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Robust stability of positive discrete-time linear systems

of fractional order
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Abstract. The paper is devoted to the problem of robust stability of linear positive discrete-time systems of fractional order with structured

perturbations of state matrices. Simple necessary and sufficient conditions for robust stability in the general case and in the case of linear

uncertainty structure with unity rank uncertainty structure and with non-negative perturbation matrices, are established. It is shown that

robust stability of the positive discrete-time fractional system is equivalent to: 1) robust stability of the corresponding positive discrete-time

system of natural order - in the general case, 2) robust stability of the corresponding finite family of positive discrete-time systems of

natural order - in the case of linear unity rank uncertainty structure, 3) asymptotic stability of only one corresponding positive discrete-time

system of natural order – in the case of linear uncertainty structure with non-negative perturbation matrices. Moreover, simple necessary and

sufficient condition for robust stability of the positive interval discrete-time linear systems of fractional order is given. The considerations

are illustrated by numerical examples.
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1. Introduction

A dynamical system is called positive if any trajectory of

the system starting from non-negative initial states remains

forever non-negative for non-negative controls. An overview

of state of the art in positive systems theory is given in the

monographs [1, 2].

A dynamical system represented by differential (or differ-

ence) equations with not necessarily integer orders of deriv-

atives (or differences) can be considered as a fractional order

system. The real objects are generally fractional, however, for

many of them the fractionality is very low. Therefore, the

fractional order representation is more adequate to describe

real world systems than the integer order models.

In the last decades, the problem of analysis and synthesis

of dynamical systems described by fractional order differential

(or difference) equations has been considered in many papers

and monographs, see [3–7], for example.

The new class of linear fractional order systems, namely

the positive systems of fractional order has been considered

in [8, 9].

The problems of stability and robust stability of the stan-

dard fractional order linear systems have been investigated

in [10–23].

The problem of stability of positive fractional discrete-

time linear systems is addressed in the papers [24–27].

The main purpose of the paper is to give the necessary

and sufficient conditions for robust stability of linear positive

discrete-time systems of fractional order in the general case

and with linear uncertainty structure and in two special cases:

1) unity rank uncertainty structure, 2) non-negative perturba-

tion matrices.

To the best knowledge of the author, the robust stability

problem of positive fractional discrete-time linear systems has

not been considered yet.

In the paper the following notations are used: ℜn×m
+ –

the set of n × m real matrices with non-negative entries and

ℜn
+ = ℜn×1

+ ; [X−, X+] – the interval matrix; Z+ – the set

of non-negative integers; In – the n×n identity matrix; a vec-

tor x ∈ ℜn is called strictly positive (strictly negative) and

denoted by x > 0 (x < 0) if all entries are positive (negative).

2. Problem formulation

Let us consider an uncertain discrete-time linear system of

fractional order α ∈ (0, 1), described by the state equation

∆αxi+1 = A(q)xi + Bui, 0 < α < 1, i ∈ Z+, (1)

where xi ∈ ℜn is the state vector, ui ∈ ℜnu is the input

vector, ∆αxi is the fractional difference of order α ∈ (0, 1),
defined by [8]

∆αxi = xi +

i
∑

j=1

(−1)j

(

α

j

)

xi−j (2)

with
(

α

j

)

=
α(α − 1) · · · (α − j + 1)

j!
, j > 0, (3)

and B ∈ ℜn×nu , A(q) ∈ ℜn×n for any fixed q ∈ Q, where

q = [q1, q2, . . . , qm]T is the vector of uncertain physical para-

meters q1, q2, . . . , qm and

Q = {qr : qr ∈ [q−k , q+

k ], r = 1, 2, . . . , m} (4)

with q−r ≤ 0, q+
r ≥ 0 (r = 1, 2, . . . , m) is the value set of

uncertain parameters.
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Using definition (2) of fractional difference we may write

the equation (1) in the form

xi+1 = Aα(q)xi +

i
∑

j=1

cj(α)xi−j + Bui, q ∈ Q, (5)

where

Aα(q) = A(q) + Inα (6)

and

cj = cj(α) = (−1)j

(

α

j + 1

)

, j = 1, 2, . . . . (7)

By generalization of the positivity condition of fractional

discrete-time system without uncertain parameters [8] to the

uncertain parameters case one obtains the following definition

and lemma.

Definition 1. An uncertain fractional order system (1) is called

positive (internally) if for any q ∈ Q the following condition

holds: xi ∈ ℜn
+ ∀ i ∈ Z+ for any initial conditions x0 ∈ ℜn

+

and all input sequences ui ∈ ℜnu

+ , i ∈ Z+.

Lemma 1. An uncertain fractional order system (1) is positive

if and only if B ∈ ℜn×nu

+ and

Aα(q) = A(q) + Inα ∈ ℜn×n
+ , ∀ q ∈ Q. (8)

In the paper we assume that all entries of the matrix A(q)
(and hence Aα(q)) are continuous functions of uncertain pa-

rameters, non-linear or linear.

In the case of linear uncertainty structure, all entries of

A(q) are linear continuous functions of uncertain parameters.

Therefore, we may write

A(q) = A0 +
m
∑

r=1

qrEr, (9)

where A0 ∈ ℜn×n and Er ∈ ℜn×n (r = 1, 2, . . . , m) are the

nominal and the perturbation matrices, respectively, such that

(8) holds.

The system (1) is called the system with linear unity rank

uncertainty structure if

rank Er = 1, r = 1, 2, . . . , m. (10)

The system (1) has linear uncertainty structure with non-

negative perturbation matrices if

Er ∈ ℜn×n
+ , r = 1, 2, . . . , m. (11)

The coefficients cj = cj(α) defined by (7) are positive for

α ∈ (0, 1) and they strongly decrease for increasing j. There-

fore, can be assumed in practical problems that j is bounded

by some natural number h, called the length of practical im-

plementation [24, 26]. In this case Eq. (5) takes the form

xi+1 = Aα(q)xi +

h
∑

j=1

cj(α)xi−j + Bui, q ∈ Q, (12)

with the initial conditions x−i ∈ ℜn
+, i = 0, 1, . . . , h. The

equation (12) describes an uncertain positive discrete-time

linear system with h delays in state.

The time-delay system (12) is called the practical real-

ization of fractional system (1), or equivalently, of fractional

system (5).

By generalization of the stability definitions of fractional

discrete-time system without uncertain parameters [24, 26, 27]

to the case of uncertain system (1) one obtains the following

definitions.

Definition 2. The positive fractional system (1) is called ro-

bustly practically stable if the system (12) is robustly stable,

i.e. it is asymptotically stable for all q ∈ Q.

Definition 3. The positive fractional system (1) is called ro-

bustly stable if the solution xi of the equation (5) for B = 0
satisfies the condition limi→∞ xi = 0 for every non-negative

initial conditions and for all q ∈ Q, or equivalently, the system

is robustly practically stable for h → ∞.

The practical stability and asymptotic stability problems of

positive discrete-time linear systems of fractional order were

considered in [24–27].

The aim of this paper is to give simple necessary and suf-

ficient conditions for robust stability of the positive discrete-

time fractional system (1) in the general case and in the case

of systems with linear uncertainty structure in two sub-cases:

1. unity rank uncertainty structure (the condition (10) holds),

2. non-negative perturbation matrices (the condition (11)

holds, satisfaction of (10) is not necessary).

Firstly, we show that robust stability of fractional discrete-

time positive system (1) is equivalent to robust stability of the

corresponding discrete-time positive system without delays of

natural order. Next, we give simple conditions for robust sta-

bility.

3. Solution of the problem

Let us consider the positive fractional system

∆αxi+1 = Axi + Bui, 0 < α < 1, i ∈ Z+, (13)

satisfying the positivity condition

Aα = A + Inα ∈ ℜn×n
+ . (14)

The following theorems and lemma have been proved in [26].

Theorem 1. The positive fractional system (13) is asymptoti-

cally stable if and only if there exists a strictly positive vector

λ ∈ ℜn
+ (i.e. λ > 0) such that [D − In]λ < 0, where

D = A + In ∈ ℜn×n
+ , (15)

or equivalently, the positive discrete-time linear system

xi+1 = Dxi, i ∈ Z+, (16)

is asymptotically stable.

Theorem 2. The positive fractional system (13) is asymptot-

ically stable if and only if one of the following equivalent

conditions holds:

1. eigenvalues z1, z2, · · · , zn of the matrix D = A+In have

moduli less than 1,

2. all leading principal minors of the matrix −A are positive,
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3. all coefficients of the characteristic polynomial of the ma-

trix A are positive.

Lemma 2. The positive fractional system (13) is not asymp-

totically stable if at least one diagonal entry of the matrix A

is positive.

From Theorems 1 and 2 we have the following important

remark.

Remark 1. Asymptotic stability of positive fractional system

(13) does not depend on the fractional order α ∈ (0, 1).

By generalisation of Theorem 1 to the case of the sys-

tem (1) with uncertain parameters one obtains the following

theorem.

Theorem 3. The positive fractional discrete-time linear sys-

tem (1) is robustly stable if and only if the positive discrete-

time system

xi+1 = D(q)xi, q ∈ Q, i ∈ Z+, (17)

is robustly stable, where

D(q) = A(q) + In ∈ ℜn×n
+ , ∀ q ∈ Q. (18)

By generalisation of Theorem 2, Lemma 2 and Remark 1

to the system (1) with uncertain parameters we obtain the

following theorem, lemma and remark.

Theorem 4. The positive fractional discrete-time system (1)

is robustly stable if and only if the following equivalent con-

ditions hold:

1. all leading principal minors ∆i(q) (i = 1, 2, . . . , n) of the

matrix −A(q) are positive for all q ∈ Q, i.e.

min
q∈Q

∆i(q) > 0, i = 1, 2, . . . , n, (19)

2. all coefficients of the characteristic polynomial of the ma-

trix A(q), of the form

w(z, q) = det(zIn − A(q)) = zn +

n−1
∑

i=0

ai(q)z
i, (20)

are positive for all q ∈ Q, i.e.

min
q∈Q

ai(q) > 0, i = 0, 1, . . . , n − 1. (21)

Lemma 3. The positive fractional discrete-time system (1) is

not robustly stable if there exists q ∈ Q such that at least one

diagonal entry of matrix A(q) is positive.

Remark 2. Robust stability of positive fractional system (1)

does not depend on the fractional order α ∈ (0, 1), i.e. if this

system is positive and asymptotically stable then it is asymp-

totically stable for all α ∈ [α0, 1), where

α0 = max{−aii(q) : q ∈ Q, i = 1, 2, . . . , n} (22)

and aii(q) (i = 1, 2, . . . , n) are diagonal entries of the matrix

A(q). Note that must be α0 > 0, according to the assumption

α ∈ (0, 1).

The conditions (19) and (21) can be checked by using the

computer programs for minimization with constraints of real

multivariable functions.

Example 1. Check robust stability of positive system (1) for

n = m = 2 with the matrix

A(q) =

[

−0.3 + q2
1 + q2 0.2 − q2

2

0.35 + q1 − q2 −0.3 − q1 − q2
2

]

, (23)

where q ∈ Q and

Q = {q = [q1, q2]
T : qr ∈ [−0.1, 0.1], r = 1, 2}.

It is easy to see that the matrix Aα(q) = A(q) + I2α of

the form

Aα(q) =

[

α − 0.3 + q2
1 + q2 0.2 − q2

2

0.35 + q1 − q2 α − 0.3 − q1 − q2
2

]

(24)

has all non-negative entries for all q ∈ Q and all α ∈ [α0, 1),
where from (22) we have α0 = 0.39. Hence, the positivity

condition (8) holds for α ∈ [0.39, 1).
Computing the leading principal minors of the matrix

−A(q) we obtain:

∆1(q) = 0.3 − q2
1 − q2, ∆2(q) = det(−A(q))

and

min
q∈Q

∆1(q) = 0.19 > 0, min
q∈Q

∆2(q) = 0.008 > 0.

This means that all leading principal minors of the matrix

−A(q) are positive for all q ∈ Q and the system of fractional

order α ∈ [0.39, 1) is robustly stable, according to condition

1) of Theorem 2 and Remark 2.

Now we consider the positive discrete-time system (1)

with linear uncertainty structure, i.e. with the state matrix

of the form (9). To robust stability analysis of such systems

we can use Theorem 4.

It is easy to see that asymptotic stability of the positive

fractional nominal system

∆αxi+1 = A0xi, i ∈ Z+, (25)

is necessary for robust stability of the positive fractional sys-

tem (1) with linear uncertainty structure.

To stability analysis of the system (25) we can apply The-

orem 2 for A = A0.

From the above and Lemma 2 we have the following lem-

ma.

Lemma 4. The fractional positive system (1) with linear un-

certainty structure is not robustly stable if at least one diagonal

entry of the nominal matrix A0 is positive.

Now we consider the system (1) with linear unity rank

uncertainty structure (the condition (10) holds). In this case

the matrix A(q) (9) has linear unity rank uncertainty structure

and all coefficients of the polynomial (20) are real multilinear

functions of uncertain parameters.

Let us denote by q̄1, q̄2, . . . , q̄K (K = 2m), where q̄k =
[q̂1, q̂2, . . . , q̂m]T with q̂r = q−r or q̂r = q+

r , r = 1, 2, . . . , m,

the vertices of hiperrectangle (4).

Moreover, by Vk = A(q̄k), k = 1, 2, . . . , K , denote the

vertex matrices of the family of matrices {A(q) : q ∈ Q},
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where A(q) has the form (9). These matrices correspond to

the vertices of the set (4).

Theorem 5. The positive fractional discrete-time system (1)

with linear unity rank uncertainty structure is robustly stable

if and only if all the positive vertex systems

∆αxi+1 = Vkxi, k = 1, 2, . . . , K, (26)

are asymptotically stable, i.e. the conditions of Theorem 2 are

satisfied for A = Vk and for all k = 1, 2, . . . , K .

Proof. Necessity is obvious because the systems (26) belong

to the family (1) of positive systems with A(q) of the form

(9).

The proof of sufficiency is based on the following ob-

servation: if the system (1) has linear unity rank uncertainty

structure (the condition (10) holds) then the coefficients ai(q),
i = 0, 1, . . . , n − 1, of (20) are real multilinear functions of

uncertain parameters qr, r = 1, 2, . . . , m, and therefore

min
q∈Q

ai(q) = min
k

ai(q̄k), i = 0, 1, . . . , n − 1. (27)

From the condition 3. of Theorem 2 it follows that if the

positive systems (26) are asymptotically stable, then all coef-

ficients of the characteristic polynomials of the matrices Vk,

k = 1, 2, . . . , K , are positive, i.e.

ai(q̄k) > 0, i = 0, 1, . . . , n − 1, k = 1, 2, . . . , K. (28)

Hence, mink ai(q̄k) > 0 for i = 0, 1, . . . , n − 1, and by

(27),

min
q∈Q

ai(q) > 0, i = 0, 1, . . . , n − 1. (29)

This means that all coefficients of the polynomial (20) are

positive for all q ∈ Q, and by condition 2. of Theorem 4, the

positive system (1) is robustly stable.

To asymptotic stability analysis of the positive systems

(26) we can apply Theorem 2 assuming Vk = A(q̄k) for

k = 1, 2, . . . , K instead of the matrix A.

Example 2. Check robust stability of the positive system (1)

with n = 2, α = 0.5, m = 2 and the matrix A(q) of the form

(9) with

A0 =

[

−0.3 0.15

0.3 −0.4

]

, E1 =

[

1 0

0 0

]

,

E2 =

[

1 0

−0.5 0

]

,

(30)

where q ∈ Q with

Q = {q = [q1, q2]
T : qr ∈ [−0.1, 0.1], r = 1, 2}. (31)

It is easy to see that the system (1) with the state ma-

trix (9), (30) is positive (the condition (8) holds), has unity

rank uncertainty structure (the condition (10) holds) and the

positive nominal system (25) is asymptotically stable (all lead-

ing principal minors of the matrix −A0 are positive).

We apply Theorem 5 to the robust stability analysis.

The set (31) of m = 2 uncertain parameters has K =
2m = 4 vertices. Hence, there is K = 4 the vertex systems

(26). Asymptotic stability of the vertex systems is necessary

and sufficient for robust stability of the system under consid-

eration.

Computing the vertices of the value set (31) of uncertain

parameters, the vertex matrices Vk = A(q̄k) and the matrices

−Vk, k = 1, 2, . . . , 4, one obtains

q̄1 =

[

−0.1

−0.1

]

, q̄2 =

[

−0.1

0.1

]

,

q̄3 =

[

0.1

0.1

]

, q̄4 =

[

0.1

−0.1

]

,

(32)

−V1 =

[

0.5 −0.15

−0.35 0.4

]

,

−V2 =

[

0.3 −0.15

−0.25 0.4

]

,

(33a)

−V3 =

[

0.1 −0.15

−0.25 0.4

]

,

−V4 =

[

0.3 −0.15

−0.35 0.4

]

.

(33b)

It is easy to check that all leading principal minors of ma-

trices (33) are positive. This means, according to condition 2)

of Theorem 2, that all the vertex positive systems (26) are

asymptotically stable. Hence, from Theorem 5 it follows that

the system is robustly stable.

The same result we obtain from Theorem 4, because all

leading principal minors of the matrix −A(q) of the form

−A(q) =

[

0.3 − q1 − q2 −0.15

−0.3 + 0.5q2 0.4

]

,

are positive for all q ∈ Q.

Note that the system is positive and robustly stable not

only for α = 0.5, but for any α ∈ [α0, 1), where according

to (22), α0 = max
q∈Q

(0.3 − q1 − q2) = 0.5.

Now we consider the special case of the positive discrete-

time fractional system (1) with linear uncertainty structure,

called the positive fractional discrete-time interval system.

This system is described by the following autonomous state

equation

∆αxi+1 = [A−, A+]xi, i ∈ Z+, (34)

where α ∈ (0, 1), [A−, A+] is the interval matrix, i.e. the set

of real n × n matrices A = [aij ], such that a−

ij ≤ aij ≤ a+

ij ,

i, j = 1, 2, . . . , n, where A− = [a−

ij ], A+ = [a+

ij ].
From the above and Lemma 1 it follows that the system

(34) is positive if and only if

A−

α = A− + Inα ∈ ℜn×n
+ . (35)

Applying Theorem 3 to the positive system (35) we ob-

tain that robust stability of this system is equivalent to robust

stability of the positive interval system of natural order
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xi+1 = [D−, D+]xi, i ∈ Z+, (36)

where
D− = (A− + In) ∈ ℜn×n

+ ,

D+ = (A+ + In) ∈ ℜn×n
+ .

(37)

It is easy to see that the interval matrix [D−, D+] is a

matrix with non-negative entries if and only if the condition

(35) holds.

Theorem 6. The positive fractional discrete-time interval sys-

tem (34) is robustly stable if and only if the positive system

xi+1 = D+xi, i ∈ Z+, (38)

is asymptotically stable.

Proof. It follows from the above considerations and the fact

that the positive interval system (36) is robustly stable if and

only if the positive system (38) is asymptotically stable [28].

To asymptotic stability checking of the positive systems

(38) we can apply Theorem 2 for A = D+.

In the case of the positive system (1) with linear uncertain-

ty structure and non-negative perturbation matrices, i.e. with

the state matrix of the form (9) satisfying the condition (11),

we have qrEr ∈ [q−r Er, q+
r Er] for any fixed qr ∈ [q−r , q+

r ]
and A(q) ∈ [A−, A+] for all q ∈ Q, where

A− = A0 +

m
∑

r=1

q−r Er , A+ = A0 +

m
∑

r=1

q+
r Er. (39)

This means that robust stability of the positive interval

system (34) is sufficient for robust stability of the positive

system (1) with linear uncertainty structure and non-negative

perturbation matrices. Moreover, asymptotic stability of the

positive system (38) is necessary and sufficient for robust sta-

bility of the positive interval system (34).

Hence, asymptotic stability of the positive system (38) is

sufficient for robust stability of the positive system (1) with

linear uncertainty structure and non-negative perturbation ma-

trices.

From Theorem 1 we have that asymptotic stability of

the positive system (38) is equivalent to asymptotic stabili-

ty of the positive fractional system (1) with the state matrix

A(q) = A+, where A+ has the form given in (39).

This means that asymptotic stability of the positive sys-

tem (38) is also necessary for robust stability of the positive

system (1) with linear uncertainty structure and non-negative

perturbation matrices.

Hence, we have the following theorem and lemma.

Theorem 7. The positive fractional discrete-time system (1)

with linear uncertainty structure and non-negative perturba-

tion matrices is robustly stable if and only if the positive

system of natural order (38) is asymptotically stable, where

D+ has the form given in (37).

Lemma 5. The positive system (1) with linear uncertainty

structure and non-negative perturbation matrices is not ro-

bustly stable if at least one diagonal entry of the matrix A+

is positive.

From Theorems 2 and 7 we obtain the following theorem.

Theorem 8. The positive fractional discrete-time system (1)

with linear uncertainty structure and non-negative perturba-

tion matrices is robustly stable if and only if one of the fol-

lowing equivalent conditions holds:

1. eigenvalues z1, z2, · · · , zn of the matrix D+ = A+ + In

have moduli less than 1,

2. all leading principal minors of the matrix −A+ are posi-

tive,

3. all coefficients of the characteristic polynomial of the ma-

trix A+ are positive.

Example 3. Check robust stability of the positive fractional

system (1) with n = 2, α = 0.5, m = 2 and the matrix A(q)
of the form (9) with

A0 =

[

−0.3 0.15

0.3 −0.4

]

, E1 =

[

1 0

0 0

]

,

E2 =

[

1 0

0.5 0

]

,

(40)

where the set Q is given by (31).

The system under consideration is a positive system with

linear uncertainty structure with non-negative perturbation

matrices. Therefore, we apply Theorem 8 to the robust stabil-

ity analysis.

Computing the matrix −A+, where A+ has the form giv-

en in (39) we obtain

−A+ =

[

0.1 −0.15

−0.35 0.4

]

. (41)

Matrix (41) has non-positive leading principal minor

∆2 = det(−A+) and the system is not robustly stable, ac-

cording to Theorem 8.

The same result we obtain from Theorem 4, because not

all leading principal minors of the matrix −A(q) of the form

−A(q) =

[

0.3 − q1 − q2 −0.15

−0.3 − 0.5q2 0.4

]

,

are positive for all q ∈ Q.

4. Concluding remarks

Simple necessary and sufficient conditions for robust stability

of the positive discrete-time linear system (1) of fractional

order 0 < α < 1 in the general case and in the case of system

with linear uncertainty structure in two sub-cases: 1) unity

rank uncertainty structure (the condition (10) holds), 2) non-

negative perturbation matrices (the condition (11) holds, sat-

isfaction of (10) is not necessary), have been given.

It has been shown that:

• robust stability of the positive fractional system (1) is

equivalent to robust stability of the positive discrete-time

system of natural order (17) (Theorem 3),

• the positive fractional system (1) with linear unity rank

uncertainty structure is robustly stable if and only if the

positive vertex systems (26) of natural order are asymptot-

ically stable (Theorem 5),
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• the positive interval fractional system (34) is robustly sta-

ble if and only if the positive system (38) of natural order

is asymptotically stable (Theorem 6).

• the positive fractional discrete-time system (1) with linear

uncertainty structure and non-negative perturbation matri-

ces is robustly stable if and only if the positive system (38)

of natural order is asymptotically stable (Theorem 7).

The proposed conditions for robust stability of positive

fractional discrete-time linear systems have been obtained by

extension of asymptotic stability conditions given in [26].
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