Y
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 58, No. 4, 2010
DOI: 10.2478/v10175-010-0054-y

www.czasopisma.pan.pl P N www.journals.pan.pl

~—

AUTOMATICS
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Abstract. Notations of the practical stability and of the asymptotic stability of positive and cone fractional 1D and 2D linear systems are
introduced. Necessary and sufficient conditions for the practical stability and the asymptotic stability of positive and cone fractional 1D
and 2D linear systems are established. It is shown that the checking of the practical stability and asymptotic stability of positive 2D linear
systems can be reduced to testing the stability of corresponding 1D positive linear systems. Three LMI approaches are proposed for checking
the stability of positive fractional linear systems. LMI approach is applied to compute gain matrices of state-feedbacks such that closed-loop
systems are positive and asymptotically stable. The proposed methods are illustrated on numerical examples.
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1. Introduction

In positive systems inputs, state variables and outputs take on-
ly non-negative values. Examples of positive systems are in-
dustrial processes involving chemical reactors, heat exchang-
ers and distillation columns, storage systems, compartmental
systems, water and atmospheric pollution models. A variety
of models having positive linear behavior can be found in en-
gineering, management science, economics, social sciences,
biology and medicine, etc.

Positive linear systems are defined on cones and not on lin-
ear spaces. Therefore, the theory of positive systems is more
complicated and less advanced. An overview of state of the art
in positive systems theory is given in the monographs [1, 2].
The notation of cone systems has been introduced in [3, 4].

The most popular models of two-dimensional (2D) linear
systems are the discrete models introduced by Roesser [5],
Fornasini-Marchesini [6] and Kurek [7]. The models have
been extended for positive systems in [2, 8—10]. Reachabili-
ty and minimum energy control of standard and positive 2D
linear systems have been considered in [8, 11-13].

The notion of internally positive 2D system (model) with
delays in states and in inputs has been introduced and neces-
sary and sufficient conditions for the internal positivity, reach-
ability, controllability, observability and the minimum energy
control problem have been established in [8, 9, 13].

Stability of positive 1D and 2D linear systems has been
considered in [10, 14-18] and the robust stability in [19].
Mathematical fundaments of fractional calculus are given in
the monographs [20-25]. The positive fractional linear sys-
tems have been addressed in [26, 27] and their stability has
been investigated in [16, 28-30]. LMI approaches to check-
ing the stability of positive 2D systems have been proposed in
[17, 31]. The positive fractional linear 2D systems have been
introduced in [32-34]. The concept of practical stability for

*e-mail: kaczorek@isep.pw.edu.pl

positive fractional 1-D discrete-time linear systems has been
introduced in [29]. Some applications of fractional calculus
are given in [24, 35-37].

In this paper the stability and stabilization of positive frac-
tional linear systems by state-feedback will be addressed.

The paper is organized as follows. In Sec. 2 the basic
definitions and theorems concerning stability of 1D positive
fractional linear systems are recalled and the notation of the
practical and asymptotical stability of fractional and cone sys-
tems are introduced. The practical and asymptotical stabili-
ty of 2D positive fractional linear systems are considered in
Sec. 3. Necessary and sufficient conditions for the stability are
established and it is shown that the checking of the stability
of 2D positive linear systems can be reduced to testing the
stability of corresponding 1D positive systems. In Sec. 4 the
LMI approaches are proposed for testing the stability of the
positive fractional linear systems and computation gain ma-
trices of state-feedbacks so that the closed-loop systems are
positive and asymptotically stable. Concluding remarks are
given in Sec. 5.

In this paper the following notation is used.

The set of real n x m matrices with nonnegative entries
are denoted by 7" and R = R"'. A matrix A = [a;;] €
RI™ (a vector x) is called strictly positive and denoted by
A>0(x>0)ifa;; >0fori=1,...,n,5=1,...,m. The
set of nonnegative integers will be denoted by Z. The n xn
identity matrix is denoted by I,,.

2. Stability of 1D positive fractional
linear systems

2.1. Positive 1D systems. Consider the linear discrete-time
system:

i1 = Az; + Bu; (1a)

yi = Czy + Duy (1b)
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where, z; € R", u; € ®™, y; € NP, i € Z, are the
state, input and output vectors and, A € R"*", B € R"*™,
C e RP*™ D € RPXm™,

Definition 1. The system (1) is called (internally) positive if
r; € Ry, y; € RY, i € Zy for any zp € R} and every
u; €RP, i€ Zy.

Theorem 1 [1, 2]. The system (1) is positive if and only if
AeRY", BeRY™, CeRE", DeR™. (2

The positive system (1) is called asymptotically stable if the
solution

z; = Alxg 3)
of the equation
Tip1 = Az, AeRYT, ieZy 4)
satisfies the condition
lim z; =0 for every z¢€ RY. 5)

11— 00

Theorem 2 [1, 16]. For the positive system (4) the following
statements are equivalent:

1. The system is asymptotically stable,

2. Eigenvalues z1, 23,...,2, of the matrix A have moduli
less 1,1ie. |zx| <1fork=1,...,n,

3. det[I,z — A] # 0 for |z] > 1,

4. p(A) < 1, where p(A) is the spectral radius of the matrix

A defined by p(A) = max {|2k]}
5. All coefficients @;, i =0,1,..

istic polynomial

.,n — 1 of the character-

p(2) =det[l,z — Al = 2" + @y 12" +... +a12 +do

~ (6)
of the matrix A = A — I,, are positive,
6. All leading principal minors of the matrix
ain a2 Q1n,
_ a1 Qg2 Q2n,
A=1,— A= (7a)
Un1  Gp2 Unn
are positive, i.e.,
@] >0, | M M50, detA>0  (7b)
a1 ag2
7. There exists a strictly positive vector T > 0 such that
[A-TI,]T <0. 8)

Theorem 3 [2]. The positive system (4) is unstable if at least
one diagonal entry of the matrix A is greater than 1.

2.2. Positive fractional systems. The following definition of
the fractional difference

k
Ao‘kaZ(—l)j (?)xk_j, 0<ax<l 9)

Jj=0
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is used, where oo € R is the order of the fractional difference,
and

1 for 7=0
(10)

a(a—l)-~:(o¢—j+1)

7 for 7=1,2,...

Consider the fractional discrete linear system, described by
the state-space equations

Aakarl = Az, + Buy, (11a)

yr = Cxg + Dug, (11b)

where z, € R", up, € R™, yp € RP, k € Z, are the
state, input and output vectors and, A € R"*", B € <™,
C € RP*", D € RP*™_ Using (9) we may write the equa-
tions (11) in the form

k+1

.’L‘k+1+z (—1)j <a> Tp—jr1 =Axp+Bug, k€ Z, (12a)
— J
=1

yr = Cxg + Dug. (12b)

Definition 2. The system (12) is called the (internally) positive
fractional system if and only if 2, € R} and y, € R k€
Z for any initial conditions xy € R’} and all input sequences
up €RT, k€ Zy.

Theorem 4 [26]. The solution of equation (12a) is given by

k—1

Tz = Prxo + Z ®y_;_1Buy,
i=0

13)
where ®;, is determined by the equation

k1
Dpy1 = (A+ I,a)P, + Z (—1)"+t (a) D11 (14)
i

=2
with &g = I,.
Lemma 1. [26] If
0<a<l a5
then
(—1)it! (j‘) >0 for i=1,2,... (16)

Theorem 5 [26]. Let 0 < a < 1. Then the fractional sys-
tem (12) is positive if and only if
A+ Ia e RY", B e RY™,

(17)

CeR™,  DeRb*™,

Bull. Pol. Ac.: Tech. 58(4) 2010
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2.3. Practical stability of fractional systems. From (10) and
(16) it follows that the coefficients

¢j = cj(a) = (=1) <j+1>, j=12,...

strongly decrease for increasing j and they are positive for
0 < a < 1. In practical problems it is assumed that j is
bounded by some natural number h.

In this case the equation (12a) takes the form

(18)

h

Tp1 = Aqxi + Z ¢jxy—; + Bur, keZ, (19)
j=1
where
A, = A+ I, (20)

Note that the equations (19) and (12a) describe a linear
discrete-time system with h delays in state.

Definition 3. The positive fractional system (12) is called
practically stable if and only if the system (19) is asymptoti-
cally stable.

Defining the new state vector
Tk
_ Tk—1
T = ) 21
Tk—h

we may write the equations (19) and (12b) in the form

Tpp1 = A%y + Bug, k€ Z., (222)
yr, = Cx + Duy, (22b)
where
Aa CIIn CQIn Ch—lln ChIn
I, 0 0 ... 0 0
A= 0 I, 0 ... 0 0 |eRrRm,
0 0 0 I, 0
B (22¢)
_ 0 _
B=| | eR™™,
0
C=|C 0 0 | eRe™,
D=DeR™  f=(1+h)n.

To test the practical stability of the positive fractional sys-
tem (12) the conditions of Theorem 2 can be used to the
system (22).

Theorem 6. The positive fractional system (12) is prac-
tically stable if and only if one of the following equivalent
conditions is satisfied:

Bull. Pol. Ac.: Tech. 58(4) 2010

1. Eigenvalues zi, k = 1,...,n of the matrix A have moduli
less than 1, i.e.

IZel <1 for k=1,...,7, (23)

2. det[lzz — A] # 0 for |z] > 1,
p(A) < lwhere p(A) is the spectral radius of the matrix
A defined by p(A) = max {1Zx|},

1<k<@

4. All coefficients a;, i = 6, 1,...

(98]

,n — 1 of the characteristic

polynomial
=(2) =det|l,(z +1 — A=
P —detlhc ) A=
="+ a,-12" "+ ... +az+ag
of the matrix [A — I] are positive,
5. All leading principal minors of the matrix
aj;  diz a7
I; — A] = a21  G22 G2 (25a)
am1 am2 [
are positive , i.e.
|511| > O,
an a ~ 25b
,‘f” 312 >0,..., det[lz — A] >0 (25b)
az1 @22

6. There exist strictly positive vectors T; € R, i =

0,1,...,h satisfying
To <Ti, T1<Ta,...,Tho1<Tn (26a)
such that
ATy + 1 T1 + ...+ enTh < Tp. (26b)

Proof. The first five conditions 1)-5) follow immediately from
the corresponding conditions of Theorem 2. Using (8) for the
matrix A we obtain

Zo —
Ay cly, coly ch—1ln cnly T Zo
I, 0 0o ... 0 0 — T

To _
0 I, 0o ... 0 0 . < | 22
0 0 0o ... 1, 0 ‘Tﬁ_l T

- xh
(27

From (27) the conditions (26) follow.

Theorem 7. If the positive fractional system (12) is as-
ymptotically stable then the sum of entries of every row of

the adjoint matrix Adj[l; — A] is strictly positive, i.e.
Adj[Iz — A]7'15 > 0,

where 1; = [ 1 1
pose.

(28)

1 ]7 € R, T denotes the trans-

Proof. It is well-known [8, 28] that if the system (22) is as-
ymptotically stable then the vector

T=[I; — A '15 (29)
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is its strictly positive ( > 0) equilibrium point for Bu = 1.
Note that

det [I; — A] > 0 (30)

since det[I7 — ,Z] =dp in (24). The conditions (29) and (30)
imply (28).

Example 1. Check the practical stability of the positive frac-
tional system

Aaxk+1 = 0.1z, ke Z+ (31

fora = 0.5 and h = 2.
Using (18), (20) and (22c) we obtain

ala—1) 1 1
= = — =—, A,=06
C1 2 8; C2 167
and

1 1
Aa C1 Co O 6 - -
~ 8 16
A= 1 0 O e 1 0 0
0 1 0 0 1 0

In this case the characteristic polynomial (24) has the form

1 1
pi(z) =det[lr(z+1)—Al=| 1 .41 o |=
0 -1 z+1

= 2%+ 242 + 1.6752 + 0.2125.
(32)
All coefficients of the polynomial (32) are positive and by

Theorem 6 the system (31) is practically stable.
Using (28) we obtain

Adj[I; — A]15 =
0.4 —% —11—6 1.2500
=|Ad| 1 0 1 | = 1.4625
0 -1 1 1 1.6750

and the condition (28) is satisfied.

Theorem 8. The positive fractional system (12) is practically
stable only if the positive system

Tht1 = Agxi, k€ Z4 (33)
is asymptotically stable.
Proof. From (26b) we have
(Ao — I)To + a1T1 + ... + cxTp < 0. (34)

Note that the inequality (34) may be satisfied only if there

exists a strictly positive vector To € R’} such that
(A — I,)To < 0 (3%)

since ¢1T1 + ...+ cpTp > 0.
By Theorem 2 the condition (35) implies the asymptotic
stability of the positive system (33).

540

From Theorem 8 we have the following important corol-
lary.

Corollary 1. The positive fractional system (12) is unstable
for any finite h if the positive system (33) is unstable.

Theorem 9. The positive fractional system (12) is unstable if
at least one diagonal entry of the matrix A, is greater than 1.

Proof. The proof follows immediately from Theorems 8 and 3.

Example 2. Consider the autonomous positive fractional sys-
tem described by the equation

-05 1

A2y =
Tk [2 0.5

] TR, k€eZi (36)
for « = 0.8 and any finite h.
In this case n = 2 and
03 1
Ao =A+1T,a= . 37)
2 13
By Theorem 9 the positive fractional system is unstable
for any finite h since the entry (2,2) of the matrix (37) is
greater than 1.

The same result follows from the condition 5 of Theorem 2
since the characteristic polynomial of the matrix A, — I,

pi(z) =det[lz(z +1) — Aa] =

0.7 -1
— |77 — 22 +0.42 - 221
-2 z—0.3
has one negative coefficient (ap = —2.21).

2.4. Asymptotic stability of fractional systems. In this sec-
tion the practical stability of the positive systems for h — oo
is addressed.

Definition 4. The positive fractional system (12) is called
asymptotically stable if the system is practically stable for
h — oo.

Lemma 2. If 0 < a < 1 then

(e o)
E c;=1-aq,
j=1

where the coefficients c; are defined by (18).

(38)

Proof. Using the Maclaurin series it is easy to show that

(1—2)* =3 (-1) <a> 2J and substituting z = 1 we
j= J

obtain Y (—1)7 (a) = 0. From this equality and (38) we

7=0 J
have
1—a+Z(—1)J’<C,“> =
=2 J
=1l—-a-— -1 =1l—-a-— c; = 0.
> m) >

Bull. Pol. Ac.: Tech. 58(4) 2010
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Theorem 10. The positive fractional system (12) is asymp-
totically stable if and only if positive system

Tip1 = (A+ In)z;

is asymptotically stable.

(39)

Proof. It is well-known [14] that the positive system (19) for
h — oo is asymptotically stable if and only if the positive
system
Tiy1 = A, + Z CjIn €X; 40)
j=1
is asymptotically stable. The positive systems (39) and (40)
are equivalent since by (38) and (20)

Aa+> ciln=A+ Lo+ ,(1-a)=A+1,
j=1
Applying to the positive system (39) Theorem 6 we obtain
the following theorem.

Theorem 11. The positive fractional system (12) is asymp-
totically stable if and only if one of the equivalent conditions
holds:

1. Eigenvalues z1, 29, . . ., 2j, of the matrix A+ I,, have moduli
less than 1, ie. |zx| <1fork=1,...,n,

2. All coefficients of the characteristic polynomial of the ma-
trix A are positive,

3. All leading principal minors of the matrix —A are positive.

Theorem 12. The positive fractional system (12) is unstable
if at least one diagonal entry of the matrix A is positive.

Proof. If at least one diagonal entry of the matrix A is posi-
tive then at least one diagonal entry of the matrix A + I, is
greater than 1 and it is well-known [2, 16] that the system is
unstable.

Example 3. Using Theorem 11 find values of the coefficient
c for which the positive fractional system (12) with

A_[_0'5 1] and a =08

02 ¢ “h)

is asymptotically stable.
The fractional system is positive if all entries of the matrix

0.3 1

42
0.2 c+a« (42)

Aa:A—i—Ina:l

are nonnegative, i.e. c+a > 0 and ¢ > —a = —0.8.
Applying the condition 2) of Theorem 11 to the matrix
(41) we obtain

z+05 -1
—0.2
=224 (0.5—¢)z — (0.5¢ +0.2)

and ¢ < —0.4. Therefore, the fractional system (12) with (41)
is positive and asymptotically stable for —0.8 < ¢ < —0.4.
The same result we obtain using the condition 3) of Theo-
rem 11.

det[l,z — A] =

zZ—C

Bull. Pol. Ac.: Tech. 58(4) 2010

2.5. Cone fractional systems. Definition 5 [3, 4]. Let

P1
P= € Rnxm
Pn
be nonsingular and p; be the k—th (k = 1,...,n) its row.
The set
P:—{Ieﬂ?":ﬂpk:cZO} (43)
k=1

is called a linear cone generated by the matrix P.
In a similar way we may define for the inputs u the linear

cone
Q::{ue%m:mqkuZO} (44)
k=1
generated by the nonsingular matrix
Q1
Q — 6 §Rm><m
m
and for the outputs y, the linear cone
P
V:z{yé%p:ﬂvkyZO} 45)
k=1

generated by the nonsingular matrix

U1
€ RPXP,

Up

Definition 6. The fractional system (12) is called (P, Q, V)
cone fractional system if z; € P and y; € V, ¢« € Z for
every zo € P, u; € Q, 1 € Z.

The (P, Q, V) cone fractional system (12) is shortly
called the cone fractional system.

Note that if P = R}, Q = R', V = R} then the (R},
R, RY) cone system is equivalent to the classical positive
system [3, 4].

Theorem 13. The fractional system (12) is (P, Q, V) cone
fractional system if and only if

A=PAP ' e R,

B=PBQ ' eR™,
o (46)

C=veop e,

D=vDQ ' eRy™

Proof. Let

T; = Pl‘i, u; = Qui and Y, = Vyi, 1€ Z+. (47)
541
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From definition 5 it follows that if z; € P then Z; € R7,
if u; € Q then w; € N and if y; € V then 7; € R’.. From
(12) and (47) we have

k+1 ‘ o
Th+1 + Z (=1)’ < _>fk—j+1 =
=1 J
k+1 ) a
= P.IkJrl + Z (—1)J < . ) P:Z?k,jJrl g (483)
— J
j=1
= PAxj, + PBuy = PAP™'%, + PBQ 'u;, =
= Az, + Buy, ke Z,
and
Y = Vyr, =VCxi + VDuy =
=VCP 'z, + VDQ 'uy, = (48b)

= C7y, +Eﬂk, ke Z,.

It is well-known [2] that the system (48) is the positive one
if and only if the conditions (46) are satisfied.

Theorem 14. The cone fractional system (12) is asymptot-
ically stable if and only if the positive fractional system is
asymptotically stable.

Proof. From (46) we have

det[Iz — A] = det[[z — PAP™ '] = det[P(Iz — A)P~ ] =
=det[Iz — Aldet Pdet P~ = det[Iz — A]
(49)
since det Pdet P~! = 1.

From Theorem 14 we have the following important corol-
lary.

Corollary 2. The cone fractional system (12) is practically
stable (asymptotically stable) if and only if the positive frac-
tional system is practically stable (asymptotically stable).

To test the practical stability and the asymptotic stability
of the cone fractional system the Theorem 2 and 6 can be
used.

3. Stability of 2D positive fractional
linear systems

3.1. Positive fractional 2D linear systems. Definition 7
[33]. The («, 3) orders fractional difference of and 2D func-
tion x;; is defined by the formula

i

J
Aa,ﬁxij — Z Z Caﬁ(k7 l)xi—k,j—lu

k=0 1=0 (SOa)
n—1<a<n, n2—1<5<n2§

n1,n2 €N={1,2,...},

i+1 Jj+1

where A®Pz;; = Ag¢Az;; and

Caﬁ(k},l) =
1 for k=0and [ =0
(50b)

= (_1)k+l a(ocfl)...(Ot*k“r;!)f!(ﬁ*l)...(ﬁflﬁ»l)

for k,0 >0 and k+1>0

Consider the («, 3) orders fractional 2D linear system, de-
scribed by the state equations
APy i1 = Aozij + Arir i+
+ Aoz i1 + Bougj + Biugyr,; + Bowg ji1,
Yij = Cxij + Duij,

(51a)

(51b)

where z;; € 2", u;; € R™, y;; € NP are the state, input and
output vectors and A € R"*", B, € R"*™, k = 0,1,2,
CeRr*™, D e jPx™,

Using Definition 7 we may write the equation (51a) in the
form

Titl,j4+1 = Z(ﬂ?ij + leiJrl,j + ZQIi,jJrl_
— Z Z Ca,8(k, D) Timpg1,j—141+
kl€Diy1,j41\D11
+ Bouij + Biuiq1,; + Boug j41
where Dpq :={(i,j) : 0<i<p,0<j<gq, i,j€ 2} and
Ao = Ao — InaB, Ar= A1+ 1,0, A2 = As + Ino
The boundary conditions for the equation (52) are given
by the formula

(52)

Ti0, 1 € 2y (53)

Definition 8. The system (51) (and also (52)) is called the
(internally) positive fractional 2D system if x;; € R’ and
yi; € R, 1,j € Z for any boundary conditions z;o € R},
i € Zy,xo; € R, j € Zy and all input sequence u;; € R,
1,] € Z4.

It has been shown in [33] that

and Zoj, j € Z+.

a) if0<a<land 1< (<2 then

Caplll) <0 for k=1,2...; =23, ...
and cop(k,1)>0, k=1,2,...; (54a)
ap(0,1)>0, 1=2,3,...
b) if l <a<2and 0 < (< 1 then
caplk,l)<0 for £=23,...; 1=1,2,...
and cop(k,0)>0, k=2,3,...; (54b)

Ca_ﬂ(l,l) >0, 1=1,2,....
Theorem 15 [33]. The fractional 2D linear system (51) for
0<a<landl<f<2(@rl<a<2and0<fg<1)is
positive if and only if!
Ay € R, By € R,

. . (55)
k=0,1,2; C e R, D e REX™.

Tt is assumed that 3 Cr1%i—k41,5 =0and > co @ity j—i41 =0since ¢ 1 >0,k =1,2,...and co; > 0,1=2,3,...
k=2 =2

542
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3.2. Practical stability. Note that the system (52) is an 2D
linear system with the number of delays in state vector in-
creasing to infinity for ¢, 7 — oo.

From (50b) it follows that the coefficients

ekl = —caplk,l) =
= ()l ala—1)...(a—k+1)B3(8-1) ... (B—1+1)
kll!
k+1>0

for

(56)

strongly decrease for increasing k and (. In practical prob-

lems it is assumed that k and ! are bounded by some nat-

ural numbers L; and Ly. In this case the equation (52) for
By = B; = By = 0 takes the form

Tiy1+1 = Aoty + Aigrj + Asijpa+

+ E E CllTi—k+1,j—1+1

k.l€Diy1,j4+1\D11

(57)

where Dy, = {(i,7): 0<i<p,0<j<gq,i,j€Zs}.
Equation (57) describes an 2D linear system with finite
number of delays in state vector. The system (57) has been
obtained by neglecting all delays of the system (52) for i > L
and j > Lo.
Define the new state vector

T

~. . _ [T T T T T
./L'l_] — [‘,Elj xl—l] . e CL‘i_Llj ,Tij_l “e e CL‘i_Llj_l xl]—? . e

T T N
TiLyj-2 - TioLj-Ly € R

N=(L1+1)(La+ 1)n 1,] € Zy

(58)
we may write Eq. (57) in the form

Tit1,j41 = AoTij + A1Tiq1 + AoTij41 4,5 € Z4 (59)

where

[ Ay ILien Incry1 Incn,i+1,1 Incio Incr 2 Incr,+12 Incis Incry,Lo+1 Incr,+1,0,41 |
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
~ 0 0 0 0 0 0 0 0 0 0
Ay = )
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0 ]
(A, o0 0 0 Inco 0 0 Incos 0 0 |
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
~ I, O 0 0 0 0 0 0 0 0
Al = )
0 0 I, O 0 0 0 0 0 0
0 0 0o I, 0 0 0 0 0 0
L0 0 0 0 0 0 0 0 0 0 |
[ Zg InCQO InCLl,O InCL1+170 0 0 0 0 0 0 1
I, 0 0 0 0 0 0 0 0 0
0 0 I, 0 0 0 0 0 0 0
~ 0 0 0 0 0 0 0 0 0 0
Ay =
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0 1, 0 l
(60)
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Therefore, the fractional 2D system (52) has been reduced
to a standard 2D system without delays but with greater di-
mension.

Theorem 16. The 2D system (59) is positive if and only if
Ay € R 61)

Proof. Proof follows from (59), (60) and the fact that the sys-
tem is positive if and only if all matrices have nonnegative
entries.

k=0,1,2.

Definition 9. The positive fractional 2D system (51) is called
practically stable if the system described by the equation (57)
is asymptotically stable.

Theorem 17 [16, 18]. The positive fractional 2D system (51)
is practically stable if and only if one of the following condi-
tions is satisfied

1.
det(Iﬁ — Avozlzg — Avlzg — 2221) 75 0

(62)
V(z1,22) € B:={(z1,22) : |21] <1, |22] < 1}.

2. There exists a strictly positive vector A € %f such that

[Ao + A1 + Ay — TN < 0. (63)

3. The positive 1D system
Tiv1 = (Ag+ Ay + Ay)z;, i€ Zy (64)

is asymptotically stable.

4. The positive 1D system

A+ A, A
Tit1 = 1A Ao T 1€ 2y (65)
Ig

is asymptotically stable.

Theorem 18 [16, 18]. The positive fractional 2D system (51)
is practically stable only if the positive 2D system

Tip1,j+1 = AoTsj + g15i+1,j + ;12&71',#1 (66)

is asymptotically stable.
From Theorem 18 we have the following important corol-
lary.

Corollary 3. The positive fractional 2D system (51) is unsta-
ble for any finite L; and Lo if the positive 2D system (66) is
unstable.

Theorem 19. The positive fractional 2D system (51) is un-
stable if at least one diagonal entry of the matrix A; + As is
greater than 1.

Proof. It is well-known [6] that the positive 1D system
(65) is asymptotically unstable if at least one diagonal entry
of the matrix A; + Aj is greater than 1. From the structure of
the matrices A; and A, defined by (60) it follows that at least
one diagonal entry of the matrix A; + A, is greater than 1 if
and only if at least one diagonal entry of the matrix A; + Ay
is greater than 1. By Theorem 17 the positive fractional 2D
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system (51) is practically stable if and only if the positive 1D
system (70) is asymptotically stable.

Theorem 20. The positive fractional 2D system (51) is un-
stable if

Ap e R for k=1,2. (67)

Proof. By Theorem 15 the fractional 2D system (51) for
0<a<landl<f<2(@rl<a<2and0<fg<1)is
positive if and only if (55) is satisfied. From (52) it follows
that the matrix

Zl + ZQ = A1 + A2 + (Oé + B)In (68)

has all diagonal entries greater than 1 if (72) holds. In this
case by Theorem 19 the positive fractional 2D system (51) is
unstable.

3.3. Asymptotic stability. In this section the practical stabil-
ity of the positive fractional 2D linear systems for L; — oo
and Lo — oo is addressed.

Definition 10. The positive fractional 2D linear system (51) is
called asymptotically stable if the system is practically stable
for L1 — oo and Ly — o0.

In the proof of the main result of this section the following
lemma and theorem are used.

Lemma 3. If0<a<landl<f<2(orl<a<?2and
0 < B < 1) then

i Ca)ﬁ(k, l) =0.

01=0

WK

(69)

E
Il

Proof. In a similar way as in the proof of Lemma 2 it can be
shown that

S ; —1...(a—i+1
:Z(_1)za(a ) _|(0< i+ ):0 for o 0.
7.
1=0
(70
Using (50b) and (70) we obtain
a,B ) =
> X cap(k,l)
0o 0o k=01=0
= kzo ZZO (—1)k+la(a—1)---(a—k+]1£lﬁ!(ﬁ—1)...(5_l+1) _
(= (71)
. <;0(_1)1w> 0

Theorem 21 [9, 16]. The positive 2D general model with
delays

P q
0
$i+1,j+1:E E (Aszifk,jfl
k=0

2

1 2 . .
FARTi- k1,1 + ATk joip1) for i,j € Zy,
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where z;; € R’ is the state vector and A}, € R}*",
k=0,1,...,¢; 1 =0,1,...,p; t = 0,1,2 is asymptotically
stable if and only if the positive 1D system

p q
Tit1 = <Z Do (AN + AL+ Aiz)) T 73

k=0 =0
for z; €N, i€z,

is asymptotically stable.

Theorem 22. The positive fractional 2D system (51) is as-
ymptotically stable if and only if the positive 1D system

Tig1 = (fl+ In) x5, A=Ag+ A+ Ao,

(74)
;e Ny, 1€ 24
is asymptotically stable.
Proof. From (51) for By = B; = By = 0 we have
Tip1,j+1 = AoTij + Aoiqrj + Aoy ji1+
i+1 j+1 s
—i—ZZCk,liEi—kH,j—Hl (75)
k=0 1=0
k+1>0
where ci; = —cqo(k,1) for k41> 0.

By Theorem 21 the positive 2D system with delays is
asymptotically stable if and only if the positive 1D system

o0 o0
v = [ A+ cwiln | @i,

k=0 1=0 (76)
k+1>0
T € %i, 1€ Z+
is asymptotically stable. From (50b) we have cop = —1 and
from (74) we obtain
S eridn =1 (77)
k=0 1=0
k+1>0

Substitution of (77) into (76) yields (74).
Applying to the positive 1D system the well-known theo-
rem [16, 28, 29] we obtain the following theorem.

Theorem 23. The positive fractional 2D system (51) is asymp-
totically stable if and only if one of the following equivalent
conditions holds:

1. Eigenvalues z1, ..., 2z, of the matrix A + I,, have moduli
less than 1.

2. All coefficients of the characteristic polynomial of the ma-
trix A are positive. R

3. All leading principles minors of the matrix —A are posi-

tive.

Theorem 24. The positive fractional 2D system (51) is unsta-
ble if at least one diagonal entry of the matrix A is positive.

Proof. If at least one diagonal entry of the matrix Ais posi-
tive then at least one diagonal entry of the matrix A 4 I, is

Bull. Pol. Ac.: Tech. 58(4) 2010

greater than 1 and it is well-known [3, 6, 9] that the system
(74) is unstable.

Example 4. Using Theorem 23 check the asymptotic stability
of the positive fractional 2D system (51) for a = 0.3 and
([ = 1.2 with the matrices

04 0
AO = )
0.1 0.5
-1 0
A = , 78
" lo2 —1a ] 78
-02 0
As = .
02 0.1
Note that the fractional system is positive since the matrices
— 004 O
Ao = Ao — Lhyaf = ,
0=Ao~Inaf [ 01 0.14 1

— 02 0
A=A+ 1,0 = , 79
1 1+ 1,8 [ 0.2 0.1 1 (79)
— 01 0
Ay = A+ Iha =
S [ 0.2 0.4 ]
have nonnegative entries.
In this case
-~ -08 0
A=A+ A1+ A = . 80
oF At 0.5 —0.51 0

The first condition of Theorem 23 is satisfied since the matrix

E+In—[0'2 0 ]

81
0.5 0.5 1)

has the eigenvalues z; = 0.2, 2z = 0.5 whose moduli are
less than 1.
The second condition of Theorem 23 is also satisfied since

characteristic polynomial of the matrix (80)

z4+0.8 0

2
— 224132404 (82
05 z+05| N (82)

det[I,z— A] =

has positive coeflicients.
All leading principle minors of the matrix

0.8 0
—-0.5 0.5
are positive, i.e. Ay = 0.8, Ay = 0.4.

Therefore, all three conditions of Theorem 23 are satisfied

and the positive fractional 2D system with the matrices (78)
is asymptotically stable.

A= (83)

Example 5. Using Theorem 24 we show that the positive
fractional 2D system (51) for « = 0.5 and 3 = 1.2 with the
matrices
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) 0.6 0.1 1 blockdiag [P — ATPA, P]+0 (87)
0 — )
0.1 0.7 is feasible with respect to the diagonal matrix P.
4 - | 701 03 (84) Lemma 5[17, 31]. A Metzler matrix A = R"<" is Hurwitz
' 0 -02| matrix if and only if the LMI
4 -04 02 blockdiag [—(ATP + PA), P]>=0 (88)
2 =
0 —=0.5 is feasible with respect to the diagonal matrix P.
is unstable. It is well-known that A = R}*" is Schur matrix if and
In this case the matrix only if (A — I,) is Hurwitz matrix.
N 0.1 0.6 Lemma 6 [17, 31]. A nonnegative matrix A = R}*" is Schur
A=Ag+ A+ A4y = 01 0 (85)  matrix if and only if the LMI

has one positive diagonal entry. Therefore, by Theorem 24
the positive fractional system is unstable. The same result we
obtain using one of the conditions of Theorem 23.

4. LMI approaches

4.1. 1D fractional systems. Definition 11 [36]. An inequal-
ity of the form

F(z)+ F > 0, (86)

where x takes values in the real vector space V, the mapping
F:V — S™is linear, and ' € S™, is called the linear matrix
inequality (LMI). The LMI is called feasible if there exists an
x € V such that the inequality (86) is satisfied; otherwise the
LMI is called infeasible.

A matrix A = [a;;] € R™*™ is called the Metzler matrix if
its off-diagonal entries are nonnegative, i.e. a;; > 0 for ¢ # 7,
i,7=1,...,n. The matrix A = [a;;] € R"*" is called Hur-
witz matrix if it has all eigenvalues with negative real parts
(the system & = Az is asymptotically stable). The matrix
A = [ai;] € R™*" is called Schur matrix if it has all eigen-
values with moduli less than one (the system z; 11 = Ax; is
asymptotically stable).

Lemma 4. [17, 31]. A nonnegative matrix A = R}™*" is
Schur matrix if and only if the LMI

blockdiag [— (A—I,)"P+P(A—1,)), P]=0 (89)

is feasible with respect to the diagonal matrix P.

Lemma 7. A nonnegative matrix A = R’}*" is Schur matrix
if and only if the LMI

P —ATP

blockdiag { PA P

, P}»O (90)

is feasible with respect to the diagonal matrix P.

Proof. Consider the congruence transformation

I AT P —ATPpP I 0
0o I —PA P AT |
| P-ATPA 0
N 0 P

It is well-known that the positive definiteness of a matrix is
invariant under the congruence transformation. Therefore, the
condition (90) is equal to the condition (87).

Theorem 25. The positive fractional system (12) is practically
stable if and only if one of the following equivalent conditions
holds

1) The LMI
P1 — P2 — AZZPIAQ _CIAZ;PI _Ch—lAZZPI _ChAZ;Pl
—ClplAa P2 — P3 — C%Pl —clch_lPl —clchPl
blockdiag : : : ,
—ch—1P1 A, —cicp—1 P Py —Pyi1—ca P —cpoien Py
_ChplAa —Clchpl —Chflchpl Ph+1 - C,%Pl (91)
P 0 0 0
0 P 0 0
: : =0
0 0 Py 0
0 0 0 Py
is feasible with respect to the diagonal matrices P, ..., Pny1.
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2) The LMI
Agpl + PA, —2P1 Py+caP ch1P1 Py P 0 0 0
P+ Py —2P; 0 0 0 P 0 0
blockdiag < — : : : : , : : : : >0
Ch,1P1 0 —2Ph,1 Ph+1 O 0 Ph 0
Chpl 0 Ph+1 —2Ph O 0 O Ph+1
92)
is feasible with respect to the diagonal matrices Py, ..., Ppy1.
3) The LMI
) 0 0 -ATP -P 0o |
0 PQ 0 —01P1 0 0
. . . P 0 0 0
: : : 0 P 0 0
0 0 P —cp P 0 -P
blockdiag ht1 Chi1 N I : 0
—PlAa _Clpl _Chpl P1 O 0 ' '
B 0 0 0 P 0 0 0 Pr 0
. . . 0 O 0 Py
0 0 —Ph+1 0 0 Ph+1
) (93)
is feasible with respect to the diagonal matrices P, ..., P,41.  Proof. The positive fractional system (12) is practically stable

if and only if the matrix A is Schur matrix. Applying to the

The condition 3) can be proved in a similar way using
system (22a) Lemma 4 we obtain the LMI (91), since

Lemma 7 to the system (22a).

P 0 0 0 AT I, ... 0 O
0 P 0 0 cal, 0O ... 0 0
blockdiag [P - ETPZ, P| = blockdiag : — :
0 0 Ph 0 Ch—lln 0 0 In
0 0 0 Py cnly 0 0 O
P 0 0 0 71 A ciln cho1l, cply P 0 0 0
0 P 0 0 I, 0 0 0 0 P 0 0
0 0 ... Py 0 0 0 0 0 0 0 P, 0
L 0 0 ... 0 Py JL O 0 I, 0 | L 0 O 0 Py |
Pl — P2 — AzplAa —ClAzpl _Ch—lAgZPl —ChAzpl
—ClplAa P2 — P3 — C%Pl —clch_lPl —clchPl
= blockdiag : : : ,
—cp—1P1Aq —cicp—1 P Py —Phy1—ci_ P —chicn Py
—cpPiAg —ciep Py —ch—1cn P Py — P
P 0 0 0
0 P 0 0
; ; =0
0 O P, 0
0 O 0 Pry

Bull. Pol. Ac.: Tech. 58(4) 2010
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Similarly, applying to the system (22a) Lemma 6 we obtain the LMI (92), since

blockdiag [~ (A —1,)"P+ P(A—1,)), P]=

AT -1, I, ... 0 0 P 0
Clln —In cee 0 0 0 P2
= blockdiag { — : L : : : :
ch—11p o ... -I, I, 0 0
cnlyn o ... 0 -—I, 0 0
P 0 ... 0 0 AL, al, ... chaaln enly
0 P 0 0 I, —I, 0 0
0 O Py 0 0 0 v Iy 0
0 0 ... 0 Py 0 o ... I, —I,
AZPl—FPlAa—QPl P2+01P1 Ch—lpl Chpl
P+ P —2P .. 0 0
= blockdiag { — : : . : : ,
ch—1P1 0 coe —2Py_ Ph+1
Chpl 0 Ph+1 —2Ph

Applying to the system (22a) Lemma 7 we obtain the LMI (93) since

P 0 ... 0
0o P ... 0
blockdiag < W, . . . >0
0 0 ... Py
[ P 0 ... 0
0o P ... 0
o o0 ... P
P1 0 . 0 Aa Clln . Ch—lln ChIn
0o P ... 0 I, 0 0 0
0 0 ... Py 0 0 I, 0
AT I, ... 0
o P 0
CIIn 0 0
] ) 0 P
0 .., :
Ch—1 0 0
ChIn 0 0
P 0 ... 0
0 P 0
0 0 ... Py

548

0 0
0 0
P, 0
0 Purpr
P 0 ... O 0
0 P 0 0
0 0 Py 0
0 0 0 Pupr
P 0 ... O 0
0 P 0 0
: : =0
P, 0
0 0 0 Py
94)
0
0
Ppia
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Example 6. Using the LMI approaches check the practical
stability of the positive fractional system

Aa(Ek+1 = O.l(Ek, ke Z+ (95)

fora = 0.5 and h = 2.
Using (18) and (22c¢) we obtain

C_a(l—a)_l c_a(a—l)(a—2)_i
Ty T : 3 ~ 16’
A, =056

and
Aa C1 C2 0.6 1 i
~ 8 16
A= 1 O1=]11 0 o
0 1 0 0 1 0

Applying Theorem 25 and MATLAB® environment to-
gether with SEDUMI® solver and YALMIP® parser we ob-
tain for the LMI (91)

P—-P,—ATP A, —aAlP  —cATP
blockdiag —c1 P Aq Py—P3s—P —cieePy |,
—CQP1AQ —C1CzP1 P3 — C%Pl
P 0 0
0 P 0 =0
0 0 P
where

blockdiag [Py, Py, P3| =
= blockdiag [ 7.8921 3.5026 2.1132 ]
for LMI (92)

A£P1+P1Aa—2P1 Pt Py Py
blockdiag < — Po+c1 Py —2P Ps ,
62P1 P3 —2P2
P 0 O
0 P O >0
0 0 P
where

blockdiag [Py, Ps, P5] =
= blockdiag | 6.9266 3.1155 2.6096 ]
and for LMI (93)

Py 0 0 -Alp -P, 0 ]
0 P2 0 —C1P1 0 —P3
blockdiag 0 0 Ps —ezPy 0 0 ,
—-PlA, —aP —cP P 0 0
—P» 0 0 0 P> 0
L O —P3 0 0 0 Ps |
P 0 0
0 P 0 >0
0 0 P

Bull. Pol. Ac.: Tech. 58(4) 2010

where
blockdiag [Py, Py, P3] =
= blockdiag[ 7.7203 3.6738 2.2765 ]

Therefore, the LMIs are feasible with respect to the matrices
Py, Py, P; and the positive fractional system (95) is practical-
ly stable.

Example 7. Using the LMI approaches check the practical
stability of the positive fractional system

—-0.2 1

A%2pq =
Tkt [0.1 b

] rE, keZi 96)
for « = 0.8 and h = 2, and the following two values of the
coeflicient b:
case 1: b = —0.5; case 2: b = 0.5.

Using (18) and (22¢) we obtain

1_
P Ul B
2
—D(a—2
P C et [
3!
and
0.6 1
Case 1. Ay, = A+ Th,a=
0.1 0.3
and
Aoq 61[2 C2I2
A1: _[2 0 0 —
0 I 0
06 1 008 0 0.032 0
0.1 03 0 008 0 0.032
11 0 o0 0 0 0
o 1 o0 0 0 0
0o 0 1 0 0 0
L 0 0 o0 1 0 0 |
0.6 1
Case 2. A,, = A+ I,a=
» = A+ e [0.1 1.3]
and
An, c1ls cols
AQZ IQ 0 0 =
0 I 0
(06 1 008 0 0032 0
0.1 1.3 0 008 0 0.032
11 0 o0 0 0 0
o0 1 0 0 0 0
0o 0 1 0 0 0
L 0 0 o0 1 0 0 |

In case 1 applying Theorem 25 and MATLAB® environ-
ment together with SEDUMI® solver and YALMIP® parser
we obtain for the LMI (91)
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blockdiag [Py, Py, P3] =

16.0915 0
0 84.3680 |’

4.2540 0 2.5726 0
0 16.3556 |’ 0 8.6007

for LMI (92)

= blockdiag |J

blockdiag [Py, Py, P3] =
88848 0 1

0 35.5971
2.5601 0 2.2771 0
0 7.2962 |’ 0 5.2364
and for LMI (93)

blockdiag [Py, Py, P3] =
13.3199 0 ]

= blockdiag [l

0 70.8279

3.537 0 2.2117 0
0 13.1042 |’ 0 7.2682 ||

In case 2 the positive fractional system (96) is unstable for
any h (not only for h = 2) since the matrix A,, has one
diagonal entry greater than 1.

The characteristic polynomial of the matrix A,, — I,

p(z) =det[l,(z+1) — Au,] =
z—04 -1
—-0.1 z2-0.3

has two negative coefficients. Therefore, the system (96) is
also unstable for any h.

= blockdiag |J

=22-0.72—-0.22

4.2. 2D fractional systems. Fractional 2D Roesser mod-
el. The following notions of horizontal and vertical fractional
differences of 2D function are used [38].

Definition 12. The «-order horizontal fractional difference of
an 2D function z;;, 4,7 € Z4 is defined by the formula

K3

AZ.IZ'J' = Z Ca(k)xifk,j; (973)
k=0
wherea € R, ny — 1 <a<ng € N={1,2,...} and
1 for k=0
@ k)= ala— oa—
ca(k) (—1)* (2) =(—1)kelazl).(azk+l) 1)”,;,( R for k>0
(97b)

Definition 13. The (-order vertical fractional difference of an
2D function z;j4, %, j € Z4 is defined by the formula

J
A%.”L‘ij = Zcﬁ(l)xi,j—la (9821)
=0

550

where S € R, no —1< B <ny e N={1,2,...} and

1 for =0
es=4 1y <f) = (—1) 2B for
(98b)

Lemma 8 [26]. If 0 < a < 1 (0 < 8 < 1) then

ca(k) <0 (ca(k) <0) for k=1,2,.... (99

Consider the fractional 2D linear system described by the state
equations

Agwﬂu _ A Ag JCZ " By s
ARy i A1 Az Ty By | 7
(100a)
b
Yij = { C1 Gy } o) | + Dujj 4,5 € Zy, (100b)
5,J

where IZ € R™, xy; € RN"* are horizontal and vertical state
vector at the point (z, j) respectively, u;; € R is input vec-
tor, y;; € NP is output vector at the point (¢, j) and Ay €
R ><n1’ A12 c R ><n2’ A21 c §Rn2><n1’ Agg c §Rn2><n2’
By € RmXm By € R2Xm (C; € RPXM Oy € RPXT2,
D e ppxm,

Using Definition 12 and Definition 13 we may write the
equation (100a) in the form

x?JrLj _ An é12 UCZ .
T 1 A Ag T3
i+1
101
kZ:QCa(k)SU?karl,j B, (101)
| . B, Usj,
> Cﬁ(l)xi,j—l-i-l

=2

where A1; = A1 + al,, and Agy = Ay + B1,,.

From formula (101) it follows, that the fractional 2D sys-
tems are 2D systems with delays increasing with 7 and j.
From (97a) and (98b) it follows that the coefficients ¢, (k)
and cg(l) in (101) strongly decrease when k and [ increase.
Therefore, in practical problems we may assume, that £ and
[ are bounded by some natural numbers L; and Ls. In this
case the equation (101) takes the form

h a1 h
Tit1,j | _ Ay A Tig |
i j4+1 Ao Az i)
Li+1
= @ i—k+1,j By
B La+1 32 Uig -

122 Cﬁ(l)x?,jfﬂrl

The boundary conditions for the equations (100a), (101) and
(102) are given in the form

h

af; for jeZy, aly for i€ Zy (103)
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Theorem 26 [38]. The solution of equation (101) with bound-
ary conditions (103) is given by

ah : 0 ! ah
1, — Tii . + Tz . q +
o Z_;J vl g Z_% g |y
El pf qf
i g
+ Z Z (Timp—1,j— B + Ti—p,j—q—1 8" Yupq,
p=0 gq=0
(104a)
where
B 0
Blo—| | pY- (104b)
0 By

and the transition matrices 1), € R™*"™ are defined by the
formula
I, forp=0,g=0
Tpq = H forp+q>0(p.q€Zy)

0 (zero matrix) forp<Oand/orqg<0
(105a)
where

p
H =TwTp1,4+TonTpq-1 — Z [ ca(B)ny O JTp—pq—

=2

_Z[ 0 cg(Dn, [Tpq-15

=2

0 0
Axr Ag

An
0

A1

Tio = ,  To1 = (105b)

Consider system (102) bounded by two natural numbers L;
and Lo and

_ Ly
_ I, — zflAll + > ca(k)sz[n1
k=2

G(Zl, 2’2) =
—22_1A21
. (106)
—Z1 A12
17 &2 1
In, = 25 Aoz + 3 ()25 In,
=2
Let
N; Ns
det G(z1, 22) = Z Z AN, —p Ny—q?1 29 1, (107)
p=0 q=0

where Nj, Ny € Z are determined by the numbers L; and
Lo in (102).

Theorem 27 [38]. Let (107) be the characteristic polynomial
of the system (102). Then the matrices 7T}, satisfy the equa-

tion
N1 N2

Z Z apgIpq = 0.

p=0¢=0

(108)

Theorem 27 is an extension of the well-known classical
Cayley-Hamilton theorem for the 2D fractional systems de-
scribed by the Roesser model (101).
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Positive fractional 2D Roesser model

Definition 13. The system (100) is called the (internally)
positive fractional 2D system if and only if xfj e R,
zy; € RY? and ygﬁ%ﬁ 1,7 € Z4 for any boundary con-
ditions x(j; € R, j € Zy and xf, € R}?, i € Z and all
inputs uZ Ry 0,5 € Z4.

Theorem 28 [38]. The fractional 2D system (101) for «, 3 €
R,0<a<10<f<1is positive if and only if

Ay Ap nxn By nxm
= e R, S
A1 Ago 2 (109)
[ Ci Cq ] S %ﬁxn, D e %;_o’_xm.

Consider the positive fractional Roesser model (101) with the
state-feedback
u;=[ K1 Ky | [ o 1 (110)
Tij

where K = [ K,
a gain matrix.

We are looking for a gain matrix K such that the closed-
loop system

Ky | € R, K € Rmxmi, j = 1,2 s

$?+17j - le =+ BlKl A12 + BlKQ xfj _
$$7j+1 Agl =+ B2K1 ZQQ + BQKQ $$j
i+1
kZZ:Q Ca(k)x?fkﬂ,j
B! .
l; ca(D)ai; 114

111
is positive and asymptotically stable.

Theorem 29. The positive fractional closed-loop system (111)
is positive and asymptotically stable if and only if there exist
a block diagonal matrix

A = blockdiag [Ay, As),

Ak :dmg [)\kla"wAknk]a (112)
)\kj>07 k=1,2; j=1,...,nk
and a real matrix
D=[Dy Dy], DpeR™™ k=12 (113)
satisfying conditions
A A B1D; ApA B1D
110 + b1 A1z 2+ B1Ds E%ixn (114)
A1 A1 + BoDy Ao + Ba Do
and
AnAi +B1D1 ApAs + B1Dy In, < 0
A21A1 + BaD1 AgaAg + BoDy 1, 0
(115)
where 1,,, = [ 1 1T eR k=12
The gain matrix is given by the formula
K=[K Ky]=[Dy Dy A=
. (116)
=[ DiA]' DoA ).
2
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Proof and a procedure for computation of the gain matrix K
are given in [38].

It is well-known [16, 38] that the positive closed-loop sys-
tem (111) is asymptotically stable if and only if the positive
1D system with the matrix

Ayl + B1K1 Az + B1K> _
Aoy + BoKy Az + BaKo

N (117)
_ Z Inlca(k) 0

k=2 O In20ﬁ(l€)

is asymptotically stable.
Taking into account that [38]

an(k)za—l, ZCB(k)zﬁ—l
k=2 k=2

and Ajy = Ay +al,, and Ayy = Agy + 31, we may write
the matrix (117) in the form

A+ B1K1 Ay + B K.
11 + b1 A12+ 1482 — A4 BK (118)
Aoy + Bo Ky Ago + By Ko
where Ell = Ay + I, and 222 = Ao + I, and
Ay A B
_ Az _ 1 (119)
Aoy Ag Bs

Theorem 30. The fractional closed-loop system (111) is pos-
itive and asymptotically stable if and only if there exist a pos-
itive definite block diagonal matrix (112) and a real matrix
(113) such that the condition (114) is satisfied and the LMI

—A
(AA+ BD)T

AN+ BD

<0 120
o (120)

is feasible with respect to the positive definite diagonal ma-
trix A.

Proof. The closed-loop system (111) is positive if and only if
the condition (114) is satisfied since the condition

A1+ B1K;
As1 + B2 K,

Az + B1 K>
Ago + Bo K>

A+ B1DiATY Ay + BiDoAS?
Agi + BoD1ATY Agg + BaDoAG!

A1y + B1Dy

Az1A1 + B2 D,y

A7Y 0
0 A;?

A12A2 + B1Ds
AN + BaDo

nXn
e Ry

is equivalent to (114).

The positive closed-loop system (111) is asymptotically
stable if and only if the LMI [17]
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P—(A+BK)"P(A+BK) =0 (121)

is feasible with respect to a positive definite diagonal ma-
trix P.

Using the Schur complement we can write the condition
(121) in the form

—-P
(A+ BK)TP

P(A+ BK)

< 0. 122
p (122)

Substitution of (116) and P = A~! into (122) yields

A1t A"Y(A+ BDA™)
(A+ BDA"HTAL —A!
= blockdiag [A™', A™"] —A AL+ BD
(AA + BD)T —A
blockdiag [N, A7) < 0.
(123)

Applying the congruent transformation with the matrix
blockdiag [A, A] we obtain the condition (120).

Example 6. Given the fractional 2D Roesser model with
a=0.4,3=0.5and

05 —0.1 0.1 —0.1
Ay = A = :
1 [ 0.1 0.01] 12 [ 0.2 0.1 1

—-0.3 —-0.1 -1 —-0.1
Ay = , Agy = . (124
A 02 0.1 ] 2 [ 04 0.1 ] (124)
—0.2 —0.3
Bl - ) B2 - .
0.1 0.2
Find a gain matrix K = [ K; K, |, K; € R1*%, i =12

such that the closed-loop system is positive and asymptotically
stable.

The fractional 2D Roesser model with (124) is not pos-
itive since the matrices have negative entries. The model is
also unstable since the matrix

-0.5 —-0.1 —-0.1 -0.1
A A 0.1 001 02 0.1
11 12 (125)
As1 Ags -03 -01 -1 -0.1
02 0.1 04 0.1
has positive diagonal entries.
We choose
D=[Dy Dy], Di=[-04 —02],
(126)
Dy=]-04 -0.2].

Applying Theorem 30 and using MATLAB environment to-
gether with SEDUMI solver and YALMIP parser for the LMI
(120) we obtain

A = blockdiag [A1, As),

04 O 0.2258 0
. [

) A2 =
0 04 0 0.2413

1 (127)
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Therefore, the LMI is feasible with respect to the diagonal
matrix A.
Using (116) we obtain the gain matrix

K=[K K]=[DiA7' DoAy' |=
=] -1 —0.8289 .

The closed loop system is positive since matrices

_ 01 0
A+ B K, = :
Hm e [ 0 0.36]

(128)

—-0.5 —1.7712

0.2542 0.0658
A+ B1Ky = l ] 5

0.0229 0.0171

0 0.05
A21+B2K1—[0 0 ],

— 0.0313 0.1487
A + B K - )
e l 0.0458 0.4342 ]
have all nonnegative entries.
The closed-loop system is asymptotically stable since its

characteristic polynomial

det I,z — (A + B1KY)
—(A21 + B2 K1)

—(A12 + B1K>) _
I,z — (A2 + B2K>)

2403 0 —0.2542  —0.0658

7 0 Z2+0.04  0.0229 —0.0171

N 0 —0.05 z+0.4687 —0.1487
0 0 0.0458  z+0.0658

= 2% +0.87442°% + 0.21662° + 0.0141z + 0.0003

has positive coeflicients.

Example 7. Given the positive fractional 2D Roesser model
with « = 0.4, 3 =0.9 and

—04 0.01 0.01 0.01
A11: 5 A12: )

0.03  0.001 0.01 0.2

0.01 02 0.9 0.01
Ay = . Agy = . (129
2 [ 0 0.01] 22 [0.01 —0.8] (129)

Bi=| ° |.B=| ° |
0.001 0.002

Find a gain matrix K = [ K; K, |, K; € ®1%2, i =1,2
such that the closed-loop system is positive and asymptotically
stable.

The fractional 2D Roesser model with (129) is unstable
since the matrix

-04 0.01 0.01 0.01

A A 0.03 0.001 0.01 0.2
11 12 (130)

As1 Age 0.01 02 =09 0.01

0 0.01 0.01 -0.8

has positive diagonal entries.

Bull. Pol. Ac.: Tech. 58(4) 2010

We chose
D:[Dl DQ ], D1:[013

Dy=]-319 —0.11].

—0.37 |,
(131)

Applying Theorem 30 and using MATLAB environment to-
gether with SEDUMI solver and YALMIP parser for the LMI
(120) we obtain

A = blockdiag [Ay, As),

0.0554 0
Al = )
0 0.0755 (132)
Ay = 0.8659 0 '
0 0.0032

Therefore, the LMI is feasible with respect to the diagonal
matrix A.
Using (116) we obtain the gain matrix

K=[K Ky]=[DiAT" DoA;' ]= (133)
= [ 2.3460 —4.9035 —3.6840 —34.1058 ]
The closed loop system is positive since matrices
_ [0 0.01 |
A +B K - I
tm e 0.0323 0.3961
[ 001 001 |
A+ B1 Ky = )
0.0063 0.1659
[ 001 02 |
A +B K - I
S 0.0047  0.0002

— 0 0.01
Ago + Bo Ko =

e [ 0.0026 0.0318 ]
have all nonnegative entries.

The closed-loop system is asymptotically stable since its
characteristic polynomial

det Iy, z— (A + B1Ky)
—(A21 + BaKq)

—(A12 + B1K»)
In2Z — (AQQ + BQKQ) ]

z+0.4 —0.01 —0.01 —0.01
| —0.0323 2+0.0039 —0.0063 —0.1659
—0.01 —-0.2 z+0.9 —0.01
—0.0047  —0.0002 —0.0026 =z 4 0.8682

=2 +2.17212°% + 1.49532% + 0.31592 + 0.0004

has positive coeflicients.

5. Concluding remarks

The concepts of the practical stability and of the asymptot-
ic stability of the positive fractional and the cone fractional
discrete-time linear systems have been introduced. Necessary
and sufficient conditions for the stabilities of the fractional
systems have been established. It has been shown that the
checking of the stabilities of positive 2D linear systems can
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be reduced to testing the stabilities of corresponding 1D pos-
itive linear systems. Three LMI approaches have been pro-
posed for checking the stabilities of the positive fractional
linear systems. The LMI approach has been applied to com-
pute gain matrices of the state-feedbacks for the fractional 2D
Roesser model such that the closed-loop systems are positive
and asymptotically stable. Necessary and sufficient conditions
for the solvability of the problem have been established. The
effectiveness of the proposed LMI method has been demon-
strated on numerical examples of the fractional 2D Roesser
model. The considerations can be easily extended for positive
fractional linear 1D and 2D systems with delays. An exten-
sion of these considerations for continuous-time 1D and 2D
positive fractional linear systems is an open problem.

Acknowledgements. This work was supported by the Min-
istry of Science and Higher Education in Poland under the
work No NN514 1939 33.

REFERENCES

[1] L. Farina and S. Rinaldi, Positive Linear Systems; Theory and
Applications, J. Wiley, New York, 2000.

T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag,
London, 2002.

T. Kaczorek, “Reachability and controllability to zero of cone
fractional linear systems”, Archives of Control Sciences 17 (3),
357-367 (2007).

T. Kaczorek, “Computation of realizations of discrete-time
cone systems”, Bull. Pol. Ac.: Tech. 54 (3), 347-350 (2006).
R.P. Roesser, “A discrete state-space model for linear image
processing”, IEEE Trans. Autom. Contr. 20 (1), 1-10 (1975).
E. Fornasini and G. Marchesini, “Double indexed dynamical
systems”, Math. Sys. Theory 12, 59-72 (1978).

J. Kurek, “The general state-space model for a two-dimensional
linear digital systems”, IEEE Trans. Autom. Contr. AC-30,
600-602 (1985).

T. Kaczorek, “Reachability and minimum energy control of
positive 2D systems with delays”, Control and Cybernetics 34
(2), 411-423 (2005).

T. Kaczorek, “Positive 2D systems with delays”, 12t" IEEE
IFAC Int. Conf. Methods in Automation and Robotics, MMAR
2006 1, CD-ROM (2006).

M.E. Valcher, “On the internal stability and asymptotic be-
havior of 2D positive systems”, IEEE Trans. on Circuits and
Systems 44 (7), 602-613 (1997).

T. Kaczorek, “Reachability and controllability to zero tests for
standard and positive fractional discrete-time systems”, J. Au-
tomation and System Engineering 42 (6-8), 769-787 (2008).
J. Klamka, Controllability of Dynamical Systems, Kluwer Aca-
demic Publ., Dordrecht, 1991.

J. Klamka, “Positive controllability of positive systems”, Proc.
American Control Conf. ACC-2002 1, CD-ROM (2002).

M. Bustowicz, “Simple stability conditions for linear positive
discrete-time systems with delays”, Bull. Pol. Ac.: Tech. 56 (4),
325-328 (2008).

K. Galkowski and A. Kummert, “Fractional polynomials and
nD systems”, Proc IEEE Int. Symp. Circuits and Systems 1,
CD-ROM (2005).

T. Kaczorek, “Asymptotic stability of positive 1D and 2D lin-

(2]

(3]

(4]
(5]
(6]

(7]

(8]

(9]

(10]

(11]

[12]
(13]

(14]

[15]

(16]

554

[17]

(18]

[19]

[20]

[21]
(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
(32]
[33]
[34]

(35]

[36]

(37]

[38]

ear systems”, Recent Advances in Control and Automation 1,
41-52 (2008).

T. Kaczorek, “LMI approach to stability of 2D positive sys-
tems”’, Multidimensional Systems and Signal Processing 20 (1),
39-54 (2009).

T. Kaczorek, “Asymptotic stability of positive 2D linear sys-
tems with delays”, Bull. Pol. Ac.: Tech. 57 (2), 133-138 (2009).
M. Bustowicz, “Robust stability of positive discrete-time lin-
ear systems with multiple delays with unity rank uncertainty
structure or non-negative perturbation matrices”, Bull. Pol. Ac.:
Tech. 55 (1), 347-350 (2007).

K.S. Miller and B. Ross, An Introduction to the Fractional
Calculus and Fractional Differential Equations, Willey, New
York, 1993.

K. Nashimoto, Fractional Calculus, Descartes Press, Koriya-
ma, 1984.

K.B. Oldham and J. Spanier, The Fractional Calculus, Acad-
emic Press, New York, 1974.

P. Ostalczyk, Epitome of the Fractional Calculus, Theory and
its Applications in Automatics, Lodz Technical University Pub-
lishing House, L.6dz, 2008.

A. Oustaloup, Commande CRONE, Hermés, Paris, 1993.

1. Podlubny, Fractional Differential Equations, Academic
Press, San Diego, 1999.

T. Kaczorek, “Reachability and controllability to zero of posi-
tive fractional discrete-time systems”, Machine Intelligence and
Robotics Control 6 (4), 130-143 (2007).

T. Kaczorek, “Fractional positive continuous-time linear sys-
tems and their reachability”, Int. J. Appl. Math. Comput. Sci.
18 (2), 223-228 (2008).

T. Kaczorek, “Asymptotic stability of positive 2D linear sys-
tems”, Proc. 13" Scientific Conf. Computer Applications in
Electrical Engineering 1, CD-ROM (2008).

T. Kaczorek, “Practical stability of positive fractional discrete-
time linear systems”, Bull. Pol. Ac.: Tech. 56 (4), 313-317
(2008).

T. Kaczorek, “Independence of the asymptotic stability of
positive the 2D linear systems with delays of their delays”,
Int. J. Appl. Math. Comput. Sci. 19 (2), 255-261 (2009).

M. Twardy, “An LMI approach to checking stability of 2D
positive systems”, Bull. Pol. Ac.: Tech. 55 (4), 379-383 (2007).
T. Kaczorek, “Fractional 2D linear systems”, J. Automation,
Mobile Robotics & Intelligent Systems 2 (2), 5-9 (2008).

T. Kaczorek, “Positive different orders fractional 2D linear
systems”, Acta Mechanica et Automatica 2 (2), 51-58 (2008).
T. Kaczorek, “Positive 2D fractional linear systems”, COMPEL
28 (2), 341-352 (2009).

P. Ostalczyk, “The non-integer difference of the discrete-time
function and its application to the control system synthesis”,
Int. J. Syst, Sci. 31 (12), 1551-1561 (2000).

D. Sierociuk and D. Dzielifiski, “Fractional Kalman filter
algorithm for the states, parameters and order of fractional
system estimation”, Int. J. Appl. Math. Comp. Sci. 16 (1),
129-140 (2006).

M. Vinagre and V. Feliu, “Modeling and control of dynamic
system using fractional calculus: Application to electrochem-
ical processes and flexible structures”, Proc. 41 st [EEE Conf.
Decision and Control 1, 214-239 (2002).

T. Kaczorek and K. Rogowski, “Positivity and stabilization
of fractional 2D linear systems described by Roesser model”,
Proc. Conf. Methods and Models in Automation and Robotics
1, CD-ROM (2009).

Bull. Pol. Ac.: Tech. 58(4) 2010



