
BULLETIN OF THE POLISH ACADEMY OF SCIENCES

TECHNICAL SCIENCES, Vol. 58, No. 4, 2010

DOI: 10.2478/v10175-010-0061-z

AUTOMATICS
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Abstract. In this paper we define a class of linear q-difference fractional-order systems with finite memory. For such systems we state

definitions of indistinguishability and observability by using the concept of extended initial conditions. We prove the formula for the solution

and the rank condition for observability.
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1. Introduction

The fractional calculus in continuous case includes differ-

ent notion of derivatives, e.g. Riemann-Liouville, Grünwald-

Letnikov, Caputo and generalized function approach [1, 2]. In

modeling the real phenomena authors emphatically use gen-

eralizations of n-th order differences to their fractional forms

and consider the state-space equations of control systems in

discrete-time, e.g. [3, 4]. As the unification of both cases with

classical tools one can consider systems on time scales [5, 6].

The theory of q-difference linear control systems is devel-

oped separately as a special kind of systems on time scales,

see e.g. [7–9].

In the generalization of classical discrete differences to

fractional-order there is convenient to take finite summation,

see [3, 4, 10, 11]. What seems to be one of the greatest phe-

nomena in using fractional derivatives/differences in systems

modeling real behaviors is the initialization of the process.

In fact the initial value problem is an important task in dai-

ly applications. Recently we can find papers dealing with the

problem how to impose initial conditions, e.g. [12–14]. We

propose the condition on the observability property of the

special kind of systems with extended initial conditions. It is

known that the observability problem is under investigation

for the continuous case as well as for the discrete case, also

for classical notations of differences, see [15].

In this paper we deal with a q-fractional difference system

with the initialization given by the additional function ϕ that

vanishes at a time interval with infinitely many points. In that

way we get only the finite number of values of an initializing

function ϕ that can be nonzero. We call such set by l-memory.

It could be treated as the special kind of initial conditions.

The solution of the l-memory initial value problem is con-

structed. We use a definition of an undistinguishability rela-

tion and observability in s-steps, similarly as it is proposed

in [16]. In that way we state the problem in the classical way,

using the rank of the defined observability matrix.

2. Fractional q-difference systems

Let q ∈ (0, 1) and α be any nonzero rational number. Firstly,

we need the following q-analogue of n!, introduced in [8]:

[n]! =

{
1, if n = 0,

[n] [n − 1] · · · [1] , if n = 1, 2, . . .

Hence [n + 1]! = [n]![n + 1] for each n ∈ N.

Following the notations in [8], we write [α] =
1 − qα

1 − q
and for generalization of the q-binomial coefficients

[
α

0

]
= 1,

[
α

j

]
=

[α][α − 1] · · · [α − j + 1]

[j]!
, j ∈ N .

Note that

(i) [1] = 1 but [n + 1] = 1 + q + · · · + qn and

lim
n→+∞

[n] =
1

1 − q
.

(ii) For n ∈ N: lim
q→1

[n]! = n!.

(iii)

[
α

1

]
= [α],

[
α

2

]
=

(1 − qα−1)(1 − qα)

(1 − q2)(1 − q)
.

Using the definition of the fractional quantum derivative

(see [9]), we introduce a q-difference of the fractional order

as follows.

Definition 2.1. A q-difference of fractional order α of a func-

tion x(·) : R→R at t 6= 0 is defined by

∆α
q x(t) := t−α

∑
∞

j=0

[
α

j

]
(−1)jq

j(j+1)
2 q−jα

(1 − q)α
x(qjt) .
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Let us denote bj =

[
α

j

]
(−1)jq

j(j+1)
2 q−jα . Then

∆α
q x(t) = t−α

∞∑

j=0

bj

(1 − q)α
x(qjt) . (1)

Definition 2.2. Let l ∈ N ∪ {0} and t0 > 0. Then Ωl(t0) :=
{t0, qt0, . . . , q

lt0}.

Let a > 0. Then by ua : R → {0, 1} we denote the

Heaviside step function such that ua(t) = 0 for t < a and

ua(t) = 1 for t ≥ a.

Proposition 2.3. Let a > 0. Let ϕ : R → R
n be any function

and x(t) = ϕ(t)ua(t). Then, for ∆α
q x(t) = 0 for t < a and

∆α
q x(t) = t−α

N(t,a)∑

j=0

bj

(1 − q)α
x(qjt) , (2)

for t ≥ a, where N(t, a) is the integer part of the value
ln a − ln t

ln q
.

Definition 2.4. Let l ∈ N ∪ {0}, t0 > 0 and ϕ : R → R
n.

The vector

M(l, t0, ϕ) :=




ϕ(t0)

ϕ(qt0)
...

ϕ(qlt0)




of values of the function ϕ on Ωl(t0), is called a finite l-me-

mory at t0.

Remark 2.5. Let l ∈ N ∪ {0} and s ∈ N ∪ {0}, t0 > 0,

ϕ : R → R
n. Then,

(i) M(l, t0, ϕ) ∈ R
n+nl;

(ii) if l1, l2 ∈ N ∪ {0}, l2 ≥ l1, then Ωl1(t0) ⊂ Ωl2(t0)
and

[
Inl1 ,0nl1×n(l2−l1)

]
M(l2, t0, ϕ) = M(l1, t0, ϕ) ,

where 0nl1×n(l2−l1) denotes the zero matrix of dimension

nl1×n(l2− l1), and Inl1 is the identity matrix of degree nl1.

Definition 2.6. Let l ∈ N ∪ {0} and t0 > 0, a = qlt0,

ϕ : R → R
n. A linear q-difference fractional-order system

with l-memory, denoted by Σ(α,q,l), is a system given by the

following set of equations:

∆α
q x(t) = Ax(qt), t > t0, (3)

x(t) = (ϕua) (t), t ≤ t0, (4)

y(t) = Cx(t), (5)

where A ∈ R
n×n, C ∈ R

p×n are constant matrices. By

γ (t, t0, M(l, t0, ϕ)) we denote the solution of (3)–(4) starting

at t0 and evaluated at time t =
t0

qk
, k > 0, of l-memory initial

value problem corresponding to the values of the function ϕ.

From Eqs. (2) and (3) follows

x

(
t0

q

)
=

((
t0(1 − q)

q

)α

A − b1In

)
x(t0)−

−

l∑

j=1

bj+1x(qjt0)

(6)

and more generally

x

(
t0

qk+1

)
=

((
t0(1 − q)

qk+1

)α

A − b1In

)
x

(
t0

qk

)
−

−

k+l∑

j=1

bj+1x
(
qj−kt0

)
.

Let us set G(k, t0) =

(
t0(1 − q)

qk+1

)α

A − b1In, and

A0 = 0n, while for j > 0: Aj = −bj+1In, where 0n is

the zero matrix of the dimension n×n. Note that G(0, t0) =(
t0(1 − q)

q

)α

A − b1In. This leads to

x

(
t0

qk+1

)
= G(k, t0)x

(
t0

qk

)
+

k+l∑

j=1

Ajx

(
t0

qk−j

)
. (7)

Let us construct, using an idea given in [3], the sequence of

matrices from R
n×(nl+n) as follows.

Φ̃(0, t0) = [In, 0n, . . . 0n] ,

Φ̃(1, t0) = [G(0, t0), A1, . . . Al] ,

Φ̃(2, t0) = G(1, t0)Φ̃(1, t0) + [A1, . . . , Al+1]

and for k + 1 ≥ 3:

Φ̃(k + 1, t0) = G(k, t0)Φ̃(k, t0)+

+

k−1∑

j=1

AjΦ̃(k − j, t0) + [Ak, Ak+1, . . . , Ak+l] .

Moreover, let Φ(k, t0) := Φ̃(k, t0)

[
In

0n×(nl)

]
. Particularly

Φ(0, t0) = In,

Φ(1, t0) = G(0, t0)

and

Φ(2, t0) = G(1, t0)G(0, t0) + A1.

Theorem 2.7. Let l ∈ N ∪ {0} and t0 > 0, a = qlt0,

ϕ : R → R
n. The solution of the l-memory initial value

problem is given by:

γ (t, t0, M(l, t0, ϕ)) = Φ̃(k, t0)x̃(t0)

for t =
t0

qk
, k > 0,

(8)

where x̃(t0) = M(l, t0, ϕ).
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Proof. Let t =
t0

qk
. Note that for k = 0 holds

Φ̃(0, t0)x̃(t0) = Inx(t0) = x(t0).

Now let us assume that the formula (8) holds for all t =
t0

qj
,

j ≤ k, k > 0. Consider Eq. (7) and write the formula (8) for

t =
t0

qk+1
. Hence

γ (t, t0, M(l, t0, ϕ)) = G(k, t0)x

(
t0

qk

)
+

k+l∑

j=1

Ajx

(
t0

qk−j

)
.

The inductive assumption implies that

γ (t, t0, M(l, t0, ϕ)) = G(k, t0)Φ̃

(
t0

qk
, t0

)
x̃(t0)+

+ A1x

(
t0

qk−1

)
+ · · · + Ak−1x

(
t0

q

)
+

+ Akϕ(t0) + Ak+1ϕ (qt0) + · · · + Ak+lϕ
(
qlt0

)
.

After using again inductive assumption for each of x

(
t0

qj

)
,

j = 1, . . . , k − 1:

x

(
t0

qj

)
= γ

(
t0

qj
, t0, M(l, t0, ϕ)

)
= Φ̃

(
t0

qj
, t0

)
x̃(t0)

and the fact

A1x

(
t0

qk−1

)
+ · · · + Ak−1x

(
t0

q

)
=

=

k−1∑

j=1

AjΦ̃

(
t0

qk−j
, t0

)
x̃(t0),

finally we get

γ (t, t0, M(l, t0, ϕ)) =

=


G(k, t0)Φ̃

(
t0

qk
, t0

)
+

k−1∑

j=1

AjΦ̃

(
t0

qk−j
, t0

)
 x̃(t0)+

+ ([Ak, . . . , Ak+l]) x̃(t0) = Φ̃(k + 1, t0)x̃(t0).

Hence, from the principle of mathematical induction the for-

mula (8) holds for all k ∈ N ∪ {0}.

Remark 2.8. If l = 0 then the memory M(0, t0, ϕ) is only

one-valued, i.e. M(0, t0, ϕ) = ϕ(t0). Moreover, in that case,

matrix Φ̃(k, t0) = Φ(k, t0) and

Φ(k + 1, t0) = G(k, t0)Φ(k, t0) +

k∑

j=1

AjΦ(k − j, t0) .

Additionally γ
(

t0
qk , t0, M(0, t0, ϕ)

)
= Φ(k, t0)ϕ(t0).

3. Observability in finite memory domain

The standard definition of observability says that a system is

observable on a time-interval if from the knowledge of the

output one can reconstruct uniquely the initial condition. As

we consider systems together with the l-memory, (i.e. the ex-

tended initial conditions), we want to determine the extended

initial condition x̃(t0) from the knowledge of the sequence of

outputs

Y :=

{
y

(
t0

qk

)
, k = 0, . . . s

}
.

Hence, the starting point t0 is important (similarly like it is for

time-varying systems). For that reason, following by [17, 18],

a pair (t, x̃) ∈ R+ × R
n+nl is called an l-event.

Let us consider the linear autonomous q-difference

fractional-order system Σ(α,q,l) given by equations (3)–(5).

Definition 3.1. Let l, s ∈ N ∪ {0} and t0 > 0. Let ϕ1,2 :
R → R

n. We say that two l-events (t0, x̃1), (t0, x̃2), where

x̃1 = M(l, t0, ϕ1), x̃2 = M(l, t0, ϕ2), are indistinguishable

with respect to Σ(α,q,l) in s-steps if and only if

Cγ(t, t0, x̃1) = Cγ(t, t0, x̃2) (9)

for all t ∈ Ωs

(
t0

qs

)
. Otherwise, the l-events (t0, x̃1), (t0, x̃2)

are distinguishable with respect to Σ(α,q,l) in s-steps.

The next proposition follows directly from the above def-

inition.

Proposition 3.2. Two l-events (t0, x̃1), (t0, x̃2) are indistin-

guishable with respect to Σ(α,q,l) in s-steps if and only if

CΦ̃(k, t0)x̃1 = CΦ̃(k, t0)x̃2 (10)

for all k ∈ {0, . . . , s}.

As (10) can be written in the form

CΦ̃(k, t0) (x̃1 − x̃2) = 0,

then the following statements are equivalent:

a) The events (t0, x̃1), (t0, x̃2) ∈ R+ × R
n+ln are indistin-

guishable with respect to Σ(α,q,l) in s-steps.

b) The events (t0, x̃1 − x̃2), (t0,0) ∈ R+ × R
n+ln are indis-

tinguishable with respect to Σ(α,q,l) in s-steps.

Definition 3.3. Let l, s ∈ N∪{0} and t0 > 0, ϕ1,2 : R → R
n.

We say that Σ(α,q,l) is observable at t0 in s-steps if any

two l-events (t0, x̃1), (t0, x̃2), where x̃1 = M(l, t0, ϕ1),
x̃2 = M(l, t0, ϕ2), are distinguishable with respect to the

system Σ(α,q,l) in s-steps.

Proposition 3.4. The system Σ(α,q,l) is observable at t0 in

s-steps if and only if the initial extended state x̃(t0) =
M(l, t0, ϕ) can be uniquely determined from the knowledge

of the sequence of outputs Y =

{
y

(
t0

qk

)
, k = 0, . . . , s

}
.

Proof. “⇒” Let us assume that there are two l-memories such

that for all k ∈ {0, . . . , s} we have:

Cγ

(
t0

qk
, t0, x̃1

)
= Cγ

(
t0

qk
, t0, x̃2

)
= y

(
t0

qk

)
.

It means that x̃1, x̃2 are indistinguishable with respect to

Σ(α,q,l) in s-steps. This contradicts to observability.
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“⇐” Let us assume again that there are two l-memories

such that Cγ

(
t0

qk
, t0, x̃1

)
= Cγ

(
t0

qk
, t0, x̃2

)
for all k ∈

{0, . . . , s}. But it is possible only if x̃1 = x̃2.

Let us denote by O(s) the matrix:

O(s) :=




CΦ̃(0, t0)

CΦ̃(1, t0)
...

CΦ̃(s, t0)




and call it the observability matrix in s-steps for Σ(α,q,l).

The following Proposition can be proved in the same

manner as in the classical linear control theory, for example

see [19].

Proposition 3.5. Let l, s ∈ N ∪ {0}, and t0 > 0. The system

Σ(α,q,l) is observable at t0 in s-steps if and only if one of the

following conditions hold:

(i) the (nl + n) × (nl + n) real matrix:

W (s, t0) =

s∑

k=0

Φ̃T (k, t0)C
T CΦ̃(k, t0)

is nonsingular;

(ii) the matrix CΦ̃(k, t0) has linearly independent columns

for all k ∈ {0, . . . , s};

(iii) rankO(s) = rank




CΦ̃(0, t0)

CΦ̃(1, t0)
...

CΦ̃(s, t0)




= nl + n.

Proposition 3.6. If rank C = n and rank




b2 . . . bl+1

...
...

bs . . . bl+s+1


 = n,

then the system Σ(α,q,l) is observable at any t0 in s-steps.

Proof. Following the construction of matrices Φ̃(k, t0) we can

write that

rank O(s) = rank




CΦ(0, t0) 0 . . . 0

CΦ(1, t0) CA1 . . . CAl

...
... . . .

...

CΦ(s, t0) CAs+1 . . . CAs+l




= rankC + rank




CA1 . . . CAl

... . . .
...

CAs+1 . . . CAs+l


 .

Let

C ∈ R
p×n,

C̃ =




C 0 . . . 0

0 C . . . 0

0 0 . . . C


 ∈ R

[(s+1)p]×[(s+1)n]

and

B =




−b2In −b3In . . . −bl+1In

...
... . . .

...

−bs+2In −bs+3In . . . −bs+l+1In




∈ R
[(ls+1)n]×(nl).

Notice that rankC = min(p, n) if and only if rankC̃ =
(s + 1)min(p, n). Then

rankO(s) = rankC + rank C̃B.

Moreover, if rankC = n, then rank C̃ = (s + 1)n and

rank C̃B = rank B. It means that

rank B = lrank




b2 . . . bl+1

...
...

bs . . . bl+s+1


 = ln.

Hence, rank O(s) = n + ln.

Remark 3.7. Let l = 0. Then the rank condition of observ-

ability matrix takes classical form with rank O(s) = n.

Example 3.8. Let us consider the system Σ(α,q,l) with n = 1,

i.e.:

∆α
q x(t) = ax(t), y(t) = cx(t),

where a, c ∈ R. Then

cΦ̃(0, t0) = [c, 0], Φ̃(1, t0) = [cG(0, t0),−b2c] .

Moreover, for c 6= 0 we have that rankO(1) = 2 and the

system is observable in 1-memory in s-steps for any s ∈ N.

Example 3.9. Let us consider the system Σ(α,q,l) with the ma-

trix A = 0, so ∆α
q x(t) = 0 and with the output y(t) = Cx(t).

Then for each k ∈ N∪{0}: G(k, t0) = −b1In and the solution

of l-memory initial value problem with the set of conditions

x(t) = (ϕua) (t), for a = qlt0 and t0 > 0, in general is not

zero. We can also notice that

(i) rank C = n ⇔ rankO(s) = nl+n ⇔ Σ(α,q,l) is observ-

able for any s ≥ 1;

(ii) If rank C < n then for all s system Σ(α,q,l) is not ob-

servable in s-steps.
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