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Reactive compensator synthesis in time-domain
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Abstract. The source reactive-current compensation is crucial in the energy transmission efficiency. The compensator design in a frequency-
domain has already been widely discussed and examined. This paper presents results of a study on how to design reactive compensators in
a time-domain. It is the first time the reactive compensator has been designed in a time domain. The example of a compensator is presented.
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1. Introduction

This article is a discussion on issue raised in the article of
L.S. Czarnecki [1] where the author considers if it is possible
to make a current decomposition into active, reactive and un-
balanced current in a time domain and basing on it to build
reactance compensators. The current decomposition in a time
domain was presented in the previous articles [2, 3] and in
this article the reactive compensators design in a time-domain
is presented.

2. Reactive current compensation

in time-domain
In the article [3], there was shown that a source-load cur-
rent can be decomposed into active and reactive current in
‘s’ domain i.e. for the Laplace transform of signals. Reactive
current can be compensated with the reactive compensator.
The source-load current decomposition is given below:

I(s) = G°(s)E(s) + B%(s)E(s) = I (s) + Ip(s), (1)

where 1
G2 (s) = 5(Y2(3) + Y7(=5), @

B(s) = 5(V°(s)§ (~s) G)

stand for the active and reactive parts of load admittance op-
erator Y°(s).

The equivalent decomposition (1) in time-domain is the
T-periodic convolution:

i(t) = (g°(t) +b°(t)) © e(t0 4)

where ¢°(t), b°(t) stands for T-periodic impulse response of
a load admittance active and reactive part given from the in-
verse relations [3]

1 —ot

e
—
o+s

1—e-t’
1 ea(t—T)
—

g — S

where ¢t € [0,7), Re(o) > 0, T — time period.
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Since b*(t) stands for T-periodic impulse response of
a compensator admittance reactive part, thus the reactive cur-
rent balance in time-domain is:

bE(t) 4+ b°(t) = 0. (6)

We assume that the compensator is composed of almost
lossless elementary branches connected in parallel as well as
the load (Fig. 1).
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Fig. 1. The zero impedance source, load and almost lossless com-
pensator connected in parallel

Reactive part of elementary compensator branch is:
d(=a) d(=a”)  d(a)  d(a”)  L(s)

B(s) = a+s +a*+s+a—s+a*—s - M(s)’ )
where L(s), M(s) — odd and even polynomials.
Residues are given by formulas:
L(— L
dl-a) = B+ )] = g = i =
L
dla) = B(s)a = 5)| _ =it = .
L(—a)
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where M’ (s) is the derivative of M (s) with respect to s, d —
real number.
Thus (7) reduces to

1 1 , 1 1
B(S):d<a+s_a—s>+d (a*—i—s_a*—S) ®)

and under (5)

t 1
(G
=—-2Re | d r 2

where A = aT = a+ j0.
From the trigonometric identity

sh(a+ jB) = sh(a) cos(f) + j ch() sin(3)

results that

Fi) — 9dRe sh(a(%—%) COS(ﬁ(%—%))
(1) = 2R | (3)cos (3) + sk (3) sin ()
_ch(a(z—3))sin (B (7~ 3))

—Hsh (2) cos (g) +jch (2)sin (%)

(10)

G,

If it is the case of RLC compensator elementary branch
then
1 s

VE(s) = ————;
() L w2+ 2es + 52’

Wo =

Its reactive part is

1 s s
BF(s) = —
() 2L <w§+2es—|—s2 +w§—2es+32>

ot (<a+s>?a*+s> ’ <a—s>?a*—s>>’

where a = € + jw, & jw,

| X
ﬁ:on:27T X—j

T 2wL .. . .
X = c X7 = —— — capacitive and inductive reactance
T

for the main frequency f = 1/T.
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Residue for B (s) can be calculated as

1

s=—a C2r
e=0

Thus the time depended representation of reactive part of
the elementary RLC branch (without R) has the form

bk(t):_l o <2W\/§(:j <%_%)> t

- D= T].
7 . \/Tc T € [0,T]
sin | 7T XL

In such a way we arrive to the compensatory set of Egs. (6)
in a new form

d= [B(s)(a + )]

. t 1
M sin (27rwm (T - 5)) .
> =0 (—) (11)

= L sin (mwy, ) T
XC Won
where w,,, = X = , m — number of elemen-
L

2T
(7)
tary branch, M — total number of compensator branches, wgn,
— resonance frequency of m-th branch.
Later in the article it is assumed that the reactive part of
load Y°(s) has only real poles, so the load is not an oscillator
circuit in contrast to the compensator.

For the single pole load

Bo(s)_b<1 - 1) a>0
a+s a— s

thus its invert transform is

t 1
4o t befat _ ea(th) bSh (A (g - 5))
<T> a 1—eoT

where A = aT, t/T € [0,T).
The coefficient b can be both positive and negative what
is shown below

a) b)
R R R
L
C L
1 C

Fig. 2. Examples of the load a) RRLC b) RLC

12)

For the RRLC load (see Fig. 2a) the admittance operator is

1 1
Yo(s) =
(s) R+SL+R+L
sC'
1 1 1
=2b —2b —
Lar +s ac+s+R’
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where
R b — 1
aL_L; C RC,
b o 1 7&07 1
L=arn “T9R T 2R2C’

Then the reactive part of Y,(s) is
1 1
B°(s)=b -
(S) L(aL—l-s aL—s)

b 1 1
© ac + s ac — S

and its T'-periodic inverse transform is
t 1
oy (r )
b’ =) =-bs
sh Ar
2

where AL = aLT, Ac = acT.
Whereas for the load shown in Fig. 2b:

1 1 S

YO(S): = - )
i—i—R—l—sL Lw§+20¢s—|—52
sC

h = A _
W erewo—\/T—C,a—E.

For the positive poles condition a? — w? > 0.
Y°(s) takes form

1 s by bo
YO e e T —————— :2
(5) L (a1 +s)(az + s) (al—i-s—’—ag—l—s)7

where a1 + a + /a? — wi, as = a — \/a? — wi.

And the coeflicients by, by are then

1 1
b= =[Y -
L= 5[V (s)(ar + )] e
S=—aq
1 1 a
b :—Y = —
s = 5V (s)(as + ) e
S=—asz
or
S
T4 a2 ’
b= Lo Vo-wg
4L Va2 —wi
thus

1 1
B° =b —
(S) 1(a1+s al—s)

1 1
+bo — .
az + s as — S
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Fig. 3. T-periodic single pole reactive operator in time-domain for
a)b>0,b)b<0

t
The reactive functions b° <T) (12) are shown in Fig. 3.

It is necessary to distinguish the two cases when b > 0 and
b < 0. When A/2 — 0 the curves become straight lines.

L[t t 1 t
r(L) = (D) e
because sh(z) — 0 for x — 0.

The solution of (11), for the unknowns L,,, and C,,, can be
find with optimization method. The (11) can be then rewritten
in the following form

M , t o1 e
mZ:le sin (27rwm (T — 5)) =b (T) , (14)

where

(13)

R U 15>
" Ly sin (Twyy,)’ e Xr /),

The relative frequencies of LC compensator branches have
to meet the condition

sin(mwy,) # 0
thus

Wy F D3 p — even number.
The set of Eqs. (14) can be solved for D,,, by minimizing
6% — min, (15)
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where

= J (35 P o (-2))

0 m=1

(1)) a(h)

or after few simple transformations it can be rewritten as

o= [ () 4(5)

(16)
After equating to zero the appropriate partial derivatives

aD. and assuming that

=p+a, p=1,2,3, .. 0<a<l, )
we get necessary minimum condition in form of the set of

equations for —
q L,

1 i sin(2ma) 1
L, = mm+p+ (m +p+20) Lm

et (F 52}

t
In particular case of the one pole load, for which b° (T)

(18)

is given by (12), Eq. (18) gets form

1 i sin (27 a)
L, m(m+p+ 2a)

m=1

b

1 j—
A .
(5) ) o)
. (wwp sin(2rar) — 2§cth (g) sin(wa)2)

or after separating the diagonal (dominating) element we get

( _ sin(27a) ) 1
2r(p+a)) Ly
B sin2ra) 1 b
mZ?ép ( (20)

7(m+p+2a) Ly, [A\2
(5) + (mwp)?

: (m sin(2ra) — 2§cth <§> sin(ﬂ'a)Q) :
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The offset «v in (17) must be less then 0.5 as to assure L,
positive.

3. Comparison with compensator design
in frequency-domain

The comparison of time-domain compensator design method
to the frequency-domain one will be shown below. The
frequency-domain approach is a well known method (see
M. Pasko [4-6]).

The counterpart of (6) in frequency-domain is

B+ Bo =0, (21)

where BE, B — frequency response of compensator and load
susceptance, n = 1, 2, 3, ... — harmonic number.
For the elementary compensator branch (LC in series)

1 2 sT
1 X, Xc
L+— L 2 2=
sL+ = (sT)% + (2m) ;

(22)

YE(s) =

Substituting sT' = —T = j2mn we get the frequency

response of the branch elementary susceptance
n 1
n? — ¢ X'
XL

B, =-—

Thus the formula of reactive source current compensa-
tion (22) takes form

Son L g,
n?—w2 L, T

m=1

(23)

The Eq. (23) is the counterpart of (11) transformed to
optimization task (18).
As to perform a comparative analysis of (11) and (23) it

. . t
must be examined the susceptance relation between b° T)

and its transform B¢, (in frequency-domain). It can be proved

that
1
t t
e A 2= |d| = |-
= [r () () a(z)
0
Then in the particular case of the RL in series load we get
2

B° =Im (Y" <j%n)>

— Im T A — j2mn
B L A% + (2mn)?

(24)

T ™
sL / A\? ’
— ) +(mn)?
(3) +
where n-integer.
Bull. Pol. Ac.: Tech. 60(1) 2012
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Certainly we can integrate Eq. (11) the same way as

o / gonlemme(z-3) (sent) a(£)

— Ly, sin(mwy,) T

~or o () an (oo a(5)

(25)
as to get (see (23))
Tl KX
2m £ Ly (n* —wy,) OR24+X3En?2 M

The relation between time samples p7 and frequency sam-
ples n2x /T is expressed in discrete time integration formula
(Euler method) (see (24))

B} + B;,
p=1
where 7 = T/N.

If

Be(pr) + 1°(pr) =0 then BF+B°=0. (27)

This is true only for low frequencies because it is discrete
time system now.
For Euler integral method the mapping formula is

1 .
s=—(1—2z"" where z=¢e",
T

which ends up with

s=o0+jQ= %(1 — cos(wT) + jsin(wr)).  (28)

Then Q2 ~ w and ¢ = 0 for only small frequencies (see
Fig. 4)

The relation (28) reduces the number of compensated har-
monics to less then N/4. As to expand the range of com-
pensated harmonics we have to increase [N (time samples).
Together with increase N it must by increased M (number of
compensator branches ) because as to meet Eq. (27)

b (pr) +b°(p) = 0
in N points we need resonance compensator frequency no

N2
less then 5% (see Fig. 5, 6, the crossing points of b°(t)
N

and —b¥(¢)). This results that maximum w,, = 5

Bull. Pol. Ac.: Tech. 60(1) 2012
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Fig. 4. Relation between €2 and w for Euler’s integral method for
N = 21 time samples a period

Thus if we wish to compensate all harmonics from 1 to k
we need M = N/2 = 2k compensator branches.

4. Calculation example

Let consider the RL in series load for which: P = 500 [W],
T =0.02 [s], w = 314 [rad/s], A = T /7, = 10, L, = 25.7
[mH] and N = 21, M = 10, 77, — time-constant of load.
Effective compensation is up to 5-th harmonic.
Time samples are shifted by 7/2 due to a singularity prob-
lem.
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Fig. 5. In time-domain a) load b°(t), b) compensator —b"(¢) and in
)

frequency-domain ¢) B°(w/wi) + B*(w/w:) for o = 1/4
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Fig. 6. In time-domain a) load b°(t), b) compensator —b*(¢) and in
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frequency-domain ¢) B°(w/w1) 4+ B*(w/w1) for a = 0.1

/

5. Conclusions

The frequency response method which has been used until
now to synthesis LC compensators and has been considered
the only one [1], has its counterpart in a time-domain. In
both approaches the LC parameters can be found with simple
optimization techniques for a linear system.
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