mode characteristics of the practically elaborated coupler

5. Conclusions

The main aim of the numerical investigation dealt with above

was to optimize the grating coupler from the viewpoint of

the input and output of light modes from the structure of the

planar waveguide. Another aim was to test the possibilities

of application of the Finite Diffraction Time Domain method

for the purpose of modelling the structures of integrated op-

tics. Numerical investigations lead to the conclusion that in

the case of single-mode planar waveguides with the refractive

index nw ≈ 2.0 the thickness of the grating couplers is on

the level of about ds ≈ 60 nm for the TE00 mode. If the

layers are thicker, the periodical depth of this mode, when the
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coupling reaches its maximum, is much greater, amounting to

ds ≈ 130 nm. Numerical modelling has made it possible to

find also out that in the case of modes of higher orders (TE01,

TE02,. . . ) the first maximum of coupling is attained at small-

er periodical thicknesses of the grating couplers than in the

case of modes of lower orders. The accomplished numeri-

cal investigations have also confirmed the applicability of the

FDTD method in analyses of the structure of integrated optics

– including grating couplers.
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