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Abstract. Notations of the practical stability and of the asymptotic stability of positive and cone fractional 1D and 2D linear systems are

introduced. Necessary and sufficient conditions for the practical stability and the asymptotic stability of positive and cone fractional 1D

and 2D linear systems are established. It is shown that the checking of the practical stability and asymptotic stability of positive 2D linear

systems can be reduced to testing the stability of corresponding 1D positive linear systems. Three LMI approaches are proposed for checking

the stability of positive fractional linear systems. LMI approach is applied to compute gain matrices of state-feedbacks such that closed-loop

systems are positive and asymptotically stable. The proposed methods are illustrated on numerical examples.
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1. Introduction

In positive systems inputs, state variables and outputs take on-

ly non-negative values. Examples of positive systems are in-

dustrial processes involving chemical reactors, heat exchang-

ers and distillation columns, storage systems, compartmental

systems, water and atmospheric pollution models. A variety

of models having positive linear behavior can be found in en-

gineering, management science, economics, social sciences,

biology and medicine, etc.

Positive linear systems are defined on cones and not on lin-

ear spaces. Therefore, the theory of positive systems is more

complicated and less advanced. An overview of state of the art

in positive systems theory is given in the monographs [1, 2].

The notation of cone systems has been introduced in [3, 4].

The most popular models of two-dimensional (2D) linear

systems are the discrete models introduced by Roesser [5],

Fornasini-Marchesini [6] and Kurek [7]. The models have

been extended for positive systems in [2, 8–10]. Reachabili-

ty and minimum energy control of standard and positive 2D

linear systems have been considered in [8, 11–13].

The notion of internally positive 2D system (model) with

delays in states and in inputs has been introduced and neces-

sary and sufficient conditions for the internal positivity, reach-

ability, controllability, observability and the minimum energy

control problem have been established in [8, 9, 13].

Stability of positive 1D and 2D linear systems has been

considered in [10, 14–18] and the robust stability in [19].

Mathematical fundaments of fractional calculus are given in

the monographs [20–25]. The positive fractional linear sys-

tems have been addressed in [26, 27] and their stability has

been investigated in [16, 28–30]. LMI approaches to check-

ing the stability of positive 2D systems have been proposed in

[17, 31]. The positive fractional linear 2D systems have been

introduced in [32–34]. The concept of practical stability for

positive fractional 1-D discrete-time linear systems has been

introduced in [29]. Some applications of fractional calculus

are given in [24, 35–37].

In this paper the stability and stabilization of positive frac-

tional linear systems by state-feedback will be addressed.

The paper is organized as follows. In Sec. 2 the basic

definitions and theorems concerning stability of 1D positive

fractional linear systems are recalled and the notation of the

practical and asymptotical stability of fractional and cone sys-

tems are introduced. The practical and asymptotical stabili-

ty of 2D positive fractional linear systems are considered in

Sec. 3. Necessary and sufficient conditions for the stability are

established and it is shown that the checking of the stability

of 2D positive linear systems can be reduced to testing the

stability of corresponding 1D positive systems. In Sec. 4 the

LMI approaches are proposed for testing the stability of the

positive fractional linear systems and computation gain ma-

trices of state-feedbacks so that the closed-loop systems are

positive and asymptotically stable. Concluding remarks are

given in Sec. 5.

In this paper the following notation is used.

The set of real n × m matrices with nonnegative entries

are denoted by ℜn×m
+ and ℜn

+ = ℜn×1
+ . A matrix A = [aij ] ∈

ℜn×m
+ (a vector x) is called strictly positive and denoted by

A > 0 (x > 0) if aij > 0 for i = 1, . . . , n, j = 1, . . . , m. The

set of nonnegative integers will be denoted by Z+. The n×n

identity matrix is denoted by In.

2. Stability of 1D positive fractional

linear systems

2.1. Positive 1D systems. Consider the linear discrete-time

system:

xi+1 = Axi + Bui (1a)

yi = Cxi + Dui (1b)
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where, xi ∈ ℜn, ui ∈ ℜm, yi ∈ ℜp, i ∈ Z+ are the

state, input and output vectors and, A ∈ ℜn×n, B ∈ ℜn×m,

C ∈ ℜp×n, D ∈ ℜp×m.

Definition 1. The system (1) is called (internally) positive if

xi ∈ ℜn
+, yi ∈ ℜp

+, i ∈ Z+ for any x0 ∈ ℜn
+ and every

ui ∈ ℜm
+ , i ∈ Z+.

Theorem 1 [1, 2]. The system (1) is positive if and only if

A ∈ ℜn×n
+ , B ∈ ℜn×m

+ , C ∈ ℜp×n
+ , D ∈ ℜp×m

+ . (2)

The positive system (1) is called asymptotically stable if the

solution

xi = Aix0 (3)

of the equation

xi+1 = Axi, A ∈ ℜn×n
+ , i ∈ Z+ (4)

satisfies the condition

lim
i→∞

xi = 0 for every x0 ∈ ℜn
+. (5)

Theorem 2 [1, 16]. For the positive system (4) the following

statements are equivalent:

1. The system is asymptotically stable,

2. Eigenvalues z1, z2, . . . , zn of the matrix A have moduli

less 1, i.e. |zk| < 1 for k = 1, . . . , n,

3. det[Inz − A] 6= 0 for |z| ≥ 1,

4. ρ(A) < 1, where ρ(A) is the spectral radius of the matrix

A defined by ρ(A) = max
1≤k≤n

{|zk|}

5. All coefficients âi, i = 0, 1, . . . , n − 1 of the character-

istic polynomial

p bA(z) = det[Inz − Â] = zn + ân−1z
n−1 + . . . + â1z + â0

(6)

of the matrix Â = A − In are positive,

6. All leading principal minors of the matrix

A = In − A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann




(7a)

are positive, i.e.,

|a11| > 0,

∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣ > 0, . . . , detA > 0 (7b)

7. There exists a strictly positive vector x > 0 such that

[A − In] x < 0. (8)

Theorem 3 [2]. The positive system (4) is unstable if at least

one diagonal entry of the matrix A is greater than 1.

2.2. Positive fractional systems. The following definition of

the fractional difference

∆αxk =

k∑

j=0

(−1)j

(
α

j

)
xk−j , 0 < α < 1 (9)

is used, where α ∈ R is the order of the fractional difference,

and

(
α

j

)
=






1 for j = 0

α(α − 1) · · · (α − j + 1)

j !
for j = 1, 2, . . .

(10)

Consider the fractional discrete linear system, described by

the state-space equations

∆αxk+1 = Axk + Buk, (11a)

yk = Cxk + Duk, (11b)

where xk ∈ ℜn, uk ∈ ℜm, yk ∈ ℜp, k ∈ Z+ are the

state, input and output vectors and, A ∈ ℜn×n, B ∈ ℜn×m,

C ∈ ℜp×n, D ∈ ℜp×m. Using (9) we may write the equa-

tions (11) in the form

xk+1+

k+1∑

j=1

(−1)j

(
α

j

)
xk−j+1 =Axk+Buk, k ∈ Z+ (12a)

yk = Cxk + Duk. (12b)

Definition 2. The system (12) is called the (internally) positive

fractional system if and only if xk ∈ ℜn
+ and yk ∈ ℜp

+ k ∈
Z+ for any initial conditions x0 ∈ ℜn

+ and all input sequences

uk ∈ ℜm
+ , k ∈ Z+.

Theorem 4 [26]. The solution of equation (12a) is given by

xk = Φkx0 +

k−1∑

i=0

Φk−i−1Bui, (13)

where Φk is determined by the equation

Φk+1 = (A + Inα)Φk +

k+1∑

i=2

(−1)i+1

(
α

i

)
Φk−i+1 (14)

with Φ0 = In.

Lemma 1. [26] If

0 < α ≤ 1 (15)

then

(−1)i+1

(
α

i

)
> 0 for i = 1, 2, . . . (16)

Theorem 5 [26]. Let 0 < α < 1. Then the fractional sys-

tem (12) is positive if and only if

A + Inα ∈ ℜn×n
+ , B ∈ ℜn×m

+ ,

C ∈ ℜp×n
+ , D ∈ ℜp×m

+ .
(17)
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2.3. Practical stability of fractional systems. From (10) and

(16) it follows that the coefficients

cj = cj(α) = (−1)j

(
α

j + 1

)
, j = 1, 2, . . . (18)

strongly decrease for increasing j and they are positive for

0 < α < 1. In practical problems it is assumed that j is

bounded by some natural number h.

In this case the equation (12a) takes the form

xk+1 = Aαxk +

h∑

j=1

cjxk−j + Buk, k ∈ Z+, (19)

where

Aα = A + Inα. (20)

Note that the equations (19) and (12a) describe a linear

discrete-time system with h delays in state.

Definition 3. The positive fractional system (12) is called

practically stable if and only if the system (19) is asymptoti-

cally stable.

Defining the new state vector

x̃k =




xk

xk−1

...

xk−h




(21)

we may write the equations (19) and (12b) in the form

x̃k+1 = Ãx̃k + B̃uk, k ∈ Z+, (22a)

yk = C̃xk + D̃uk, (22b)

where

Ã=




Aα c1In c2In . . . ch−1In chIn

In 0 0 . . . 0 0

0 In 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . In 0



∈ ℜen×en

+ ,

B̃ =




B

0
...

0



∈ ℜen×m

+ ,

C̃ =
[

C 0 . . . 0
]
∈ ℜp×en

+ ,

D̃ = D ∈ ℜp×m
+ , ñ = (1 + h)n.

(22c)

To test the practical stability of the positive fractional sys-

tem (12) the conditions of Theorem 2 can be used to the

system (22).

Theorem 6. The positive fractional system (12) is prac-

tically stable if and only if one of the following equivalent

conditions is satisfied:

1. Eigenvalues z̃k, k = 1, . . . , ñ of the matrix Ã have moduli

less than 1, i.e.

|z̃k| < 1 for k = 1, . . . , ñ, (23)

2. det[Ienz − Ã] 6= 0 for |z| ≥ 1,

3. ρ(Ã) < 1where ρ(Ã) is the spectral radius of the matrix

Ã defined by ρ(Ã) = max
1≤k≤en{|z̃k|},

4. All coefficients ãi, i = 0, 1, . . . , ñ− 1 of the characteristic

polynomial

p eA(z) = det[In(z + 1) − Ã] =

= zn + ãn−1z
n−1 + . . . + ã1z + ã0

(24)

of the matrix [Ã − Ien] are positive,

5. All leading principal minors of the matrix

[Ien − A] =




ã11 ã12 . . . ã1en
ã21 ã22 . . . ã2en
. . . . . . . . . . . .

ãen1 ãen2 . . . ãenen  (25a)

are positive , i.e.

|ã11| > 0,
∣∣∣∣∣

ã11 ã12

ã21 ã22

∣∣∣∣∣ > 0 , . . . , det[Ien − Ã] > 0
(25b)

6. There exist strictly positive vectors xi ∈ ℜn
+, i =

0, 1, . . . , h satisfying

x0 < x1, x1 < x2, . . . , xh−1 < xh (26a)

such that

Aαx0 + c1x1 + . . . + chxh < x0. (26b)

Proof. The first five conditions 1)–5) follow immediately from

the corresponding conditions of Theorem 2. Using (8) for the

matrix Ã we obtain




Aα c1In c2In . . . ch−1In chIn

In 0 0 . . . 0 0

0 In 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . In 0







x0

x1

x2

...

xh−1

xh




<




x0

x1

x2

...

xh




.

(27)

From (27) the conditions (26) follow.

Theorem 7. If the positive fractional system (12) is as-

ymptotically stable then the sum of entries of every row of

the adjoint matrix Adj [Ien − Ã] is strictly positive, i.e.

Adj[Ien − Ã]−1
1en > 0, (28)

where 1en = [ 1 1 . . . 1 ]T ∈ ℜen
+, T denotes the trans-

pose.

Proof. It is well-known [8, 28] that if the system (22) is as-

ymptotically stable then the vector

x = [Ien − Ã]−1
1en (29)
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is its strictly positive (x > 0) equilibrium point for B̃u = 1en.

Note that

det [Ien − Ã] > 0 (30)

since det[Ien − Ã] = d̃0 in (24). The conditions (29) and (30)

imply (28).

Example 1. Check the practical stability of the positive frac-

tional system

∆αxk+1 = 0.1xk, k ∈ Z+ (31)

for α = 0.5 and h = 2.

Using (18), (20) and (22c) we obtain

c1 = −
α(α − 1)

2
=

1

8
, c2 =

1

16
, Aα = 0.6

and

Ã =




Aα c1 c2

1 0 0

0 1 0


 =




0.6
1

8

1

16
1 0 0

0 1 0


 .

In this case the characteristic polynomial (24) has the form

p eA(z) = det[Ien(z + 1) − Ã]=

∣∣∣∣∣∣∣∣

z + 0.4 −
1

8
−

1

16
−1 z + 1 0

0 −1 z + 1

∣∣∣∣∣∣∣∣
=

= z3 + 2.4z2 + 1.675z + 0.2125.
(32)

All coefficients of the polynomial (32) are positive and by

Theorem 6 the system (31) is practically stable.

Using (28) we obtain

Adj[Ien − Ã]1en =

=


Adj




0.4 −
1

8
−

1

16
−1 1 0

0 −1 1










1

1

1


 =




1.2500

1.4625

1.6750




and the condition (28) is satisfied.

Theorem 8. The positive fractional system (12) is practically

stable only if the positive system

xk+1 = Aαxk, k ∈ Z+ (33)

is asymptotically stable.

Proof. From (26b) we have

(Aα − In)x0 + c1x1 + . . . + chxh < 0. (34)

Note that the inequality (34) may be satisfied only if there

exists a strictly positive vector x0 ∈ ℜn
+ such that

(Aα − In)x0 < 0 (35)

since c1x1 + . . . + chxh > 0.

By Theorem 2 the condition (35) implies the asymptotic

stability of the positive system (33).

From Theorem 8 we have the following important corol-

lary.

Corollary 1. The positive fractional system (12) is unstable

for any finite h if the positive system (33) is unstable.

Theorem 9. The positive fractional system (12) is unstable if

at least one diagonal entry of the matrix Aα is greater than 1.

Proof. The proof follows immediately from Theorems 8 and 3.

Example 2. Consider the autonomous positive fractional sys-

tem described by the equation

∆αxk+1 =

[
−0.5 1

2 0.5

]
xk, k ∈ Z+ (36)

for α = 0.8 and any finite h.

In this case n = 2 and

Aα = A + Inα =

[
0.3 1

2 1.3

]
. (37)

By Theorem 9 the positive fractional system is unstable

for any finite h since the entry (2,2) of the matrix (37) is

greater than 1.

The same result follows from the condition 5 of Theorem 2

since the characteristic polynomial of the matrix Aα − In

p eA(z) = det[Ien(z + 1) − Aα] =

=

[
z + 0.7 −1

−2 z − 0.3

]
= z2 + 0.4z − 2.21

has one negative coefficient (â0 = −2.21).

2.4. Asymptotic stability of fractional systems. In this sec-

tion the practical stability of the positive systems for h → ∞
is addressed.

Definition 4. The positive fractional system (12) is called

asymptotically stable if the system is practically stable for

h → ∞.

Lemma 2. If 0 < α < 1 then

∞∑

j=1

cj = 1 − α, (38)

where the coefficients cj are defined by (18).

Proof. Using the Maclaurin series it is easy to show that

(1 − z)α =
∞∑

j=0

(−1)j

(
α

j

)
zj and substituting z = 1 we

obtain
∞∑

j=0

(−1)j

(
α

j

)
= 0. From this equality and (38) we

have

1 − α +

∞∑

j=2

(−1)j

(
α

j

)
=

= 1 − α −

∞∑

j=1

(−1)j

(
α

j + 1

)
= 1 − α −

∞∑

j=1

cj = 0.
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Theorem 10. The positive fractional system (12) is asymp-

totically stable if and only if positive system

xi+1 = (A + In)xi (39)

is asymptotically stable.

Proof. It is well-known [14] that the positive system (19) for

h → ∞ is asymptotically stable if and only if the positive

system

xi+1 =



Aα +

∞∑

j=1

cjIn



 xi (40)

is asymptotically stable. The positive systems (39) and (40)

are equivalent since by (38) and (20)

Aα +

∞∑

j=1

cjIn = A + Inα + In(1 − α) = A + In.

Applying to the positive system (39) Theorem 6 we obtain

the following theorem.

Theorem 11. The positive fractional system (12) is asymp-

totically stable if and only if one of the equivalent conditions

holds:

1. Eigenvalues z1, z2, . . . , zk of the matrix A+In have moduli

less than 1, i.e. |zk| < 1 for k = 1, . . . , n,

2. All coefficients of the characteristic polynomial of the ma-

trix A are positive,

3. All leading principal minors of the matrix −A are positive.

Theorem 12. The positive fractional system (12) is unstable

if at least one diagonal entry of the matrix A is positive.

Proof. If at least one diagonal entry of the matrix A is posi-

tive then at least one diagonal entry of the matrix A + In is

greater than 1 and it is well-known [2, 16] that the system is

unstable.

Example 3. Using Theorem 11 find values of the coefficient

c for which the positive fractional system (12) with

A =

[
−0.5 1

0.2 c

]
and α = 0.8 (41)

is asymptotically stable.

The fractional system is positive if all entries of the matrix

Aα = A + Inα =

[
0.3 1

0.2 c + α

]
(42)

are nonnegative, i.e. c + α ≥ 0 and c ≥ −α = −0.8.

Applying the condition 2) of Theorem 11 to the matrix

(41) we obtain

det[Inz − A] =

∣∣∣∣∣
z + 0.5 −1

−0.2 z − c

∣∣∣∣∣ =

= z2 + (0.5 − c)z − (0.5c + 0.2)

and c < −0.4. Therefore, the fractional system (12) with (41)

is positive and asymptotically stable for −0.8 ≤ c < −0.4.

The same result we obtain using the condition 3) of Theo-

rem 11.

2.5. Cone fractional systems. Definition 5 [3, 4]. Let

P =




p1

...

pn


 ∈ ℜn×n

be nonsingular and pk be the k−th (k = 1, . . . , n) its row.

The set

P :=

{
x ∈ ℜn :

n⋂

k=1

pkx ≥ 0

}
(43)

is called a linear cone generated by the matrix P .

In a similar way we may define for the inputs u the linear

cone

Q :=

{
u ∈ ℜm :

m⋂

k=1

qku ≥ 0

}
(44)

generated by the nonsingular matrix

Q =




q1

...

qm


 ∈ ℜm×m

and for the outputs y, the linear cone

V :=

{
y ∈ ℜp :

p⋂

k=1

vky ≥ 0

}
(45)

generated by the nonsingular matrix

V =




v1

...

vp


 ∈ ℜp×p.

Definition 6. The fractional system (12) is called (P , Q, V)
cone fractional system if xi ∈ P and yi ∈ V , i ∈ Z+ for

every x0 ∈ P , ui ∈ Q, i ∈ Z+.

The (P , Q, V) cone fractional system (12) is shortly

called the cone fractional system.

Note that if P = Rn
+, Q = Rm

+ , V = Rn
+ then the (Rn

+,

Rm
+ , R

p
+) cone system is equivalent to the classical positive

system [3, 4].

Theorem 13. The fractional system (12) is (P , Q, V) cone

fractional system if and only if

A = PAP−1 ∈ ℜn×n
+ ,

B = PBQ−1 ∈ ℜn×m
+ ,

C = V CP−1 ∈ ℜp×n
+ ,

D = V DQ−1 ∈ ℜp×m
+ .

(46)

Proof. Let

xi = Pxi, ui = Qui and yi = V yi, i ∈ Z+. (47)
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From definition 5 it follows that if xi ∈ P then xi ∈ ℜn
+,

if ui ∈ Q then ui ∈ ℜm
+ and if yi ∈ V then yi ∈ ℜp

+. From

(12) and (47) we have

xk+1 +

k+1∑

j=1

(−1)j

(
α

j

)
xk−j+1 =

= Pxk+1 +
k+1∑

j=1

(−1)j

(
α

j

)
Pxk−j+1 =

= PAxk + PBuk = PAP−1xk + PBQ−1uk =

= Axk + Buk, k ∈ Z+

(48a)

and

yk = V yk = V Cxk + V Duk =

= V CP−1xk + V DQ−1uk =

= Cxk + Duk, k ∈ Z+.

(48b)

It is well-known [2] that the system (48) is the positive one

if and only if the conditions (46) are satisfied.

Theorem 14. The cone fractional system (12) is asymptot-

ically stable if and only if the positive fractional system is

asymptotically stable.

Proof. From (46) we have

det[Iz − A] = det[Iz − PAP−1] = det[P (Iz − A)P−1] =

= det[Iz − A] detP detP−1 = det[Iz − A]
(49)

since detP detP−1 = 1.

From Theorem 14 we have the following important corol-

lary.

Corollary 2. The cone fractional system (12) is practically

stable (asymptotically stable) if and only if the positive frac-

tional system is practically stable (asymptotically stable).

To test the practical stability and the asymptotic stability

of the cone fractional system the Theorem 2 and 6 can be

used.

3. Stability of 2D positive fractional

linear systems

3.1. Positive fractional 2D linear systems. Definition 7

[33]. The (α, β) orders fractional difference of and 2D func-

tion xij is defined by the formula

∆α,βxij =

i∑

k=0

j∑

l=0

cαβ(k, l)xi−k,j−l,

n1 − 1 < α < n1, n2 − 1 < β < n2;

n1, n2 ∈ N = {1, 2, . . .},

(50a)

where ∆α,βxij = ∆α
i ∆β

j xij and

cα,β(k, l) =

=





1 for k = 0 and l = 0

(−1)k+l α(α−1)...(α−k+1)β(β−1)...(β−l+1)
k! l!

for k, l ≥ 0 and k + l > 0

.
(50b)

Consider the (α, β) orders fractional 2D linear system, de-

scribed by the state equations

∆α,βxi+1,j+1 = A0xij + A1xi+1,j+

+ A2xi,j+1 + B0uij + B1ui+1,j + B2ui,j+1,
(51a)

yij = Cxij + Duij , (51b)

where xij ∈ ℜn, uij ∈ ℜm, yij ∈ ℜp are the state, input and

output vectors and Ak ∈ ℜn×n, Bk ∈ ℜn×m, k = 0, 1, 2,

C ∈ ℜp×n, D ∈ ℜp×m.

Using Definition 7 we may write the equation (51a) in the

form

xi+1,j+1 = A0xij + A1xi+1,j + A2xi,j+1−

−
∑∑

cα,β(k, l)xi−k+1,j−l+1+
k.l∈Di+1,j+1\D11

+ B0uij + B1ui+1,j + B2ui,j+1

(52)

where Dpq := {(i, j) : 0 ≤ i ≤ p, 0 ≤ j ≤ q, i, j ∈ Z+} and

A0 = A0 − Inαβ, A1 = A1 + Inβ, A2 = A2 + Inα.

The boundary conditions for the equation (52) are given

by the formula

xi0, i ∈ Z+ and x0j , j ∈ Z+. (53)

Definition 8. The system (51) (and also (52)) is called the

(internally) positive fractional 2D system if xij ∈ ℜn
+ and

yij ∈ ℜp
+, i, j ∈ Z+ for any boundary conditions xi0 ∈ ℜn

+,

i ∈ Z+, x0j ∈ ℜn
+, j ∈ Z+ and all input sequence uij ∈ ℜm

+ ,

i, j ∈ Z+.

It has been shown in [33] that

a) if 0 < α < 1 and 1 < β < 2 then

cα,β(k, l) < 0 for k = 1, 2, . . . ; l = 2, 3, . . .

and cα,β(k, 1) > 0, k = 1, 2, . . . ;

cα,β(0, l) > 0, l = 2, 3, . . .

(54a)

b) if 1 < α < 2 and 0 < β < 1 then

cα,β(k, l) < 0 for k = 2, 3, . . . ; l = 1, 2, . . .

and cα,β(k, 0) > 0, k = 2, 3, . . . ;

cα,β(1, l) > 0, l = 1, 2, . . . .

(54b)

Theorem 15 [33]. The fractional 2D linear system (51) for

0 < α < 1 and 1 < β < 2 (or 1 < α < 2 and 0 < β < 1) is

positive if and only if1

Ak ∈ ℜn×n
+ , Bk ∈ ℜn×m

+ ,

k = 0, 1, 2; C ∈ ℜp×n
+ , D ∈ ℜp×m

+ .
(55)

1It is assumed that
i+1P
k=2

ck,1xi−k+1,j = 0 and
j+1P
l=2

c0,lxi+1,j−l+1 = 0 since ck,1 > 0, k = 1, 2, . . . and c0,l > 0, l = 2, 3, . . .
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3.2. Practical stability. Note that the system (52) is an 2D

linear system with the number of delays in state vector in-

creasing to infinity for i, j → ∞.

From (50b) it follows that the coefficients

ck,l = −cα,β(k, l) =

= (−1)k+l−1 α(α−1) . . . (α−k+1)β(β−1) . . . (β−l+1)

k!l!
for k+l > 0

(56)

strongly decrease for increasing k and l. In practical prob-

lems it is assumed that k and l are bounded by some nat-

ural numbers L1 and L2. In this case the equation (52) for

B0 = B1 = B2 = 0 takes the form

xi+1,j+1 = A0xij + A1xi+1,j + A2xi,j+1+

+
∑∑

ck,lxi−k+1,j−l+1

k.l∈Di+1,j+1\D11

(57)

where Dpq := {(i, j) : 0 ≤ i ≤ p, 0 ≤ j ≤ q, i, j ∈ Z+}.

Equation (57) describes an 2D linear system with finite

number of delays in state vector. The system (57) has been

obtained by neglecting all delays of the system (52) for i > L1

and j > L2.

Define the new state vector

x̃ij = [xT
ij xT

i−1j . . . xT
i−L1j xT

ij−1 . . . xT
i−L1j−1 xT

ij−2 . . .

xT
i−L1j−2 . . . xT

i−L1j−L2
] ∈ R

eN
Ñ = (L1 + 1)(L2 + 1)n; i, j ∈ Z+

(58)

we may write Eq. (57) in the form

x̃i+1,j+1 = Ã0x̃ij + Ã1x̃i+1,j + Ã2x̃i,j+1 i, j ∈ Z+ (59)

where

Ã0 =




A0 Inc21 . . . IncL1,1 IncL1+1,1 Inc12 . . . IncL1,2 IncL1+1,2 Inc13 . . . IncL1,L2+1 IncL1+1,L2+1

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0




,

Ã1 =




A1 0 . . . 0 0 Inc02 . . . 0 0 Inc03 . . . 0 0

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

In 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . In 0 0 . . . 0 0 0 . . . 0 0

0 0 . . . 0 In 0 . . . 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0




,

Ã2 =




A2 Inc20 . . . IncL1,0 IncL1+1,0 0 . . . 0 0 0 . . . 0 0

In 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . In 0 0 . . . 0 0 0 . . . 0 0

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

0 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 . . . 0 0 0 . . . In 0




.

(60)
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Therefore, the fractional 2D system (52) has been reduced

to a standard 2D system without delays but with greater di-

mension.

Theorem 16. The 2D system (59) is positive if and only if

Ak ∈ ℜn×n
+ , k = 0, 1, 2. (61)

Proof. Proof follows from (59), (60) and the fact that the sys-

tem is positive if and only if all matrices have nonnegative

entries.

Definition 9. The positive fractional 2D system (51) is called

practically stable if the system described by the equation (57)

is asymptotically stable.

Theorem 17 [16, 18]. The positive fractional 2D system (51)

is practically stable if and only if one of the following condi-

tions is satisfied

1.

det(I eN − Ã0z1z2 − Ã1z2 − Ã2z1) 6= 0

∀(z1, z2) ∈ B := {(z1, z2) : |z1| ≤ 1, |z2| ≤ 1}.
(62)

2. There exists a strictly positive vector λ ∈ ℜ
eN
+ such that

[Ã0 + Ã1 + Ã2 − I eN ]λ < 0. (63)

3. The positive 1D system

xi+1 = (Ã0 + Ã1 + Ã2)xi, i ∈ Z+ (64)

is asymptotically stable.

4. The positive 1D system

xi+1 =

[
Ã1 + Ã2 Ã0

I eN 0

]
xi i ∈ Z+ (65)

is asymptotically stable.

Theorem 18 [16, 18]. The positive fractional 2D system (51)

is practically stable only if the positive 2D system

x̃i+1,j+1 = Ã0x̃ij + Ã1x̃i+1,j + Ã2x̃i,j+1 (66)

is asymptotically stable.

From Theorem 18 we have the following important corol-

lary.

Corollary 3. The positive fractional 2D system (51) is unsta-

ble for any finite L1 and L2 if the positive 2D system (66) is

unstable.

Theorem 19. The positive fractional 2D system (51) is un-

stable if at least one diagonal entry of the matrix A1 + A2 is

greater than 1.

Proof. It is well-known [6] that the positive 1D system

(65) is asymptotically unstable if at least one diagonal entry

of the matrix Ã1 + Ã2 is greater than 1. From the structure of

the matrices Ã1 and Ã2 defined by (60) it follows that at least

one diagonal entry of the matrix Ã1 + Ã2 is greater than 1 if

and only if at least one diagonal entry of the matrix A1 + A2

is greater than 1. By Theorem 17 the positive fractional 2D

system (51) is practically stable if and only if the positive 1D

system (70) is asymptotically stable.

Theorem 20. The positive fractional 2D system (51) is un-

stable if

Ak ∈ ℜn×n
+ for k = 1, 2. (67)

Proof. By Theorem 15 the fractional 2D system (51) for

0 < α < 1 and 1 < β < 2 (or 1 < α < 2 and 0 < β < 1) is

positive if and only if (55) is satisfied. From (52) it follows

that the matrix

A1 + A2 = A1 + A2 + (α + β)In (68)

has all diagonal entries greater than 1 if (72) holds. In this

case by Theorem 19 the positive fractional 2D system (51) is

unstable.

3.3. Asymptotic stability. In this section the practical stabil-

ity of the positive fractional 2D linear systems for L1 → ∞
and L2 → ∞ is addressed.

Definition 10. The positive fractional 2D linear system (51) is

called asymptotically stable if the system is practically stable

for L1 → ∞ and L2 → ∞.

In the proof of the main result of this section the following

lemma and theorem are used.

Lemma 3. If 0 < α < 1 and 1 < β < 2 (or 1 < α < 2 and

0 < β < 1) then

∞∑

k=0

∞∑

l=0

cα,β(k, l) = 0. (69)

Proof. In a similar way as in the proof of Lemma 2 it can be

shown that

∞∑

i=0

(−1)i

(
α

i

)
=

=

∞∑

i=0

(−1)i α(α − 1) . . . (α − i + 1)

i!
= 0 for α > 0.

(70)

Using (50b) and (70) we obtain

∞∑
k=0

∞∑
l=0

cα,β(k, l) =

=
∞∑

k=0

∞∑
l=0

(−1)k+l α(α−1)...(α−k+1)β(β−1)...(β−l+1)
k!l! =

(
∞∑

k=0

(−1)k α(α−1)...(α−k+1)
k!

)
·

·

(
∞∑
l=0

(−1)l β(β−1)...(β−l+1)
l!

)
= 0

(71)

Theorem 21 [9, 16]. The positive 2D general model with

delays

xi+1,j+1 =

p∑

k=0

q∑

l=0

(
A0

klxi−k,j−l

+A1
klxi−k+1,j−l + A2

klxi−k,j−l+1

)
for i, j ∈ Z+,

(72)
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where xij ∈ ℜn
+ is the state vector and At

kl ∈ ℜn×n
+ ,

k = 0, 1, . . . , q; l = 0, 1, . . . , p; t = 0, 1, 2 is asymptotically

stable if and only if the positive 1D system

xi+1 =

(
p∑

k=0

q∑

l=0

(
A0

kl + A1
kl + A2

kl

)
)

xi

for xi ∈ ℜn
+, i ∈ Z+

(73)

is asymptotically stable.

Theorem 22. The positive fractional 2D system (51) is as-

ymptotically stable if and only if the positive 1D system

xi+1 =
(
Â + In

)
xi, Â = A0 + A1 + A2,

xi ∈ ℜn
+, i ∈ Z+

(74)

is asymptotically stable.

Proof. From (51) for B0 = B1 = B2 = 0 we have

xi+1,j+1 = A0xij + A2xi+1,j + A2xi,j+1+

+
i+1∑

k=0

j+1∑

l=0

ck,lxi−k+1,j−l+1

k+l>0

(75)

where ck,l = −cα(k, l) for k + l > 0.

By Theorem 21 the positive 2D system with delays is

asymptotically stable if and only if the positive 1D system

xi+1 =


Â +

∞∑

k=0

∞∑

l=0

ck,lIn

k+l>0


xi,

xi ∈ ℜn
+, i ∈ Z+

(76)

is asymptotically stable. From (50b) we have c00 = −1 and

from (74) we obtain

∞∑

k=0

∞∑

l=0

ck,lIn = In

k+l>0

. (77)

Substitution of (77) into (76) yields (74).

Applying to the positive 1D system the well-known theo-

rem [16, 28, 29] we obtain the following theorem.

Theorem 23. The positive fractional 2D system (51) is asymp-

totically stable if and only if one of the following equivalent

conditions holds:

1. Eigenvalues z1, . . . , zn of the matrix Â + In have moduli

less than 1.

2. All coefficients of the characteristic polynomial of the ma-

trix Â are positive.

3. All leading principles minors of the matrix −Â are posi-

tive.

Theorem 24. The positive fractional 2D system (51) is unsta-

ble if at least one diagonal entry of the matrix Â is positive.

Proof. If at least one diagonal entry of the matrix Â is posi-

tive then at least one diagonal entry of the matrix Â + In is

greater than 1 and it is well-known [3, 6, 9] that the system

(74) is unstable.

Example 4. Using Theorem 23 check the asymptotic stability

of the positive fractional 2D system (51) for α = 0.3 and

β = 1.2 with the matrices

A0 =

[
0.4 0

0.1 0.5

]
,

A1 =

[
−1 0

0.2 −1.1

]
,

A2 =

[
−0.2 0

0.2 0.1

]
.

(78)

Note that the fractional system is positive since the matrices

A0 = A0 − Inαβ =

[
0.04 0

0.1 0.14

]
,

A1 = A1 + Inβ =

[
0.2 0

0.2 0.1

]
,

A2 = A2 + Inα =

[
0.1 0

0.2 0.4

]
(79)

have nonnegative entries.

In this case

Â = A0 + A1 + A2 =

[
−0.8 0

0.5 −0.5

]
. (80)

The first condition of Theorem 23 is satisfied since the matrix

Â + In =

[
0.2 0

0.5 0.5

]
(81)

has the eigenvalues z1 = 0.2, z2 = 0.5 whose moduli are

less than 1.

The second condition of Theorem 23 is also satisfied since

characteristic polynomial of the matrix (80)

det[Inz−Â] =

∣∣∣∣∣
z + 0.8 0

−0.5 z + 0.5

∣∣∣∣∣ = z2+1.3z+0.4 (82)

has positive coefficients.

All leading principle minors of the matrix

−Â =

[
0.8 0

−0.5 0.5

]
(83)

are positive, i.e. ∆1 = 0.8, ∆2 = 0.4.

Therefore, all three conditions of Theorem 23 are satisfied

and the positive fractional 2D system with the matrices (78)

is asymptotically stable.

Example 5. Using Theorem 24 we show that the positive

fractional 2D system (51) for α = 0.5 and β = 1.2 with the

matrices
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A0 =

[
0.6 0.1

0.1 0.7

]
,

A1 =

[
−0.1 0.3

0 −0.2

]
,

A2 =

[
−0.4 0.2

0 −0.5

]
(84)

is unstable.

In this case the matrix

Â = A0 + A1 + A2 =

[
0.1 0.6

0.1 0

]
(85)

has one positive diagonal entry. Therefore, by Theorem 24

the positive fractional system is unstable. The same result we

obtain using one of the conditions of Theorem 23.

4. LMI approaches

4.1. 1D fractional systems. Definition 11 [36]. An inequal-

ity of the form

F(x) + F > 0, (86)

where x takes values in the real vector space V, the mapping

F : V → Sn is linear, and F ∈ Sn, is called the linear matrix

inequality (LMI). The LMI is called feasible if there exists an

x ∈ V such that the inequality (86) is satisfied; otherwise the

LMI is called infeasible.

A matrix A = [aij ] ∈ ℜn×n is called the Metzler matrix if

its off-diagonal entries are nonnegative, i.e. aij ≥ 0 for i 6= j,

i, j = 1, . . . , n. The matrix A = [aij ] ∈ ℜn×n is called Hur-

witz matrix if it has all eigenvalues with negative real parts

(the system ẋ = Ax is asymptotically stable). The matrix

A = [aij ] ∈ ℜn×n is called Schur matrix if it has all eigen-

values with moduli less than one (the system xi+1 = Axi is

asymptotically stable).

Lemma 4. [17, 31]. A nonnegative matrix A = ℜn×n
+ is

Schur matrix if and only if the LMI

blockdiag [P − AT PA, P ] ≻ 0 (87)

is feasible with respect to the diagonal matrix P .

Lemma 5 [17, 31]. A Metzler matrix A = ℜn×n is Hurwitz

matrix if and only if the LMI

blockdiag [−(AT P + PA), P ] ≻ 0 (88)

is feasible with respect to the diagonal matrix P .

It is well-known that A = ℜn×n
+ is Schur matrix if and

only if (A − In) is Hurwitz matrix.

Lemma 6 [17, 31]. A nonnegative matrix A = ℜn×n
+ is Schur

matrix if and only if the LMI

blockdiag [−
(
(A − In)T P + P (A − In)

)
, P ] ≻ 0 (89)

is feasible with respect to the diagonal matrix P .

Lemma 7. A nonnegative matrix A = ℜn×n
+ is Schur matrix

if and only if the LMI

blockdiag

{ [
P −AT P

−PA P

]
, P

}
≻ 0 (90)

is feasible with respect to the diagonal matrix P .

Proof. Consider the congruence transformation

[
I AT

0 I

][
P −AT P

−PA P

] [
I 0

A I

]
=

=

[
P − AT PA 0

0 P

]
.

It is well-known that the positive definiteness of a matrix is

invariant under the congruence transformation. Therefore, the

condition (90) is equal to the condition (87).

Theorem 25. The positive fractional system (12) is practically

stable if and only if one of the following equivalent conditions

holds

1) The LMI

blockdiag








P1 − P2 − AT
αP1Aα −c1A

T
αP1 . . . −ch−1A

T
αP1 −chAT

αP1

−c1P1Aα P2 − P3 − c2
1P1 . . . −c1ch−1P1 −c1chP1

...
...

. . .
...

...

−ch−1P1Aα −c1ch−1P1 . . . Ph − Ph+1 − c2
h−1P1 −ch−1chP1

−chP1Aα −c1chP1 . . . −ch−1chP1 Ph+1 − c2
hP1




,




P1 0 . . . 0 0

0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0

0 0 . . . 0 Ph+1








≻ 0

(91)

is feasible with respect to the diagonal matrices P1, . . . , Ph+1.
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2) The LMI

blockdiag





−




AT
αP1 + P1Aα − 2P1 P2 + c1P1 . . . ch−1P1 chP1

P2 + c1P1 −2P2 . . . 0 0
...

...
. . .

...
...

ch−1P1 0 . . . −2Ph−1 Ph+1

chP1 0 . . . Ph+1 −2Ph




,




P1 0 . . . 0 0

0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0

0 0 . . . 0 Ph+1








≻ 0

(92)

is feasible with respect to the diagonal matrices P1, . . . , Ph+1.

3) The LMI

blockdiag









P1 0 . . . 0 −AT
αP1 −P2 . . . 0

0 P2 . . . 0 −c1P1 0 . . . 0
...

... . . .
...

...
... . . .

...

0 0 . . . Ph+1 −chP1 0 . . . −Ph+1

−P1Aα −c1P1 . . . −chP1 P1 0 . . . 0

−P2 0 . . . 0 0 P2 . . . 0
...

... . . .
...

...
... . . .

...

0 0 . . . −Ph+1 0 0 . . . Ph+1




,




P1 0 . . . 0 0

0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0

0 0 . . . 0 Ph+1









≻ 0

(93)

is feasible with respect to the diagonal matrices P1, . . . , Ph+1.

The condition 3) can be proved in a similar way using

Lemma 7 to the system (22a).

Proof. The positive fractional system (12) is practically stable

if and only if the matrix A is Schur matrix. Applying to the

system (22a) Lemma 4 we obtain the LMI (91), since

blockdiag
[
P − ÃT PÃ, P

]
= blockdiag









P1 0 . . . 0 0

0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0

0 0 . . . 0 Ph+1




−




AT
α In . . . 0 0

c1In 0 . . . 0 0
...

... . . .
...

...

ch−1In 0 . . . 0 In

chIn 0 . . . 0 0



·

·




P1 0 . . . 0 0

0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0

0 0 . . . 0 Ph+1







Aα c1In . . . ch−1In chIn

In 0 . . . 0 0
...

... . . .
...

...

0 0 . . . 0 0

0 0 . . . In 0




,




P1 0 . . . 0 0

0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0

0 0 . . . 0 Ph+1









= blockdiag








P1 − P2 − AT
αP1Aα −c1A

T
αP1 . . . −ch−1A

T
αP1 −chAT

αP1

−c1P1Aα P2 − P3 − c2
1P1 . . . −c1ch−1P1 −c1chP1

...
...

. . .
...

...

−ch−1P1Aα −c1ch−1P1 . . . Ph − Ph+1 − c2
h−1P1 −ch−1chP1

−chP1Aα −c1chP1 . . . −ch−1chP1 Ph+1 − c2
hP1




,




P1 0 . . . 0 0

0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0

0 0 . . . 0 Ph+1








≻ 0
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Similarly, applying to the system (22a) Lemma 6 we obtain the LMI (92), since

blockdiag
[
−
(
(A − In)T P + P (A − In)

)
, P

]
=

= blockdiag






−




AT
α − In In . . . 0 0

c1In −In . . . 0 0
...

... . . .
...

...

ch−1In 0 . . . −In In

chIn 0 . . . 0 −In







P1 0 . . . 0 0

0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0

0 0 . . . 0 Ph+1




−




P1 0 . . . 0 0

0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0

0 0 . . . 0 Ph+1







A−
α In c1In . . . ch−1In chIn

In −In . . . 0 0
...

... . . .
...

...

0 0 . . . −In 0

0 0 . . . In −In




,




P1 0 . . . 0 0

0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0

0 0 . . . 0 Ph+1









= blockdiag





−




AT
αP1 + P1Aα − 2P1 P2 + c1P1 . . . ch−1P1 chP1

P2 + c1P1 −2P2 . . . 0 0
...

...
. . .

...
...

ch−1P1 0 . . . −2Ph−1 Ph+1

chP1 0 . . . Ph+1 −2Ph




,




P1 0 . . . 0 0

0 P2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Ph 0

0 0 . . . 0 Ph+1








≻ 0

(94)

Applying to the system (22a) Lemma 7 we obtain the LMI (93) since

blockdiag






W,




P1 0 . . . 0

0 P2 . . . 0
...

... . . .
...

0 0 . . . Ph+1









≻ 0

W =







P1 0 . . . 0

0 P2 . . . 0
...

... . . .
...

0 0 . . . Ph+1




−




P1 0 . . . 0

0 P2 . . . 0
...

... . . .
...

0 0 . . . Ph+1







Aα c1In . . . ch−1In chIn

In 0 . . . 0 0
...

... . . .
...

...

0 0 . . . In 0




−




AT
α In . . . 0

c1In 0 . . . 0
...

... . . .
...

ch−1In 0 . . . In

chIn 0 . . . 0







P1 0 . . . 0

0 P2 . . . 0
...

... . . .
...

0 0 . . . Ph+1







P1 0 . . . 0

0 P2 . . . 0
...

... . . .
...

0 0 . . . Ph+1







.
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Example 6. Using the LMI approaches check the practical

stability of the positive fractional system

∆αxk+1 = 0.1xk, k ∈ Z+ (95)

for α = 0.5 and h = 2.

Using (18) and (22c) we obtain

c1 =
α(1 − α)

2
=

1

8
, c2 =

α(α − 1)(α − 2)

3!
=

1

16
,

Aα = 0.6

and

Ã =




Aα c1 c2

1 0 0

0 1 0


 =




0.6
1

8

1

16
1 0 0

0 1 0


 .

Applying Theorem 25 and MATLABr environment to-

gether with SEDUMIr solver and YALMIPr parser we ob-

tain for the LMI (91)

blockdiag

8><>:264 P1−P2−AT
αP1Aα −c1A

T
αP1 −c2A

T
αP1

−c1P1Aα P2−P3−c2
1P1 −c1c2P1

−c2P1Aα −c1c2P1 P3 − c2
2P1

375,264 P1 0 0

0 P2 0

0 0 P3

3759>=>; ≻ 0

where

blockdiag [P1, P2, P3] =

= blockdiag [ 7.8921 3.5026 2.1132 ]

for LMI (92)

blockdiag





−




AT
αP1+P1Aα−2P1 P2+c1P1 c2P1

P2+c1P1 −2P1 P3

c2P1 P3 −2P2


 ,




P1 0 0

0 P2 0

0 0 P3








≻ 0

where

blockdiag [P1, P2, P3] =

= blockdiag [ 6.9266 3.1155 2.6096 ]

and for LMI (93)

blockdiag

8>>>>>>>><>>>>>>>>:
2666666664 P1 0 0 −AT

αP1 −P2 0

0 P2 0 −c1P1 0 −P3

0 0 P3 −c2P1 0 0

−P1Aα −c1P1 −c2P1 P1 0 0

−P2 0 0 0 P2 0

0 −P3 0 0 0 P3

3777777775,

264 P1 0 0

0 P2 0

0 0 P3

3759>>>>>>=>>>>>>; ≻ 0

where

blockdiag [P1, P2, P3] =

= blockdiag [ 7.7203 3.6738 2.2765 ]

Therefore, the LMIs are feasible with respect to the matrices

P1, P2, P3 and the positive fractional system (95) is practical-

ly stable.

Example 7. Using the LMI approaches check the practical

stability of the positive fractional system

∆αxk+1 =

[
−0.2 1

0.1 b

]
xk, k ∈ Z+ (96)

for α = 0.8 and h = 2, and the following two values of the

coefficient b:

case 1: b = −0.5; case 2: b = 0.5.

Using (18) and (22c) we obtain

c1 =
α(1 − α)

2
= 0.08,

c2 =
α(α − 1)(α − 2)

3!
= 0.032

and

Case 1. Aα1
= A + Inα =

[
0.6 1

0.1 0.3

]

and

Ã1 =




Aα1
c1I2 c2I2

I2 0 0

0 I2 0


 =

=




0.6 1 0.08 0 0.032 0

0.1 0.3 0 0.08 0 0.032

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0




.

Case 2. Aα2
= A + Inα =

[
0.6 1

0.1 1.3

]

and

Ã2 =




Aα2
c1I2 c2I2

I2 0 0

0 I2 0


 =

=




0.6 1 0.08 0 0.032 0

0.1 1.3 0 0.08 0 0.032

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0




.

In case 1 applying Theorem 25 and MATLABr environ-

ment together with SEDUMIr solver and YALMIPr parser

we obtain for the LMI (91)
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blockdiag [P1, P2, P3] =

= blockdiag

[[
16.0915 0

0 84.3680

]
,

[
4.2540 0

0 16.3556

]
,

[
2.5726 0

0 8.6007

]]

for LMI (92)

blockdiag [P1, P2, P3] =

= blockdiag

[[
8.8848 0

0 35.5971

]
,

[
2.5601 0

0 7.2962

]
,

[
2.2771 0

0 5.2364

]]

and for LMI (93)

blockdiag [P1, P2, P3] =

= blockdiag

[[
13.3199 0

0 70.8279

]
,

[
3.537 0

0 13.1042

]
,

[
2.2117 0

0 7.2682

]]
.

In case 2 the positive fractional system (96) is unstable for

any h (not only for h = 2) since the matrix Aα2
has one

diagonal entry greater than 1.

The characteristic polynomial of the matrix Aα2
− In

p(z) = det[In(z + 1) − Aα2
] =

=

∣∣∣∣∣
z − 0.4 −1

−0.1 z − 0.3

∣∣∣∣∣ = z2 − 0.7z − 0.22

has two negative coefficients. Therefore, the system (96) is

also unstable for any h.

4.2. 2D fractional systems. Fractional 2D Roesser mod-

el. The following notions of horizontal and vertical fractional

differences of 2D function are used [38].

Definition 12. The α-order horizontal fractional difference of

an 2D function xij , i, j ∈ Z+ is defined by the formula

∆h
αxij =

i∑

k=0

cα(k)xi−k,j , (97a)

where α ∈ ℜ, n1 − 1 < α < n1 ∈ N = {1, 2, . . .} and

cα(k)=






1 for k = 0

(−1)k

(
α

k

)
=(−1)k α(α−1)...(α−k+1)

k! for k > 0

(97b)

Definition 13. The β-order vertical fractional difference of an

2D function xij , i, j ∈ Z+ is defined by the formula

∆v
βxij =

j∑

l=0

cβ(l)xi,j−l, (98a)

where β ∈ ℜ, n2 − 1 < β < n2 ∈ N = {1, 2, . . .} and

cβ(l)=





1 for l = 0

(−1)l

(
β

l

)
=(−1)l β(β−1)...(β−l+1)

l! for l > 0
.

(98b)

Lemma 8 [26]. If 0 < α < 1 (0 < β < 1) then

cα(k) < 0 (cβ(k) < 0) for k = 1, 2, . . . . (99)

Consider the fractional 2D linear system described by the state

equations
[

∆h
αxh

i+1,j

∆v
βxv

i,j+1

]
=

[
A11 A12

A21 A22

][
xh

ij

xv
ij

]
+

[
B1

B2

]
uij

(100a)

yij =
[

C1 C2

] [ xh
i,j

xv
i,j

]
+ Duij i, j ∈ Z+, (100b)

where xh
ij ∈ ℜn1 , xv

ij ∈ ℜn2 are horizontal and vertical state

vector at the point (i, j) respectively, uij ∈ ℜm is input vec-

tor, yij ∈ ℜp is output vector at the point (i, j) and A11 ∈
ℜn1×n1 , A12 ∈ ℜn1×n2 , A21 ∈ ℜn2×n1 , A22 ∈ ℜn2×n2 ,

B1 ∈ ℜn1×m, B2 ∈ ℜn2×m, C1 ∈ ℜp×n1 , C2 ∈ ℜp×n2 ,

D ∈ ℜp×m.

Using Definition 12 and Definition 13 we may write the

equation (100a) in the form

[
xh

i+1,j

xv
i,j+1

]
=

[
A11 A12

A21 A22

][
xh

ij

xv
ij

]
−

−




i+1∑
k=2

cα(k)xh
i−k+1,j

j+1∑
l=2

cβ(l)xh
i,j−l+1


+

[
B1

B2

]
uij ,

(101)

where A11 = A11 + αIn1
and A22 = A22 + βIn2

.

From formula (101) it follows, that the fractional 2D sys-

tems are 2D systems with delays increasing with i and j.

From (97a) and (98b) it follows that the coefficients cα(k)
and cβ(l) in (101) strongly decrease when k and l increase.

Therefore, in practical problems we may assume, that k and

l are bounded by some natural numbers L1 and L2. In this

case the equation (101) takes the form

[
xh

i+1,j

xv
i,j+1

]
=

[
A11 A12

A21 A22

][
xh

ij

xv
ij

]
−

−




L1+1∑
k=2

cα(k)xh
i−k+1,j

L2+1∑
l=2

cβ(l)xh
i,j−l+1


+

[
B1

B2

]
uij .

(102)

The boundary conditions for the equations (100a), (101) and

(102) are given in the form

xh
0j for j ∈ Z+, xh

i0 for i ∈ Z+ (103)
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Theorem 26 [38]. The solution of equation (101) with bound-

ary conditions (103) is given by
[

xh
i,j

xv
i,j

]
=

i∑

p=0

Ti−p,j

[
0

xv
p0

]
+

j∑

q=0

Ti,j−q

[
xh

0q

0

]
+

+

i∑

p=0

j∑

q=0

(Ti−p−1,j−qB
10 + Ti−p,j−q−1B

01)upq,

(104a)

where

B10 =

[
B1

0

]
, B01 =

[
0

B2

]
(104b)

and the transition matrices Tpq ∈ ℜn×n are defined by the

formula

Tpq =





In

H

0 (zero matrix)

for p = 0, q = 0

for p + q > 0 (p, q ∈ Z+)

for p < 0 and / or q < 0
(105a)

where

H = T10Tp−1,q + T01Tp,q−1 −

p∑

k=2

[ cα(k)In1
0 ]Tp−k,q−

−

q∑

l=2

[ 0 cβ(l)In2
]Tp,q−l,

where

T10 =

[
A11 A12

0 0

]
, T01 =

[
0 0

A21 A22

]
. (105b)

Consider system (102) bounded by two natural numbers L1

and L2 and

G(z1, z2) =



 In1
− z−1

1 A11 +
L1∑

k=2

cα(k)z−k
1 In1

−z−1
2 A21

−z−1
1 A12

In2
− z−1

2 A22 +
L2∑
l=2

cβ(l)z−l
2 In2



 .

(106)

Let

detG(z1, z2) =

N1∑

p=0

N2∑

q=0

aN1−p,N2−qz
−p
1 z

−q
2 , (107)

where N1, N2 ∈ Z+ are determined by the numbers L1 and

L2 in (102).

Theorem 27 [38]. Let (107) be the characteristic polynomial

of the system (102). Then the matrices Tpq satisfy the equa-

tion
N1∑

p=0

N2∑

q=0

apqTpq = 0. (108)

Theorem 27 is an extension of the well-known classical

Cayley-Hamilton theorem for the 2D fractional systems de-

scribed by the Roesser model (101).

Positive fractional 2D Roesser model

Definition 13. The system (100) is called the (internally)

positive fractional 2D system if and only if xh
ij ∈ ℜn1

+ ,

xv
ij ∈ ℜn2

+ and y∈
ijℜ

p
+ i, j ∈ Z+ for any boundary con-

ditions xh
0j ∈ ℜn1

+ , j ∈ Z+ and xv
i0 ∈ ℜn2

+ , i ∈ Z+ and all

inputs u∈
ijℜ

p
+ i, j ∈ Z+.

Theorem 28 [38]. The fractional 2D system (101) for α, β ∈
ℜ, 0 < α ≤ 1, 0 < β ≤ 1 is positive if and only if
[

A11 A12

A21 A22

]
∈ ℜn×n

+ ,

[
B1

B2

]
∈ ℜn×m

+ ,

[ C1 C2 ] ∈ ℜp×n
+ , D ∈ ℜp×m

+ .

(109)

Consider the positive fractional Roesser model (101) with the

state-feedback

uij = [ K1 K2 ]

[
xh

i,j

xv
i,j

]
(110)

where K = [ K1 K2 ] ∈ ℜn×n, Kj ∈ ℜm×nj , j = 1, 2 is

a gain matrix.

We are looking for a gain matrix K such that the closed-

loop system
[

xh
i+1,j

xv
i,j+1

]
=

[
A11 + B1K1 A12 + B1K2

A21 + B2K1 A22 + B2K2

] [
xh

ij

xv
ij

]
−

−




i+1∑
k=2

cα(k)xh
i−k+1,j

j+1∑
l=2

cβ(l)xh
i,j−l+1




(111)

is positive and asymptotically stable.

Theorem 29. The positive fractional closed-loop system (111)

is positive and asymptotically stable if and only if there exist

a block diagonal matrix

Λ = blockdiag [Λ1, Λ2],

Λk = diag [λk1, . . . , λknk
],

λkj > 0, k = 1, 2; j = 1, . . . , nk

(112)

and a real matrix

D = [ D1 D2 ], Dk ∈ ℜm×nk , k = 1, 2 (113)

satisfying conditions
[

A11Λ1 + B1D1 A12Λ2 + B1D2

A21Λ1 + B2D1 A22Λ2 + B2D2

]
∈ ℜn×n

+ (114)

and[
A11Λ1 + B1D1 A12Λ2 + B1D2

A21Λ1 + B2D1 A22Λ2 + B2D2

][
1n1

1n2

]
<

[
0

0

]
.

(115)

where 1nk
= [ 1 . . . 1 ]T ∈ ℜnk

+ , k = 1,2.

The gain matrix is given by the formula

K = [ K1 K2 ] = [ D1 D2 ]Λ−1 =

= [ D1Λ
−1
1 D2Λ

−1

2
].

(116)

Bull. Pol. Ac.: Tech. 58(4) 2010 551



T. Kaczorek

Proof and a procedure for computation of the gain matrix K

are given in [38].

It is well-known [16, 38] that the positive closed-loop sys-

tem (111) is asymptotically stable if and only if the positive

1D system with the matrix

[
A11 + B1K1 A12 + B1K2

A21 + B2K1 A22 + B2K2

]
−

−

∞∑

k=2

[
In1

cα(k) 0

0 In2
cβ(k)

] (117)

is asymptotically stable.

Taking into account that [38]

∞∑

k=2

cα(k) = α − 1,

∞∑

k=2

cβ(k) = β − 1

and A11 = A11 + αIn1
and A22 = A22 + βIn2

we may write

the matrix (117) in the form

[
Â11 + B1K1 A12 + B1K2

A21 + B2K1 Â22 + B2K2

]
= A + BK (118)

where Â11 = A11 + In1
and Â22 = A22 + In2

and

A =

[
Â11 A12

A21 Â22

]
, B =

[
B1

B2

]
(119)

Theorem 30. The fractional closed-loop system (111) is pos-

itive and asymptotically stable if and only if there exist a pos-

itive definite block diagonal matrix (112) and a real matrix

(113) such that the condition (114) is satisfied and the LMI

[
−Λ AΛ + BD

(AΛ + BD)T −Λ

]
≺ 0 (120)

is feasible with respect to the positive definite diagonal ma-

trix Λ.

Proof. The closed-loop system (111) is positive if and only if

the condition (114) is satisfied since the condition

[
A11 + B1K1 A12 + B1K2

A21 + B2K1 A22 + B2K2

]
=

=

[
A11 + B1D1Λ

−1
1 A12 + B1D2Λ

−1
2

A21 + B2D1Λ
−1
1 A22 + B2D2Λ

−1
2

]

=

[
A11Λ1 + B1D1 A12Λ2 + B1D2

A21Λ1 + B2D1 A22Λ2 + B2D2

]
·

·

[
Λ−1

1 0

0 Λ−1
2

]
∈ ℜn×n

+

is equivalent to (114).

The positive closed-loop system (111) is asymptotically

stable if and only if the LMI [17]

P − (A + BK)T P (A + BK) ≻ 0 (121)

is feasible with respect to a positive definite diagonal ma-

trix P .

Using the Schur complement we can write the condition

(121) in the form
[

−P P (A + BK)

(A + BK)T P −P

]
≺ 0. (122)

Substitution of (116) and P = Λ−1 into (122) yields
[

−Λ−1 Λ−1(A + BDΛ−1)

(A + BDΛ−1)T Λ−1 −Λ−1

]

= blockdiag [Λ−1, Λ−1]

[
−Λ AΛ + BD

(AΛ + BD)T −Λ

]

blockdiag [Λ−1, Λ−1] ≺ 0.
(123)

Applying the congruent transformation with the matrix

blockdiag [Λ, Λ] we obtain the condition (120).

Example 6. Given the fractional 2D Roesser model with

α = 0.4, β = 0.5 and

A11 =

[
−0.5 −0.1

0.1 0.01

]
, A12 =

[
−0.1 −0.1

0.2 0.1

]
,

A21 =

[
−0.3 −0.1

0.2 0.1

]
, A22 =

[
−1 −0.1

0.4 0.1

]
,

B1 =

[
−0.2

0.1

]
, B2 =

[
−0.3

0.2

]
.

(124)

Find a gain matrix K = [ K1 K2 ], Ki ∈ ℜ1×2, i = 1,2

such that the closed-loop system is positive and asymptotically

stable.

The fractional 2D Roesser model with (124) is not pos-

itive since the matrices have negative entries. The model is

also unstable since the matrix

[
A11 A12

A21 A22

]
=




−0.5 −0.1 −0.1 −0.1

0.1 0.01 0.2 0.1

−0.3 −0.1 −1 −0.1

0.2 0.1 0.4 0.1


 (125)

has positive diagonal entries.

We choose

D = [ D1 D2 ], D1 = [ −0.4 −0.2 ],

D2 = [ −0.4 −0.2 ].
(126)

Applying Theorem 30 and using MATLAB environment to-

gether with SEDUMI solver and YALMIP parser for the LMI

(120) we obtain

Λ = blockdiag [Λ1, Λ2],

Λ1 =

[
0.4 0

0 0.4

]
, Λ2 =

[
0.2258 0

0 0.2413

]
.

(127)
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Therefore, the LMI is feasible with respect to the diagonal

matrix Λ.

Using (116) we obtain the gain matrix

K = [ K1 K2 ] = [ D1Λ
−1
1 D2Λ

−1
2 ] =

= [ −1 −0.5 −1.7712 −0.8289 ].
(128)

The closed loop system is positive since matrices

A11 + B1K1 =

[
0.1 0

0 0.36

]
,

A12 + B1K2 =

[
0.2542 0.0658

0.0229 0.0171

]
,

A21 + B2K1 =

[
0 0.05

0 0

]
,

A22 + B2K2 =

[
0.0313 0.1487

0.0458 0.4342

]
,

have all nonnegative entries.

The closed-loop system is asymptotically stable since its

characteristic polynomial

det

[
In1

z − (A11 + B1K1) −(A12 + B1K2)

−(A21 + B2K1) In2
z − (A22 + B2K2)

]
=

=

∣∣∣∣∣∣∣∣∣

z + 0.3 0 −0.2542 −0.0658

0 z + 0.04 0.0229 −0.0171

0 −0.05 z + 0.4687 −0.1487

0 0 0.0458 z + 0.0658

∣∣∣∣∣∣∣∣∣

= z4 + 0.8744z3 + 0.2166z2 + 0.0141z + 0.0003

has positive coefficients.

Example 7. Given the positive fractional 2D Roesser model

with α = 0.4, β = 0.9 and

A11 =

[
−0.4 0.01

0.03 0.001

]
, A12 =

[
0.01 0.01

0.01 0.2

]
,

A21 =

[
0.01 0.2

0 0.01

]
, A22 =

[
−0.9 0.01

0.01 −0.8

]
,

B1 =

[
0

0.001

]
, B2 =

[
0

0.002

]
.

(129)

Find a gain matrix K = [ K1 K2 ], Ki ∈ ℜ1×2, i = 1,2

such that the closed-loop system is positive and asymptotically

stable.

The fractional 2D Roesser model with (129) is unstable

since the matrix

[
A11 A12

A21 A22

]
=




−0.4 0.01 0.01 0.01

0.03 0.001 0.01 0.2

0.01 0.2 −0.9 0.01

0 0.01 0.01 −0.8


 (130)

has positive diagonal entries.

We chose

D = [ D1 D2 ], D1 = [ 0.13 −0.37 ],

D2 = [ −3.19 −0.11 ].
(131)

Applying Theorem 30 and using MATLAB environment to-

gether with SEDUMI solver and YALMIP parser for the LMI

(120) we obtain

Λ = blockdiag [Λ1, Λ2],

Λ1 =

[
0.0554 0

0 0.0755

]
,

Λ2 =

[
0.8659 0

0 0.0032

]
.

(132)

Therefore, the LMI is feasible with respect to the diagonal

matrix Λ.

Using (116) we obtain the gain matrix

K = [ K1 K2 ] = [ D1Λ
−1
1 D2Λ

−1
2 ] =

= [ 2.3460 −4.9035 −3.6840 −34.1058 ].
(133)

The closed loop system is positive since matrices

A11 + B1K1 =

[
0 0.01

0.0323 0.3961

]
,

A12 + B1K2 =

[
0.01 0.01

0.0063 0.1659

]
,

A21 + B2K1 =

[
0.01 0.2

0.0047 0.0002

]
,

A22 + B2K2 =

[
0 0.01

0.0026 0.0318

]

have all nonnegative entries.

The closed-loop system is asymptotically stable since its

characteristic polynomial

det

[
In1

z − (A11 + B1K1) −(A12 + B1K2)

−(A21 + B2K1) In2
z − (A22 + B2K2)

]
=

=

∣∣∣∣∣∣∣∣∣

z + 0.4 −0.01 −0.01 −0.01

−0.0323 z + 0.0039 −0.0063 −0.1659

−0.01 −0.2 z + 0.9 −0.01

−0.0047 −0.0002 −0.0026 z + 0.8682

∣∣∣∣∣∣∣∣∣

= z4 + 2.1721z3 + 1.4953z2 + 0.3159z + 0.0004

has positive coefficients.

5. Concluding remarks

The concepts of the practical stability and of the asymptot-

ic stability of the positive fractional and the cone fractional

discrete-time linear systems have been introduced. Necessary

and sufficient conditions for the stabilities of the fractional

systems have been established. It has been shown that the

checking of the stabilities of positive 2D linear systems can
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be reduced to testing the stabilities of corresponding 1D pos-

itive linear systems. Three LMI approaches have been pro-

posed for checking the stabilities of the positive fractional

linear systems. The LMI approach has been applied to com-

pute gain matrices of the state-feedbacks for the fractional 2D

Roesser model such that the closed-loop systems are positive

and asymptotically stable. Necessary and sufficient conditions

for the solvability of the problem have been established. The

effectiveness of the proposed LMI method has been demon-

strated on numerical examples of the fractional 2D Roesser

model. The considerations can be easily extended for positive

fractional linear 1D and 2D systems with delays. An exten-

sion of these considerations for continuous-time 1D and 2D

positive fractional linear systems is an open problem.
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