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Reactive compensator synthesis in time-domain
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Abstract. The source reactive-current compensation is crucial in the energy transmission efficiency. The compensator design in a frequency-
domain has already been widely discussed and examined. This paper presents results of a study on how to design reactive compensators in
a time-domain. It is the first time the reactive compensator has been designed in a time domain. The example of a compensator is presented.
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1. Introduction

This article is a discussion on issue raised in the article of
L.S. Czarnecki [1] where the author considers if it is possible
to make a current decomposition into active, reactive and un-
balanced current in a time domain and basing on it to build
reactance compensators. The current decomposition in a time
domain was presented in the previous articles [2, 3] and in
this article the reactive compensators design in a time-domain
is presented.

2. Reactive current compensation

in time-domain

In the article [3], there was shown that a source-load cur-
rent can be decomposed into active and reactive current in
‘s’ domain i.e. for the Laplace transform of signals. Reactive
current can be compensated with the reactive compensator.
The source-load current decomposition is given below:

I(s) = Go(s)E(s) + Bo(s)E(s) = Io
G(s) + Io

B(s), (1)

where
Go(s) =

1

2
(Y o(s) + Y o(−s)), (2)

Bo(s) =
1

2
(Y o(s)o

Y (−s)) (3)

stand for the active and reactive parts of load admittance op-
erator Y o(s).

The equivalent decomposition (1) in time-domain is the
T -periodic convolution:

i(t) = (go(t) + bo(t)) ⊗ e(t0 (4)

where go(t), bo(t) stands for T-periodic impulse response of
a load admittance active and reactive part given from the in-
verse relations [3]

1

σ + s
−→ e−σt

1 − e−σt
,

1

σ − s
−→ eσ(t−T )

1 − e−σT
,

(5)

where t ∈ [0, T ), Re(σ) > 0, T – time period.

Since bk(t) stands for T -periodic impulse response of
a compensator admittance reactive part, thus the reactive cur-
rent balance in time-domain is:

bk(t) + bo(t) = 0. (6)

We assume that the compensator is composed of almost
lossless elementary branches connected in parallel as well as
the load (Fig. 1).

Fig. 1. The zero impedance source, load and almost lossless com-
pensator connected in parallel

Reactive part of elementary compensator branch is:

B(s) =
d(−a)

a + s
+

d(−a∗)

a∗ + s
+

d(a)

a − s
+

d(a∗)

a∗ − s
=

L(s)

M(s)
, (7)

where L(s), M(s) – odd and even polynomials.
Residues are given by formulas:

d(−a) = [B(s)(a + s)]
∣

∣

∣

s=−a
=

L(−a)

M ′(−a)
=

L(s)

M ′(a)
≡ d,

d(a) = [B(s)(a − s)]
∣

∣

∣

s=a
= − L(a)

M ′(a)
= −d,

d(−a∗) = [B(s)(a∗ + s)]
∣

∣

∣

s=−a∗

=
L(−a∗)

M ′(−a∗)

=
L(a∗)

M ′(a∗)
=

[

L(a)

M ′(a)

]∗
= d∗,

d(a∗) = [B(s)(a∗ − s)]
∣

∣

∣

s=a∗

= − L(a∗)

M ′(a∗)

=

[

L(a)

M ′(a)

]∗
= −d∗,
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where M ′(s) is the derivative of M(s) with respect to s, d –
real number.

Thus (7) reduces to

B(s) = d

(

1

a + s
− 1

a − s

)

+ d∗
(

1

a∗ + s
− 1

a∗ − s

)

(8)

and under (5)

bk(t) = d
e−at − ea(t−T )

1 − e−aT
+ d∗

e−a∗t − ea∗(t−T )

1 − e−a∗T

= −2Re









d

sh

(

A

(

t

T
− 1

2

))

sh

(

A

2

)









,

(9)

where A = aT = α + jβ.
From the trigonometric identity

sh(α + jβ) = sh(α) cos(β) + j ch(α) sin(β)

results that

bk(t) = −2dRe





sh
(

α
(

t
T
− 1

2

))

cos
(

β
(

t
T
− 1

2

))

sh
(

α
2

)

cos
(

β

2

)

+ j ch
(

α
2

)

sin
(

β

2

)

+ j
ch
(

α
(

t
T
− 1

2

))

sin
(

β
(

t
T
− 1

2

))

sh
(

α
2

)

cos
(

β
2

)

+ j ch
(

α
2

)

sin
(

β
2

)





and for α → 0

bk(t) = −2d

ch

(

α

(

t

T
− 1

2

))

sin

(

β

(

t

T
− 1

2

))

ch
(α

2

)

sin

(

β

2

)

= −2d

sin

(

β

(

t

T
− 1

2

))

sin

(

β

2

) t ∈ [0, T ).

(10)

If it is the case of RLC compensator elementary branch
then

Y k(s) =
1

L

s

ω2
o + 2ǫs + s2

; ωo =
1√
LC

, ǫ =
R

2L
.

Its reactive part is

Bk(s) =
1

2L

(

s

ω2
o + 2ǫs + s2

+
s

ω2
o − 2ǫs + s2

)

=
1

2L

(

s

(a + s)(a∗ + s)
+

s

(a − s)(a∗ − s)

)

,

where a = ǫ + jωo ≈ jωo

β = ωoT = 2π

√

XC

XL

XC =
T

1πC
, XL =

2πL

T
– capacitive and inductive reactance

for the main frequency f = 1/T .

Residue for Bk(s) can be calculated as

d = [Bk(s)(a + s)]

∣

∣

∣

∣

∣

 
s = −a

ǫ = 0

! =
1

2L
.

Thus the time depended representation of reactive part of
the elementary RLC branch (without R) has the form

bk(t) = − 1

L

sin

(

2π

√

XC

XL

(

t

T
− 1

2

))

sin

(

π

√

XC

XL

) ;
t

T
∈ [0, T ].

In such a way we arrive to the compensatory set of Eqs. (6)
in a new form

M
∑

m=1

1

Lm

sin

(

2πwm

(

t

T
− 1

2

))

sin (πwm)
= bo

(

t

T

)

, (11)

where wm =

√

(

XC

XL

)

=
ω0n
(

2π

T

) , m – number of elemen-

tary branch, M – total number of compensator branches, ωom

– resonance frequency of m-th branch.
Later in the article it is assumed that the reactive part of

load Y o(s) has only real poles, so the load is not an oscillator
circuit in contrast to the compensator.

For the single pole load

Bo(s) = b

(

1

a + s
− 1

a − s

)

a > 0

thus its invert transform is

bo

(

t

T

)

= b
e−at − ea(t−T )

1 − e−aT
= −b

sh

(

A

(

t

t
− 1

2

))

sh

(

A

2

) , (12)

where A = aT , t/T ∈ [0, T ).
The coefficient b can be both positive and negative what

is shown below

a) b)

Fig. 2. Examples of the load a) RRLC b) RLC

For the RRLC load (see Fig. 2a) the admittance operator is

Y o(s) =
1

R + sL
+

1

R +
1

sC

= 2bL

1

aL + s
− 2b

1

aC + s
+

1

R
,
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where

aL =
R

L
, bC =

1

RC
,

bL =
1

2L
, bC =

aC

2R
=

1

2R2C
.

Then the reactive part of Yo(s) is

Bo(s) = bL

(

1

aL + s
− 1

aL − s

)

− bC

(

1

aC + s
− 1

aC − s

)

and its T -periodic inverse transform is

bo

(

t

T

)

= −bL

sh

(

AL

(

t

T
− 1

2

))

sh

(

AL

2

)

+ bC

sh

(

AC

(

t

T
− 1

2

))

sh

(

AC

2

)

where AL = aLT , AC = aCT .
Whereas for the load shown in Fig. 2b:

Y o(s) =
1

1

sC
+ R + sL

=
1

L

s

ω2
0 + 2αs + s2

,

where ωo = 1√
LC

, α =
R

2L
.

For the positive poles condition α2 − ω2 > 0.
Y o(s) takes form

Y o(s) =
1

L

s

(a1 + s)(a2 + s)
= 2

(

b1

a1 + s
+

b2

a2 + s

)

,

where a1 + α +
√

α2 − ω2
0 , a2 = α −

√

α2 − ω2
0 .

And the coefficients b1, b2 are then

b1 =
1

2
[Y (s)(a1 + s)]

∣

∣

∣

∣

∣

s=−a1

=
1

2L

a1

a1 − a2
,

b2 =
1

2
[Y (s)(a2 + s)]

∣

∣

∣

∣

∣

s=−a2

=
1

2L

a2

a1 − a2
,

or

b1 =
1

4L

α +
√

α2 − ω2
0

√

α2 − ω2
0

> 0,

b2 = − 1

4L

α −
√

α2 − ω2
0

√

α2 − ω2
0

< 0,

thus

Bo(s) = b1

(

1

a1 + s
− 1

a1 − s

)

+b2

(

1

a2 + s
− 1

a2 − s

)

.

Fig. 3. T-periodic single pole reactive operator in time-domain for
a) b > 0, b) b < 0

The reactive functions bo

(

t

T

)

(12) are shown in Fig. 3.

It is necessary to distinguish the two cases when b > 0 and
b < 0. When A/2 → 0 the curves become straight lines.

bo

(

t

T

)

= −2b

(

t

T
− 1

2

)

,
t

T
∈ [0, 1) (13)

because sh(x) → 0 for x → 0.

The solution of (11), for the unknowns Lm and Cm, can be
find with optimization method. The (11) can be then rewritten
in the following form

M
∑

m=1

Dm sin

(

2πwm

(

t

T
− 1

2

))

= bo

(

t

T

)

, (14)

where

Dm =
1

Lm sin (πwm)
; wm =

√

(

XC

XL

)

m

.

The relative frequencies of LC compensator branches have
to meet the condition

sin(πwm) 6= 0

thus

wm 6= p; p – even number.

The set of Eqs. (14) can be solved for Dm by minimizing

δ2 → min, (15)
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where

δ2 =

1
∫

0

(

M
∑

m=1

Dm sin

(

2πwm

(

t

T
− 1

2

))

−bo

(

t

T

)

)2

d

(

t

T

)

or after few simple transformations it can be rewritten as

δ2 =

1
∫

0

bo

(

t

T

)2

d

(

t

T

)

− 2
M
∑

m=1

Dm

1
∫

0

bo

(

t

T

)

sin

(

2πwm

(

t

T
− 1

2

))

d

(

t

T

)

+
M
∑

m=1

N
∑

n=1

sin (π(wm − wn))

2π(wm − wn)
DmDn

−
M
∑

m=1

N
∑

n=1

sin (π(wm + wn))

2π(wm + wn)
DmDn → min .

(16)
After equating to zero the appropriate partial derivatives

∂

∂Dm

and assuming that

wp = p + α, p = 1, 2, 3, ...; 0 < α < 1, (17)

we get necessary minimum condition in form of the set of

equations for
1

Lp

1

Lp

−
M
∑

m=1

sin(2πα)

π(m + p + 2α)

1

Lm

=(sin(πwp))

1
∫

0

bo

(

t

T

)

sin

(

2πwp

(

t

T
− 1

2

))

d

(

t

T

)

.

(18)

In particular case of the one pole load, for which bo

(

t

T

)

is given by (12), Eq. (18) gets form

1

Lp

−
M
∑

m=1

sin (2πα)

π(m + p + 2α)

1

Lm

=
b

(

A

2

)2

+ (πwp)2

·
(

πwp sin(2πα) − 2
A

2
cth

(

A

2

)

sin(πα)2
)

(19)

or after separating the diagonal (dominating) element we get
(

1 − sin(2πα)

2π(p + α)

)

1

Lp

−
∑

m 6=p

sin(2πα)

π(m + p + 2α)

1

Lm

=
b

(

A

2

)2

+ (πwp)2

·
(

πwp sin(2πα) − 2
A

2
cth

(

A

2

)

sin(πα)2
)

.

(20)

The offset α in (17) must be less then 0.5 as to assure Lp

positive.

3. Comparison with compensator design

in frequency-domain

The comparison of time-domain compensator design method
to the frequency-domain one will be shown below. The
frequency-domain approach is a well known method (see
M. Pasko [4–6]).

The counterpart of (6) in frequency-domain is

Bk
n + Bo

n = 0, (21)

where Bk
n, Bo

n – frequency response of compensator and load
susceptance, n = 1, 2, 3, ... – harmonic number.

For the elementary compensator branch (LC in series)

Y k(s) =
1

sL +
1

sC

=
2π

XL

sT

(sT )2 + (2π)2
XC

XL

. (22)

Substituting sT =
jn2π

T
T = j2πn we get the frequency

response of the branch elementary susceptance

Bn = − n

n2 − XC

XL

1

XL

.

Thus the formula of reactive source current compensa-
tion (22) takes form

M
∑

m=1

n

n2 − w2
m

1

Lm

=
2π

T
Bo

n. (23)

The Eq. (23) is the counterpart of (11) transformed to
optimization task (18).

As to perform a comparative analysis of (11) and (23) it

must be examined the susceptance relation between bo

(

t

T

)

and its transform Bo
n(in frequency-domain). It can be proved

that

Bo
n = −T

1
∫

0

bo

(

t

T

)

sin

(

2πn
t

T

)

d

(

t

T

)

. (24)

Then in the particular case of the RL in series load we get

Bo
n = Im

(

Y o

(

j
2π

T
n

))

= Im

(

T

L

A − j2πn

A2 + (2πn)2

)

= − T

sL

πn
(

A

2

)2

+ (πn)2

,

where n-integer.
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Certainly we can integrate Eq. (11) the same way as

−T

1
∫

0

M
∑

m=1

sin

(

2πwm

(

t

T
− 1

2

))

Lm sin(πwm)
sin

(

2πn
t

T

)

d

(

t

T

)

= −T

1
∫

0

bo

(

t

T

)

sin

(

2πn
t

T

)

d

(

t

T

)

(25)
as to get (see (23))

T

2π

M
∑

m=1

1

Lm

n

(n2 − w2
m)

= − XLn

R2 + X2
Ln2

= Bo
n.

The relation between time samples pτ and frequency sam-
ples n2π/T is expressed in discrete time integration formula
(Euler method) (see (24))

Bk
n + Bo

n

= −
(

∑

p=1

N(bk(pτ) + bo(pτ)) sin

(

n
2π

T
pτ

)

)

,
(26)

where τ = T/N .
If

bk(pτ) + bo(pτ) = 0 then Bk
n + Bo

n = 0. (27)

This is true only for low frequencies because it is discrete
time system now.

For Euler integral method the mapping formula is

s =
1

τ
(1 − z−1) where z = ejωτ ,

which ends up with

s = σ + jΩ =
1

τ
(1 − cos(ωτ) + j sin(ωτ)). (28)

Then Ω ≈ ω and σ = 0 for only small frequencies (see
Fig. 4)

The relation (28) reduces the number of compensated har-
monics to less then N/4. As to expand the range of com-
pensated harmonics we have to increase N (time samples).
Together with increase N it must by increased M (number of
compensator branches ) because as to meet Eq. (27)

bk(pτ) + bo(pτ) = 0

in N points we need resonance compensator frequency no

less then
N

2

2π

T
(see Fig. 5, 6, the crossing points of bo(t)

and −bk(t)). This results that maximum wp =
N

2
.

Fig. 4. Relation between Ω and ω for Euler’s integral method for
N = 21 time samples a period

Thus if we wish to compensate all harmonics from 1 to k
we need M = N/2 = 2k compensator branches.

4. Calculation example

Let consider the RL in series load for which: P = 500 [W],
T = 0.02 [s], ω = 314 [rad/s], A = T/τL = 10, Lo = 25.7
[mH] and N = 21, M = 10, τL – time-constant of load.

Effective compensation is up to 5-th harmonic.
Time samples are shifted by τ /2 due to a singularity prob-

lem.

Fig. 5. In time-domain a) load bo(t), b) compensator −bk(t) and in
frequency-domain c) Bo(ω/ω1) + Bk(ω/ω1) for α = 1/4
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Fig. 6. In time-domain a) load bo(t), b) compensator −bk(t) and in
frequency-domain c) Bo(ω/ω1) + Bk(ω/ω1) for α = 0.1

5. Conclusions

The frequency response method which has been used until
now to synthesis LC compensators and has been considered
the only one [1], has its counterpart in a time-domain. In
both approaches the LC parameters can be found with simple
optimization techniques for a linear system.
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